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Abstract. This paper investigates the stabilization issue of T-S fuzzy Markov jump gen-
eralized neural networks (GNNs) with reaction-diffusion terms. A nonfragile memory-
based control strategy that contains a constant signal transmission delay is proposed.
Additionally, the controller gain optimization method and the principle for the number
of selected variables in the derived process are also analyzed in this paper. Firstly, based
on the original T-S fuzzy Markov jump GNNs, a full-order observer with designed con-
troller is established. Then the stable criteria of the considered error system are proposed
and two relevant corollaries are also derived. Finally, three numerical examples are giv-
en to demonstrate the validity of the related results and the superiority of the designed
controller.
Keywords: GNNs, Markov jump, Nonfragile memory-based control, Reaction-diffusion
terms, T-S fuzzy model

1. Introduction. In the past few decades, a lot of scholars have concentrated on the
study of dynamical neural networks (NNs) owing to their immense implementation in
numerous fields, including pattern recognition, image processing, combinatorial opti-
mization, associate memory design, speed detection of moving objects and other areas
[1, 2, 3, 4]. In addition, the NNs can be classified into local field NNs (LFNNs) [5] and
static NNs (SNNs) [6] by the utilization of local field states or neural states of neuro-
ns. Scholars have to study LFNNs and SNNs respectively in earlier years, because their
models are often different [7]. However, recently, the new unified NNs called generalized
NNs (GNNs) have been proposed to combine the LFNNs and SNNs [8, 9]. As a result,
analyzing the dynamic behaviors of GNNs instead of LFNNs and SNNs separately is of
great importance [10].

On another research front, Markov jump parameters have been taken into account in
GNNs, because there are often random situations in practical application which can be
suitably described by Markov jump models. Thus, many research results about Markov
jump GNNs (MJGNNs) have been reported. For example, the authors in [10, 11] analyzed
stability for a class of MJGNNs, the dissipativity of MJGNNs was studied in [12], and
[13] investigated exponential stability of semi-MJGNNs. Moreover, in engineering fields,
diffusion effects cannot be neglected in NNs when electrons are moving in asymmetric
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electromagnetic fields [14, 15]. Therefore, it is necessary to consider reaction-diffusion
effects in the research of MJGNNs, which implies that the whole dynamics and structure
of GNNs depend not only on the evolution time of each variable, but also on its position
status [16]. However, due to the inherent complex characteristics of nonlinear systems,
the control effects are not always satisfactory [17]. Fortunately, T-S fuzzy model can
provide an effective method to represent complex nonlinear systems by local linear systems
with their linguistic description, so that the inherent complex characteristics of nonlinear
systems can be averted [18, 19, 20].
Uncertainties widely exist in controller, which may generate instability of systems.

Therefore, many scholars have studied the nonfragile control problems, which can take the
uncertainties of the controller into consideration [21, 22, 23, 24]. Moreover, the response
of the practical controller is not only affected by the current input signal, but also often
affected by the previous ones; thus, it is necessary to take signal transmission delay
into consideration. Memory control strategy, also named proportional retarded control
scheme, is proposed in [25, 26], where the updating signal successfully transmitted from
the sampler to controller and zero-order holder at the sampling instant has experienced a
signal transmission delay. However, to the best of our knowledge, the nonfragile memory-
based controller has not been considered for T-S fuzzy MJGNNs with reaction-diffusion
terms, which is the most important motivation of this paper.
As is known to us all, the core of stabilization issue is to design a suitable controller

such that the considered system is stable. However, there are often the phenomena that
obtained controller gains are too large to implement. Inspired by [27], the controller gain
optimization method is analyzed in this paper. What is more, the selection of variables
can greatly influent the conservatism of the main results. In this paper, to better show the
importance of the selected variables’ number in the process of deriving the main results,
a comparative example is proposed. The analysis of the above two problems is another
motivation of this paper.
Based on discussions mentioned above, the main objective of this paper is to establish

a stable criterion for T-S fuzzy MJGNNs with reaction-diffusion terms via nonfragile
memory-based control scheme. The main contributions of this work are summarized as
below.
(1) Compared with some existing results such as [15, 16, 28], this paper innovatively

integrates reaction-diffusion terms and Markov jump parameters with T-S fuzzy GNNs,
so that the influence of spatial position and the parameters variation are fully considered,
which makes system model established in this paper more general and more suitable for
practical engineering.
(2) Considering the change of controller’s parameters in the actual project and the

influence of the previous input signal on the controller, this paper makes the first attempt
to design a nonfragile memory-based control scheme for T-S fuzzy MJGNNs with reaction-
diffusion terms, so that the controller designed in this paper has stronger anti-interference
ability and memory function.
(3) We apply the controller gain optimization method to T-S fuzzy MJGNNs with

reaction-diffusion terms, as a result, the controller gains may be more suitable in practical
engineering application. At the same time, the influence of selected variables’ number in
Lyapunov function was analyzed, and a conclusion is reached through a corresponding
numerical example.
The rest of this paper is organized as follows. The system model and some preliminaries

are introduced in Section 2. In Section 3, the main results of this paper are obtained,
including the controller design method and two related corollaries. Three numerical ex-
amples are given in Section 4. Finally, conclusions are drawn in Section 5.
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Notations: Throughout this paper, Rn represents n-dimensional Dirichlet space and
Rn×n denotes n× n real matrix set; Ω = {s ||sk| ≤ lk, k = 1, 2, . . . , q} denotes a compact
set with smooth boundary ∂Ω; υi, i = 1, 2, . . . , n, represents the n-dimensional column
vector with the ith element equal to 1 and 0 elsewhere; the notation MT represents the
transpose of the matrix M ; A−1 represents the inverse matrix of matrix A; for symmetric
matrices X and Y , the notation X > Y (respectively, X ≥ Y ) means that the matrix
X − Y is positive definite (respectively, positive semidefinite); the shorthand diag{· · · }
denotes a diagonal or block diagonal matrix; ∗ represents the elements below the main
diagonal of the symmetric block matrix; col{· · · } denotes expressing the elements in
{· · · } as column vectors; Sym{A} = A+AT ; Cn(Ω) represents the family of continuously
n-times differentiable real-valued functions defined on Ω; In is the n-dimensional unit
matrix; {δt} is a continuous-time Markovian process with right continuous trajectories
and takes the values in a finite set S = (1, 2, . . . , S) with transition probability matrix
Ψ , {φαβ} given by

Pr{δt+∆ = β |δt = α} =

{
φαβ∆+ o(∆) α ̸= β

1 + φαα∆+ o(∆) α = β

where ∆ > 0, lim
∆→0

o(∆)
∆

= 0, and φαβ ≥ 0 for α ̸= β is the transition rate from mode α at

time t to mode β at time t+∆ and φαα = −
∑

β∈S,α ̸=β φαβ, Pr{δt+∆ = β |δt = α} denotes
that under the condition of δt = α, the probability of occurrence of δt+∆ = β; matrices, if
not explicitly stated, are assumed to have compatible dimensions.

2. Problem Statement. Fix a probability space (Ω, F, P ), and consider the following
Markov jump GNNs with reaction-diffusion terms depicted by a T-S fuzzy model with r
rules:
Plant Rule i: IF ϑ1(s, t) is Fi1 and . . . and ϑp(s, t) is Fip, THEN

∂uρ(s, t)

∂t
=

q∑
k=1

∂

∂sk

(
aρk

∂uρ(s, t)

∂sk

)
− bρi(δt)uρ(s, t) +

n∑
l=1

cρli(δt)gl(wρl(δt)ul(s, t))

+
n∑

l=1

dρli(δt)gl(wρl(δt)ul(s, t− h(t))),

ℑu
ρ(s, t) = ~ρi(δt)uρ(s, t), ρ = 1, 2, . . . , n (1)

where ϑ1(s, t), . . . , ϑp(s, t) are premise variables; Fiω (i = 1, 2, . . . , r, ω = 1, 2, . . . , p) is

fuzzy set characterized by membership function; s = (s1, s2, . . . , sq)
T ∈ Ω ⊂ Rq, with

Ω = {s ||sk| ≤ lk, k = 1, 2, . . . , q}, and lk is a positive constant; uρ(s, t) is the state of the

ρth neuron at time t and space s = (s1, s2, . . . , sq)
T ; ℑu

ρ(s, t) is the measurement output

of the ρth neuron at time t; aρk > 0 (ρ = 1, 2, . . . , n; k = 1, 2, . . . , q) represents the
transmission diffusion operator along the ρth neuron; bρi(δt) > 0 represents the rate with
which the ρth unit will reset its potential to the resting state in isolation when disconnected
from the networks and external inputs; cρli(δt) and dρli(δt) are the connection weights
coefficients of the neurons; ~ρi(δt) is feedback connection weight of the neurons; gl(·)
stands for the neuron activation functions; h(t) is the time-varying delay and satisfies:

0 < h1 < h(t) < h2,
dh(t)

dt
≤ h,

where h1, h2 and h are given constants. wρl is the value of the synaptic connectivity from
neuron l to neuron ρ.
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Besides, the boundary conditions and initial conditions of (1) are supposed as:

uρ(s, t) = 0, (s, t) ∈ ∂Ω× [−h2,+∞)

uρ(s, ℓ) = ϕρ(s, ℓ), (s, ℓ) ∈ Ω× [−h2, 0]

for ρ = 1, 2, . . . , n, where ϕρ(s, ℓ) is a vector-valued continuous and bounded function
defined on Ω× [−h2, 0].

Remark 2.1. The GNNs (1) consists of some familiar neural networks as its particular
cases. If cρli(δt) = dρli(δt) = 1, the system model (1) reduced to Markov jump delayed
static neural networks with reaction-diffusion terms. And if wρl(δt) = 1, it falls into a
class of Markov jump delayed local field neural networks with reaction-diffusion terms.
As a result, compared with some existing results such as [6, 14, 28], the system model
considered in this paper is more general and may fulfill a wider range of production needs.

For simplicity, the system (1) can be rewritten as the following compact form:

∂u(s, t)

∂t
=

q∑
k=1

∂

∂sk

(
Ak

∂u(s, t)

∂sk

)
+

r∑
i=1

θi(ϑ(s, t))
[
− Bi(δt)u(s, t)

+ Ci(δt)g(W (δt)u(s, t)) + Di(δt)g(W (δt)u(s, t− h(t)))
]

ℑu(s, t) =
r∑

i=1

θi(ϑ(s, t))Hi(δt)u(s, t) (2)

where u(s, t) = (u1(s, t), u2(s, t), . . . , un(s, t))
T , Ak = diag{a1k, a2k, . . . , ank}, Bi(δt) =

diag{b1i(δt), b2i(δt), . . . , bni(δt)}, Ci(δt) = (cρli(δt))n×n, Di(δt) = (dρli(δt))n×n, Hi(δt) =
diag{~1i(δt), ~2i(δt), . . . , ~ni(δt)}, g(W (δt)u(s, t)) = (g(W (δt)u1(s, t)), g(W (δt)u2(s, t)),
. . . , g(W (δt)un(s, t)))

T , and θi(ϑ(s, t)) denotes the normalized membership function of
the inferred fuzzy set ϖi(ϑ(s, t)) satisfying

θi(ϑ(s, t)) =
ϖi(ϑ(s, t))∑r
i=1ϖi(ϑ(s, t))

, ϖi(ϑ(s, t)) =

p∏
ω=1

Fiω(ϑ(s, t)),

in which Fiω(ϑ(s, t)) is the grade membership function of ϑ(s, t) in Fiω. It is assumed that

ϖi(ϑ(s, t)) ≥ 0, i = 1, 2, . . . , r,
r∑

i=1

ϖi(ϑ(s, t)) > 0, ∀t ≥ 0.

Hence, θi(ϑ(s, t)) satisfies θi(ϑ(s, t)) ≥ 0, i = 1, 2, . . . , r,
∑r

i=1 θi(ϑ(s, t)) = 1 for any
ϑ(s, t).

Assumption 2.1. [29] The activation function gl is continuously bounded, and there exist
some real constants v−l and v+l such that

v−l ≤ gl(σ1)− gl(σ2)

σ1 − σ2

≤ v+l ,

where v−l and v+l may be positive, zero or negative.

Inspired by [28], the following full-order observer can be modeled as:

∂vµ(s, t)

∂t
=

q∑
k=1

∂

∂sk

(
Ak

∂vµ(s, t)

∂sk

)
+

r∑
i=1

θi(ϑ(s, t))[−Bi(δt)vµ(s, t)

+ Ci(δt)g(W (δt)vµ(s, t)) + Di(δt)g(W (δt)vµ(s, t− h(t))) + wµ(s, t)],
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ℑv
µ(s, t) =

r∑
i=1

θi(ϑ(s, t))Hi(δt)vµ(s, t), µ = 1, 2, . . . , n (3)

where vµ(s, t) = (vµ1(s, t), vµ2(s, t), . . . , vµn(s, t)) ∈ Rn is the estimation of the neuron
state, and wµ(s, t) ∈ Rn is the nonfragile fuzzy memory-based controller to be designed.

Besides, the boundary and initial conditions of (3) are defined as:

vµ(s, t) = 0, (s, t) ∈ ∂Ω× [−h2,+∞)
vµ(s, ℓ) = σµ(s, ℓ), (s, ℓ) ∈ Ω× [−h2, 0]

for µ = 1, 2, . . . , n, where σµ(s, ℓ) are vector-valued continuous and bounded functions
defined on Ω× [−h2, 0].

Inspired by [26, 30, 31], the stabilization problem is investigated under the parallel
distributed compensation scheme, which means that the memory-based controller for rule
j can be designed as:
Controller Rule j: IF ϑ1(s, t) is Fj1 and . . . and ϑp(s, t) is Fjp, THEN

wµ(s, t) = [K1j +∆K1j(t)]
[
ℑv

µ(s, t)−ℑu(s, t)
]

+ [K2j +∆K2j(t)]
[
ℑv

µ(s, t− η)−ℑu(s, t− η)
]
, j = 1, 2, . . . , r (4)

where η is a constant delay, and K1j, K2j are appropriate dimensional controller gain
matrices.

The uncertainties ∆K1j(t) and ∆K2j(t) represent the possible controller gain fluctua-
tions. It is assumed that ∆K1j(t) and ∆K2j(t) have the following form:

[∆K1j(t),∆K2j(t)] = QjYj(t) [N1j,N2j]

where Qj, N1j and N2j are known constant matrices with appropriate dimensions, and
Yj(t) is an unknown matrices function satisfying Y T

j (t)Yj(t) ≤ I.
Let yµ(s, t) = vµ(s, t)−u(s, t) be the error vector, and then the error system represented

by a compact form is obtained:

∂yµ(s, t)

∂t
=

q∑
k=1

∂

∂sk

(
Ak

∂yµ(s, t)

∂sk

)
+

r∑
i=1

θi(ϑ(s, t))
r∑

j=1

θj(ϑ(s, t))
[
− Biαyµ(s, t)

+ Ciαg̃ (Wαyµ(s, t)) + Diαg̃(Wαyµ(s, t− h(t)))

+ [K1j +∆K1j(t)]Hiαyµ(s, t) + [K2j +∆K2j(t)]Hiαyµ(s, t− η)
]
,

µ = 1, 2, . . . , n (5)

where α = 1, 2, . . . , S , and g̃(Wαyµ(s, t)) = g(Wαvµ(s, t))− g(Wαu(s, t)).
From Assumption 2.1, the neuron activation function satisfies

v−l ≤ g̃l(σ)

σ
≤ v+l , l = 1, 2, . . . , n.

Define V1 = diag{v−1 , v−2 , . . . , v−n } and V2 = diag{v+1 , v+2 , . . . , v+n } are constant matrixes.
In this paper, we shall use the following definition and lemmas, which play crucial roles

in the proof of the main results.

Definition 2.1. [32]: Let V (yµ(s, t), t) be the stochastic Lyapunov function of the system
(5), and define its weak infinitesimal operator as

LV (yµ(s, t), δt, t) =
∂

∂t
V (yµ(s, t), δt, t) +

[
∂

∂yµ(s, t)
V (yµ(s, t), δt, t)

]
∂yµ(s, t)

∂t

+
S∑

β=1

φαβV (yµ(s, t), β, t)
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Definition 2.2. [32]: System (5) is said to be globally asymptotically stable in mean
square if lim

t→∞

{
∥yµ(s, t)∥2

}
= 0 for any initial conditions.

Lemma 2.1. [33]: For any matrix M ∈ Rn×n, M = MT > 0 and a ≤ x ≤ b, the following
inequation holds:

−
∫ b

a

ωT (x)Mω(x)dx ≤ − 1

b− a

(∫ b

a

ω(x)dx

)T

M

∫ b

a

ω(x)dx

where a and b are given scalars.

Lemma 2.2. [34]: Let g1, g2, . . . , gN : Rm → R1 have positive values in an open subset E
of Rm. Then the reciprocally convex combination of gi over E satisfies{

νi

∣∣∣∣∣νi > 0,
∑
i

νi = 1

}∑
i

1

νi
gi(t) =

∑
i

gi(t) + max
fi,j(t)

∑
i̸=j

fi,j(t)

subject to {
fi,j : Rm → R1, fi,j(t) = fj,i(t),

[
gi(t) fi,j(t)
fj,i(t) gj(t)

]
≥ 0

}
Lemma 2.3. [35]: Given real matrices A, B and D that with appropriate dimensions and
a scalar ε > 0, moreover, DTD ≤ I, for any vectors x, y ∈ Rn, the following inequation
holds:

2xTADBy ≤ ε−1xTAATx+ εyTBTBy

Lemma 2.4. [36]: Let Ω be a cube |xk| < l̃k (k = 1, 2, . . . ,m), and let ν(x) be a real-valued
function belonging to C1(Ω) which satisfies ν(x) |∂Ω = 0. Then∫

Ω

ν(x)dx ≤ l̃2k

∫
Ω

∣∣∣∣∂ν(x)∂xk

∣∣∣∣ dx
Our target is to design a controller (4), such that the response system (5) is globally

asymptotically stable in mean square. To achieve this aim, the main results will be
proposed in the next section.

3. Main Results. In this section, by constructing Lyapunov functional and utilizing
multiple integration method, new criteria to ensure the stability of the considered T-
S fuzzy MJGNNs with reaction-diffusion terms and the corresponding controller design
scheme will be proposed.
For the purpose of simplicity, some vector notations are denoted as follows:

χT
µ (s, x) =

[
yTµ (s, t), g̃

T (Wαyµ(s, t))
]

∇(s, t) = col

{
yµ(s, t), ẏµ(s, t), yµ(s, t− h1), yµ(s, t− h(t)), yµ(s, t− h2), yµ(s, t− η),

g̃(Wαyµ(s, t)), g̃(Wαyµ(s, t− h1)), g̃(Wαyµ(s, t− h(t))), g̃(Wαyµ(s, t− h2)),∫ t−h(t)

t−h2

yµ(s, x)dx,

∫ t−h1

t−h(t)

yµ(s, x)dx,

∫ t

t−η

ẏµ(s, x)dx

}
Theorem 3.1. For given scalars ε > 0, η > 0, h2 > h1 > 0, the error system (5) is
asymptotically stable in mean square if there exist Pα > 0, (α = 1, 2, . . . , S), Γ > 0,

Qe =

[
Qe11 Qe12

∗ Qe22

]
> 0, (e = 1, 2, 3), U1,U2 > 0, Z > 0, positive definite diagonal



NONFRAGILE MEMORY-BASED OUTPUT FEEDBACK CONTROL 1615

matrix Θo (o = 1, 2, 3) and appropriate dimensional arbitrary matrices Gϖ (ϖ = 1, 2, 3, 4),

Z̃, K̂1j and K̂2j (j = 1, 2, . . . , r) such that the following LMIs hold[
Σij

(
γ1υ

T
1 Γ + γ2υ

T
2 Γ
)
Qj

∗ −εIn

]
< 0 (6)

[
Z Z̃

∗ Z

]
> 0 (7)

where

Σij = Ξ1 + Ξ2 + Ξ3 + Ξ4 + Ξ5 + Ξ6

Ξ1 = Sym
{
υT
1 (Pα − γ1Γ)υ2

}
− υT

1

[
2γ1ΓÃ + 2γ1ΓBiα −

∑
β∈S

φαβPβ − 2γ1K̂1jHiα

]
υ1

+ Sym
{
υT
1 γ1Γ [Ciαυ7 + Diαυ9]

}
+ Sym

{
υT
1 γ1K̂2jHiαυ6

}
− 2υT

2 γ2Γυ2

+ Sym
{
υT
2 γ2Γ [−Biαυ1 + Ciαυ7 + Diαυ9] + υT

2 γ2K̂1jHiαυ1 + υT
2 γ2K̂2j

× Hiαυ6

}
+ ε(N1jHiαυ1 +N2jHiαυ6)

T (N1jHiαυ1 +N2jHiαυ6)

Ξ2 =
(
υT
1 , υ

T
7

)
(Q1 + h1Q2 + h2Q3)

(
υT
1 , υ

T
7

)T − (1− h)
(
υT
4 , υ

T
9

)
Q1

(
υT
4 , υ

T
9

)T
−
(
υT
3 , υ

T
8

)
h1Q2

(
υT
3 , υ

T
8

)T −
(
υT
5 , υ

T
10

)
h2Q3

(
υT
5 , υ

T
10

)T
Ξ3 = η

(
υT
1 U1υ1 − υT

6 U1υ6
)
+ (h2 − h1)

(
υT
3 U2υ3 − υT

5 U2υ5
)

Ξ4 = (h2 − h1)
2υT

1 Zυ1 −
(
υT
11, υ

T
12

) [ Z Z̃

∗ Z

] (
υT
11, υ

T
12

)T
Ξ5 = Sym

{[
υT
7 − υT

1 W
T
α V

T
1

]
Θ1 [V2Wαυ1 − υ7]

}
+ Sym

{[
υT
9 − υT

4 W
T
α V

T
1

]
Θ2 [V2Wαυ4 − υ9]

}
+ Sym

{[
υT
7 − υT

9 − υT
1 W

T
α V

T
1 + υT

4 W
T
α V

T
1

]
Θ3 [V2Wαυ1 − V2Wαυ4 − υ7 + υ9]

}
Ξ6 = Sym

{(
υT
4 G1 + υT

7 G2 + υT
9 G3 + υT

13G4

)
× (υ1 − υ6 − υ13)

}
In addition, K1j = Γ−1K̂1j, K2j = Γ−1K̂2j.

Proof: To derive Theorem 3.1, Lyapunov functional method will be adopted here.
That is, Lyapunov functional V (yµ(s, t), t) should be constructed such that

LV (yµ(s, t), t) ≤
∫
Ω

n∑
µ=1

{
r∑

i=1

θi(ϑ(s, t))
r∑

j=1

θj(ϑ(s, t))∇T (s, t)Σ̄ij∇(s, t)

}
ds < 0

where Σ̄ij = Σij+ε−1
(
γ1υ

T
1 Γ + γ2υ

T
2 Γ
)
QjQ

T
j

(
γ1υ

T
1 Γ + γ2υ

T
2 Γ
)T

and Σij has been defined
in (6). As a result, the error system (5) is asymptotically stable in mean square.

To achieve this objective, we choose the following Lyapunov functional candidates:

V (yµ(s, t), t) =
4∑

ϱ=1

Vϱ(yµ(s, t), t) (8)

where

V1(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{
yTµ (s, t)Pαyµ(s, t) +

q∑
k=1

Ak

(
∂yµ(s, t)

∂sk

)T

Γ

(
∂yµ(s, t)

∂sk

)}
ds
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V2(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{∫ t

t−h(t)

χT
µ (s, x)Q1χµ(s, x)dx+ h1

∫ t

t−h1

χT
µ (s, x)Q2χµ(s, x)dx

+h2

∫ t

t−h2

χT
µ (s, x)Q3χµ(s, x)dx

}
ds

V3(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{
η

∫ t

t−η

yTµ (s, x)U1yµ(s, x)dx

}
ds

+

∫
Ω

n∑
µ=1

{
(h2 − h1)

∫ t−h1

t−h2

yTµ (s, x)U2yµ(s, x)dx

}
ds

V4(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{
(h2 − h1)

∫ −h1

−h2

∫ t

t+θ

yTµ (s, x)Zyµ(s, x)dxdθ

}
ds

Then, from Definition 2.1, it can be deduced that for each α ∈ S ,

LV (yµ(s, t), t) =
4∑

ϱ=1

LVϱ(yµ(s, t), t) (9)

where

LV1(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{
2yTµ (s, t)Pαẏµ(s, t) +

∑
β∈S

yTµ (s, t)φαβPβyµ(s, t)

+ 2

q∑
k=1

Ak

(
∂yµ(s, t)

∂sk

)T

Γ

(
∂ẏµ(s, t)

∂sk

)}
ds

According to the error system (5), one can have

0 = 2

∫
Ω

r∑
i=1

{
θi(ϑ(s, t))

r∑
j=1

θj(ϑ(s, t))
[
γ1y

T
µ (s, t)Γ + γ2ẏ

T
µ (s, t)Γ

] [
− ẏµ(s, t)

+

q∑
k=1

∂

∂sk

(
Ak

∂yµ(s, t)

∂sk

)
− Biαyµ(s, t) + Ciαg̃ (Wαyµ(s, t)) + Diαg̃(Wαyµ(s, t− h(t)))

+ [K1j +∆K1j(t)]Hiαyµ(s, t) + [K2j +∆K2j(t)]Hiαyµ(s, t− η)

]}
ds (10)

Then, using Lemma 2.3

2
[
γ1y

T
µ (s, t)Γ + γ2ẏ

T
µ (s, t)Γ

]
[∆K1j(t)Hiαyµ(s, t) + ∆K2j(t)Hiαyµ(s, t− η)]

= 2
[
γ1y

T
µ (s, t)Γ + γ2ẏ

T
µ (s, t)Γ

]
QjYj(t) [N1jHiαyµ(s, t) +N2jHiαyµ(s, t− η)]

≤ ε−1
[
γ1y

T
µ (s, t)Γ + γ2ẏ

T
µ (s, t)Γ

]
QjQ

T
j

[
γ1y

T
µ (s, t)Γ + γ2ẏ

T
µ (s, t)Γ

]T
+ ε [N1jHiαyµ(s, t) +N2jHiαyµ(s, t− η)]T [N1jHiαyµ(s, t) +N2jHiαyµ(s, t− η)] (11)

Combining (10), (11) and Lemma 2.4, one can easily derive that

LV1(yµ(s, t), t)

≤ 2

∫
Ω

n∑
µ=1

Υµds+

∫
Ω

n∑
µ=1

{∑
β∈S

yTµ (s, t)φαβPβyµ(s, t)

}
ds
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+

∫
Ω

n∑
µ=1

{
r∑

i=1

θi(ϑ(s, t))
r∑

j=1

θj(ϑ(s, t))
[
ε−1
(
γ1y

T
µ (s, t)Γ

+ γ2ẏ
T
µ (s, t)Γ

)
QjQ

T
j

(
γ1y

T
µ (s, t)Γ + γ2ẏ

T
µ (s, t)Γ

)T
+ ε (N1jHiαyµ(s, t)

+ N2jHiαyµ(s, t− η))T (N1jHiαyµ(s, t) +N2jHiαyµ(s, t− η))
]}

ds (12)

where

Υµ =
r∑

i=1

θi(ϑ(s, t))
r∑

j=1

θj(ϑ(s, t))
[
yTµ (s, t)Pαẏµ(s, t)− γ1y

T
µ (s, t)Γẏµ(s, t)

− γ1y
T
µ (s, t)ΓÃyµ(s, t)− γ1y

T
µ (s, t)ΓBiαyµ(s, t) + γ1y

T
µ (s, t)ΓCiαg̃(Wαyµ(s, t))

+ γ1y
T
µ (s, t)ΓDiαg̃(Wαyµ(s, t− h(t))) + γ1y

T
µ (s, t)ΓK1jHiαyµ(s, t)

+ γ1y
T
µ (s, t)ΓK2jHiαyµ(s, t− η)− γ2ẏ

T
µ (s, t)Γẏµ(s, t) + γ2ẏ

T
µ (s, t)Γ(−Biαyµ(s, t)

+ Ciαg̃(Wαyµ(s, t)) + Diαg̃(Wαyµ(s, t− h(t)))) + γ2ẏ
T
µ (s, t)ΓK1jHiαyµ(s, t)

+ γ2ẏ
T
µ (s, t)ΓK2jHiαyµ(s, t− η)

]
Ã = diag

{∑q
k=1

a1k
l2k
,
∑q

k=1
a2k
l2k
, . . . ,

∑q
k=1

ank

l2k

}
and lk > 0 are given scalars.

In addition,

LV2(yµ(s, t), t) ≤
∫
Ω

n∑
µ=1

{
χT
µ (s, t)(Q1 + h1Q2 + h2Q3)χµ(s, t)

}
ds

− (1− h)

∫
Ω

n∑
µ=1

{
χT
µ (s, t− h(t))Q1χµ(s, t− h(t))

}
ds

− h1

∫
Ω

n∑
µ=1

{
χT
µ (s, t− h1)Q2χµ(s, t− h1)

}
ds

− h2

∫
Ω

n∑
µ=1

{
χT
µ (s, t− h2)Q3χµ(s, t− h2)

}
ds (13)

LV3(yµ(s, t), t) = η

∫
Ω

n∑
µ=1

{
yTµ (s, t)U1yµ(s, t)− yTµ (s, t− η)U1yµ(s, t− η)

}
ds

+ (h2 − h1)

∫
Ω

n∑
µ=1

{
yTµ (s, t− h1)U2yµ(s, t− h1)

− yTµ (s, t− h2)U2yµ(s, t− h2)
}
ds (14)

LV4(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{
(h2 − h1)

2yTµ (s, t)Zyµ(s, t)

− (h2 − h1)

∫ t−h1

t−h2

yTµ (s, x)Zyµ(s, x)dx

}
ds (15)

For h1 ≤ h(t) ≤ h2, the following inequalities can be deduced by Lemmas 2.1 and 2.2:

− (h2 − h1)

∫ t−h1

t−h2

yTµ (s, x)Zyµ(s, x)dx
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≤− h2 − h1

h2 − h(t)

(∫ t−h(t)

t−h2

yµ(s, x)dx

)T

Z

(∫ t−h(t)

t−h2

yµ(s, x)dx

)

− h2 − h1

h(t)− h1

(∫ t−h1

t−h(t)

yµ(s, x)dx

)T

Z

(∫ t−h1

t−h(t)

yµ(s, x)dx

)

≤−


∫ t−h(t)

t−h2

yµ(s, x)dx∫ t−h1

t−h(t)

yµ(s, x)dx


T [

Z Z̃

∗ Z

]
∫ t−h(t)

t−h2

yµ(s, x)dx∫ t−h1

t−h(t)

yµ(s, x)dx


and [

Z Z̃

∗ Z

]
> 0

From Assumption 2.1, we can obtain the following inequations for n-dimensional positive
definite diagonal matrix Θo (o = 1, 2, 3):

0 ≤ 2[g̃(Wαyµ(s, t))− V1Wαyµ(s, t)]
TΘ1[V2Wαyµ(s, t)− g̃(Wαyµ(s, t))] (16)

0 ≤ 2[g̃(Wαyµ(s, t− h(t)))− V1Wαyµ(s, t− h(t))]TΘ2[V2Wαyµ(s, t− h(t))

− g̃(Wαyµ(s, t− h(t)))] (17)

0 ≤ 2 {g̃(Wαyµ(s, t))− g̃(Wαyµ(s, t− h(t)))

− V1 [Wαyµ(s, t)−Wαyµ(s, t− h(t))]}T Θ3 {V2[Wαyµ(s, t)

−Wαyµ(s, t− h(t))]− g̃(Wαyµ(s, t)) + g̃(Wαyµ(s, t− h(t)))} (18)

By the Leibnitz-Newton formula, it is clear that the following equality is true for arbi-
trary matrices Gϖ (ϖ = 1, 2, 3, 4) with appropriate dimensions:

0 = 2

[
yTµ (s, t− h(t))G1 + g̃T (yµ(s, t))G2 + g̃T (yµ(s, t− h(t)))G3

+

∫ t

t−η

ẏTµ (s, x)dx×G4

]
×
[
yµ(s, t)− yµ(s, t− η)−

∫ t

t−η

ẏTµ (s, x)dx

]
(19)

Let K̂1j = ΓK1j, K̂2j = ΓK2j, then, invoking (8)-(19) and calculating the mathematical
expectation of LV (yµ(s, t), t), for each α ∈ S, it can be derived that:

E{LV (yµ(s, t), t)} ≤ ∇T (s, t)Σ̄ij∇(s, t)

where Σ̄ij = Σij + ε−1
(
γ1υ

T
1 Γ + γ2υ

T
2 Γ
)
QjQ

T
j

(
γ1υ

T
1 Γ + γ2υ

T
2 Γ
)T

, and Σij is defined in
Theorem 3.1. It clearly shows that E {LV (yµ(s, t), t)} < 0 if and only if (6) and (7)
hold. From Lyapunov stability theory, one can obtain that the closed-loop error system
(5) is globally asymptotically stable in mean square. Additionally, K1j = Γ−1K̂1j, K2j =

Γ−1K̂2j. This completes the proof. �
Remark 3.1. In this paper, some accessional variables are involved in ∇(s, t) such as∫ t−h(t)

t−h2
yµ(s, x)dx,

∫ t−h1

t−h(t)
yµ(s, x)dx and

∫ t

t−η
ẏµ(s, x)dx, and these new additional variables

can strengthen the combination of the terms yµ(s, t), yµ(s, t−h(t)), yµ(s, t−η), yµ(s, t−h1)
and yµ(s, t − h2), which help to derive modified stability criteria and less conservative
results of the proposed systems. Nevertheless, if the number of variables is too large,
it will increase the amount of calculations. The relevant proof and simulation will be
demonstrated in Corollary 3.2 and numerical Example 4.2.
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Remark 3.2. Two zero terms (10) and (19) are adopted to derive main results, which
differently operate on the criterion. The first zero term (10) is mainly aimed at presenting
the matrix Γ to combine with K1j and K2j, so that the controller gains can be directly
deduced by the utilization of Theorem 3.1. As a result, the calculations are greatly reduced
compared with [28, 37]. Moreover, to decrease the zero units in the main matrix of (6),
which can generate conservatism of the main results and instability of the control system,
the second zero term (19) that can strengthen the combination of the variables yµ(s, t),
yµ(s, t − η) and the other proposed terms. As a result, improved stability criteria are
obtained.

Remark 3.3. It is significant to note that the control gains derived from Theorem 3.1
may be much larger, which is difficult to come true so that the control cost would be
increased. To further reduce the conservativeness and improve the feasibility of control
scheme, one can impose restrictions on the magnitude of the control gains K1j and K2j

[38]. By restricting ∥Γ−1∥ < τ1,
∥∥∥K̂1j

∥∥∥ < τ2,
∥∥∥K̂1j

∥∥∥ < τ3, where τ1, τ2 and τ3 are given

positive constants, such that (
−τ1Γ I
I −τ1Γ

)
< 0 (20)(

−τ2I K̂T
1j

K̂1j −τ2I

)
< 0 (21)(

−τ3I K̂T
2j

K̂2j −τ3I

)
< 0 (22)

Invoking (6), (7), and (20), (21), (22), one can obtain optimized control gains K1j and
K2j.

Remark 3.4. Considering K2j + ∆K2j(t) = 0, that is, the memory function is missing
in considered controller, then the error system (5) can be described as:

∂yµ(s, t)

∂t
=

q∑
k=1

∂

∂sk

(
Ak

∂yµ(s, t)

∂sk

)
+

r∑
i=1

θi(ϑ(s, t))
r∑

j=1

θj(ϑ(s, t))
[
− Biαyµ(s, t)

+ Ciαg̃(Wαyµ(s, t)) + Diαg̃(Wαyµ(s, t− h(t)))

+
[
Kj +∆Kj(t)

]
Hiαyµ(s, t)

]
, µ = 1, 2, . . . , n (23)

where ∆Kj(t) = QjYj(t)Nj.

Then Corollary 3.1 about the stability problem of error system (23) can be deduced.
Before given Corollary 3.1, we define:

∇̄(s, t) = col

{
yµ(s, t), ẏµ(s, t), yµ(s, t− h1), yµ(s, t− h(t)), yµ(s, t− h2), g̃(Wαyµ(s, t)),

g̃(Wαyµ(s, t− h1)), g̃(Wαyµ(s, t− h(t))), g̃(Wαyµ(s, t− h2)),∫ t−h(t)

t−h2

yµ(s, x)dx,

∫ t−h1

t−h(t)

yµ(s, x)dx

}
Corollary 3.1. For given scalars ε > 0, η > 0, h2 > h1 > 0, the T-S fuzzy MJGNNs
with reaction-diffusion terms (23) are asymptotically stable in mean square if there exist
P̄α > 0, (α = 1, 2, . . . , S), Γ̄ > 0, Q̄e > 0, (e = 1, 2, 3), Ū > 0, Z̄ > 0, positive definite

diagonal matrix Θ̄o (o = 1, 2, 3) and appropriate dimensional arbitrary matrices Ẑ and K̂j
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(j = 1, 2, . . . , r) such that the following LMIs hold:[
Σ̄ij

(
γ1υ

T
1 Γ̄ + γ2υ

T
2 Γ̄
)
Q̄j

∗ −εIn

]
< 0

[
Z̄ Ẑ

∗ Z̄

]
> 0

where

Σ̄ij = Ξ̄1 + Ξ̄2 + Ξ̄3 + Ξ̄4 + Ξ̄5

Ξ̄1 = Sym
{
υT
1

(
P̄α − γ1Γ̄

)
υ2
}
− υT

1

[
2γ1Γ̄Ã + 2γ1Γ̄Biα −

∑
β∈S

φαβP̄β − 2γ1K̂jHiα

]
υ1

+ Sym
{
υT
1 γ1Γ̄ [Ciαυ6 + Diαυ8]

}
− 2υT

2 γ2Γ̄υ2

+ Sym
{
υT
2 γ2Γ̄ [−Biαυ1 + Ciαυ6 + Diαυ8] + υT

2 γ2K̂jHiαυ1

}
+ ε(NjHiαυ1)

T (NjHiαυ1)

Ξ̄2 =
(
υT
1 , υ

T
6

) (
Q̄1 + h1Q̄2 + h2Q̄3

) (
υT
1 , υ

T
6

)T − (1− h)
(
υT
4 , υ

T
8

)
Q̄1

(
υT
4 , υ

T
8

)T
−
(
υT
3 , υ

T
7

)
h1Q̄2

(
υT
3 , υ

T
7

)T −
(
υT
5 , υ

T
9

)
h2Q̄3

(
υT
5 , υ

T
9

)T
Ξ̄3 = (h2 − h1)

(
υT
3 Ūυ3 − υT

5 Ūυ5
)

Ξ̄4 = (h2 − h1)
2υT

1 Z̄υ1 −
(
υT
10, υ

T
11

) [ Z̄ Ẑ

∗ Z̄

] (
υT
10, υ

T
11

)T
Ξ̄5 = Sym

{[
υT
6 − υT

1 W
T
α V

T
1

]
Θ̄1 [V2Wαυ1 − υ6]

}
+ Sym

{[
υT
8 − υT

4 W
T
α V

T
1

]
Θ̄2 [V2Wαυ4 − υ8]

}
+ Sym

{[
υT
6 − υT

8 − υT
1 W

T
α V

T
1 + υT

4 W
T
α V

T
1

]
Θ̄3 [V2Wαυ1 − V2Wαυ4 − υ6 + υ7]

}
In addition, Kj = Γ̄−1K̂j.

Proof: Firstly, define

χT
µ (s, t) =

[
yTµ (s, t), g̃

T (Wαyµ(s, t))
]

Then, choose the following Lyapunov functional candidates:

V̄ (yµ(s, t), t) =
4∑

ϱ=1

V̄ϱ(yµ(s, t), t)

where

V̄1(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{
yTµ (s, t)P̄αyµ(s, t) +

q∑
k=1

Ak

(
∂yµ(s, t)

∂sk

)T

Γ̄

(
∂yµ(s, t)

∂sk

)}
ds

V̄2(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{∫ t

t−h(t)

χT
µ (s, x)Q̄1χµ(s, x)dx+ h1

∫ t

t−h1

χT
µ (s, x)Q̄2χµ(s, x)dx

+h2

∫ t

t−h2

χT
µ (s, x)Q̄3χµ(s, x)dx

}
ds

V̄3(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{
(h2 − h1)

∫ t−h1

t−h2

yTµ (s, x)Ūyµ(s, x)dx

}
ds
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V̄4(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{
(h2 − h1)

∫ −h1

−h2

∫ t

t+θ

yTµ (s, x)Z̄yµ(s, x)dxdθ

}
ds

Because the next proof is similar to the proof of Theorem 3.1, it is omitted here. This
completes the proof. �

If we only consider the necessary variables in ∇(s, t), that is,

∇̃(s, t) = col {yµ(s, t), ẏµ(s, t), yµ(s, t− h1), yµ(s, t− h(t)), yµ(s, t− h2),

yµ(s, t− η), g̃(Wαyµ(s, t)), g̃(Wαyµ(s, t− h(t)))}

Then Corollary 3.2 is deduced as the following.

Corollary 3.2. For given scalars ε > 0, η > 0, h2 > h1 > 0, the T-S fuzzy MJGNNs
with reaction-diffusion terms (5) are asymptotically stable in mean square if there exist

P̃α > 0, (α = 1, 2, . . . , S), Γ̃ > 0, Q̃e > 0, (e = 1, 2, 3), M̃ > 0, Ũ > 0, positive definite

diagonal matrix Θ̃o (o = 1, 2, 3), and appropriate dimensional arbitrary matrices K̂1j,

K̂2j (j = 1, 2, . . . , r), such that the following LMI holds[
Σ̃ij

(
γ1υ

T
1 Γ̃ + γ2υ

T
2 Γ̃
)
Q̃j

∗ −εIn

]
< 0

where

Σ̃ij = Ξ̃1 + Ξ̃2 + Ξ̃3 + Ξ̃4 + Ξ̃5

Ξ̃1 = Sym
{
υT
1

(
P̃α − γ1Γ̃

)
υ2

}
− υT

1

[
2γ1Γ̃Ã + 2γ1Γ̃Biα −

∑
β∈S

φαβP̃β − 2γ1K̂1jHiα

]
υ1

+ Sym
{
υT
1 γ1Γ̃ [Ciαυ7 + Diαυ8]

}
+ Sym

{
υT
1 γ1K̂2jHiαυ6

}
− 2υT

2 γ2Γ̃υ2

+ Sym
{
υT
2 γ2Γ̃ [−Biαυ1 + Ciαυ7 + Diαυ8] + υT

2 γ2K̂1jHiαυ1 + υT
2 γ2K̂2j × Hiαυ6

}
+ ε(N1jHiαυ1 +N2jHiαυ6)

T (N1jHiαυ1 +N2jHiαυ6)

Ξ̃2 =
(
υT
1

) (
Q̃1 + h1Q̃2 + h2Q̃3

) (
υT
1

)T − (1− h)
(
υT
4

)
Q̃1

(
υT
4

)T −
(
υT
3

)
h1Q̃2

(
υT
3

)T
−
(
υT
5

)
h2Q̃3

(
υT
5

)T
Ξ̃3 = υT

7 M̃ υ7 − υT
8 M̃ υ8

Ξ̃4 = η
(
υT
1 Ũυ1 − υT

6 Ũυ6
)

Ξ̃5 = Sym
{[

υT
7 − υT

1 W
T
α V

T
1

]
Θ̃1 [V2Wαυ1 − υ7]

}
+ Sym

{[
υT
8 − υT

4 W
T
α V

T
1

]
Θ̃2 [V2Wαυ4 − υ8]

}
+ Sym

{[
υT
7 − υT

8 − υT
1 W

T
α V

T
1 + υT

4 W
T
α V

T
1

]
Θ̃3 [V2Wαυ1 − V2Wαυ4 − υ7 + υ8]

}
In addition, K1j = Γ̃−1K̂1j, K2j = Γ̃−1K̂2j.

Proof: Choose the following Lyapunov functional candidates:

Ṽ (yµ(s, t), t) =
4∑

κ=1

Ṽκ(yµ(s, t), t)
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where

Ṽ1(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{
yTµ (s, t)P̃αyµ(s, t) +

q∑
k=1

Ak

(
∂yµ(s, t)

∂sk

)T

Γ̃

(
∂yµ(s, t)

∂sk

)}
ds

Ṽ2(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{∫ t

t−h(t)

yTµ (s, x)Q̃1yµ(s, x)dx+ h1

∫ t

t−h1

yTµ (s, x)Q̃2yµ(s, x)dx

+h2

∫ t

t−h2

yTµ (s, x)Q̃3yµ(s, x)dx

}
ds

Ṽ3(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{∫ t

t−h(t)

g̃T (yµ(s, x))M̃ g̃(yµ(s, x))dx

}
ds

Ṽ4(yµ(s, t), t) =

∫
Ω

n∑
µ=1

{
η

∫ t

t−η

yTµ (s, x)Ũyµ(s, x)dx

}
ds

Then the following proof is similar to the proof of Theorem 3.1. Hence, it is omitted
here. This completes the proof. �

4. Numerical Examples. This section provides three numerical examples to illustrate
the effectiveness and advantages of the proposed theoretical results.
Consider the following MJGNNs with reaction-diffusion terms under two T-S fuzzy

rules:

∂u(s, t)

∂t
=

2∑
k=1

∂

∂sk

(
Ak

∂u(s, t)

∂sk

)
+

2∑
i=1

θi(ϑ(s, t)) [−Biαu(s, t)

+ Ciα tanh(Wαu(s, t)) + Diα tanh(Wαu(s, t− h(t)))]

ℑu(s, t) =
2∑

i=1

θi(ϑ(s, t))Hiαu(s, t) (24)

and the corresponding full-order observer

∂vµ(s, t)

∂t
=

2∑
k=1

∂

∂sk

(
Ak

∂vµ(s, t)

∂sk

)
+

2∑
i=1

θi(ϑ(s, t))
[
− Biαvµ(s, t)

+ Ciα tanh
(
Wαvµ(s, t)

)
+ Diα tanh

(
Wαvµ(s, t− h(t))

)
+ wµ(s, t)

]
ℑv

µ(s, t) =
2∑

i=1

θi(ϑ(s, t))Hiαvµ(s, t), µ = 1, 2 (25)

We design the following nonfragile memory-based output feedback controller:

wµ(s, t) =
2∑

j=1

θj(ϑ(s, t))
{
[K1j +∆K1j(t)]

[
ℑv

µ(s, t)−ℑu(s, t)
]

+ [K2j +∆K2j(t)]
[
ℑv

µ(s, t− η)−ℑu(s, t− η)
]}

(26)

Then, the error system can be derived as:

∂yµ(s, t)

∂t
=

q∑
k=1

∂

∂sk

(
Ak

∂yµ(s, t)

∂sk

)
+

2∑
i=1

θi(ϑ(s, t))
2∑

j=1

θj(ϑ(s, t))
[
− Biαyµ(s, t)

+ Ciα tanh (Wαyµ(s, t)) + Diα tanh(Wαyµ(s, t− h(t)))
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+ [K1j +∆K1j(t)]Hiαyµ(s, t) + [K2j +∆K2j(t)]Hiαyµ(s, t− η)
]

(27)

Example 4.1. Firstly, we choose the following parameters for open-loop system (24):

Ψ =

[
−0.5 0.5
0.8 −0.8

]
, Ak =

[
0.02 0
0 0.02

]
, B11 =

[
0.5 0
0 1

]
, B12 =

[
0.3 0
0 1.4

]
,

B21 =

[
0.9 0
0 1.5

]
, B22 =

[
0.9 0
0 1.1

]
, C11 =

[
0.01 −0.08
0.06 0.02

]
, C12 =

[
1.01 −2.08
0.06 1.02

]
,

C21 =

[
0.15 −1.08
0.75 2.02

]
, C22 =

[
1.15 −1.08
0.85 1.02

]
, D11 =

[
0.16 0.2
−0.4 0.9

]
,

D12 =

[
0.12 −0.2
0.3 0.1

]
, D21 =

[
0.1 0.2
0.1 0.9

]
, D22 =

[
0.2 0
0.1 0.6

]
, W1 =

[
1.2 1
1 1.1

]
,

W2 =

[
1.1 1
1 1.2

]
, V1 =

[
−0.1 0
0 −0.1

]
, V2 =

[
2 0
0 2

]
, H11 =

[
0.3 0.12
0.1 0.22

]
,

H12 =

[
0.23 0.1
0.1 0.32

]
, H21 =

[
0.25 0.15
0.08 0.32

]
, H22 =

[
0.35 0.1
0.11 0.42

]
,

and h(t) = 1.5 + 0.5 sin(t). Moreover, the boundary conditions and initial conditions are
respectively set as

u1(s, t) = u2(s, t) = 0, (s, t) ∈ ∂Ω× [−h2,+∞)

u1(s, ℓ) = 0.05 sin(πs), u2(s, ℓ) = 0.02 sin(πs), (s, ℓ) ∈ Ω× [−h2, 0]

Then the dynamical behaviors of the open-loop system (24) is presented as Figure 1.

Figure 1. The dynamic behaviors of u1(s, t) and u2(s, t)

It is obvious that the open-loop system (24) is emanative. Therefore, it is significant to
design a corresponding controller to form a closed-loop system so as to make the system
asymptotically stable. As a result, the observer (25) with controller (26) is developed for
the open-loop system (24) to form the error system (27). Besides the parameters used
above, the additional ones are employed here:

Q1 =

[
1.78 0.5
0.51 2

]
, Q2 =

[
1.2 0.6
0.41 1.4

]
, N11 =

[
0.2 0.01
0.02 0.3

]
, N12 =

[
0.5 0.01
0.01 0.4

]
N21 =

[
0.6 0.02
0.01 0.7

]
, N22 =

[
0.7 0.01
0.01 0.75

]
, γ1 = 1.8, γ2 = 1, η = 0.1, ε = 3.
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By applying Theorem 3.1 with the LMI Toolbox in MATLAB, the controller gain ma-
trices are obtained as:

K11 =

[
−1144.89 −95.29
−884.77 −594.67

]
, K12 =

[
28.85 159.93
−81.29 −39.99

]
,

K21 =

[
−10.42 −6.94
−10.34 −8.95

]
, K22 =

[
−10.82 6.76
9.77 8.12

]
.

Moreover, the corresponding dynamic behaviors of error system (27) are demonstrated
as Figure 2, from which we can see that the considered error system (27) is asymptotically
stable with the memory-based controller (26).

Figure 2. The dynamic behaviors of y1(s, t) and y2(s, t)

It is essential to note that the elements of the aforementioned controller gains K11 and
K12 are so large that the control cost could be increased and even the controller cannot
be implemented in some practical applications. Thus, the controller gains optimization
strategy proposed in Remark 3.3 is utilized with τ1 = 19.4, τ2 = 5.1. Then by solving the
LMIs (6), (7), (20), and (21), one can derive the feasible solution with

K11 =

[
18.09 8.06
7.93 23.28

]
, K12 =

[
30.14 13.43
13.22 38.80

]
.

It is obvious that the units of the nonfragile controller gains are much smaller than
corresponding ones obtained only by applying Theorem 3.1, which means that the actual
system is easier to achieve stability by the controller with the modified controller gains.

Example 4.2. In order to reveal the superiority of Theorem 3.1 in control effect compared
with Corollary 3.2, we show the following two images Figure 3 and Figure 4 under the same
parameter conditions. Furthermore, to show Theorem 3.1 less conservative than Corollary
3.2, the maximum allowable upper bounds of time-varying delay h(t) for different lower
bounds are demonstrated in Table 1.
It can be clearly found from Figures 3 and 4 that the control effect of Theorem 3.1 is

more efficient than Corollary 3.2, and from Table 1, we can obtain that Theorem 3.1 can
be applied to situations with large time-delay, while Corollary 3.2 may not be suitable.
That is, the additional variables of Theorem 3.1 are essential for the stabilization problem
of the considered system. They can strengthen the combination of the system’s variables,
so that the improved stable criteria and less conservative results of the proposed systems
are derived.

Example 4.3. To further highlight the superiority of the controller designed in this paper,
a comparison between [39] and this paper is presented in this example. First of all, for the
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Figure 3. The dynamic behaviors of y1(t) and y2(t) under Theorem 3.1

Figure 4. The dynamic behaviors of y1(t) and y2(t) under Corollary 3.2

Table 1. The maximum allowable upper bounds of time-varying delay h(t)
for different lower bounds

h1 0.2 0.5 0.8 1.0
h2max of Theorem 3.1 0.882 5.932 4.511 2.294
h2max of Corollary 3.2 0.847 5.601 4.389 1.896

Figure 5. The state response of error system y1(s, t) and y2(s, t) with the
controller proposed in this paper

convenience of comparison, we choose the same system parameters as [39] except for the
controller’s. Then the trajectory of the error system with the controller designed in this
paper is depicted in Figure 5. From where we can see that the stabilization time of the
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error system is about 2 seconds, while in [39], the stabilization time of the error system
is about 5 seconds (see [39]). That is, the control strategy proposed in this paper is more
efficient and may have wider applicability.

5. Conclusion. The nonfragile memory-based output feedback control problem for T-S
fuzzy MJGNNs with reaction-diffusion terms has been addressed in this paper. Combining
the Lyapunov functional method and the integral inequalities technique, we firstly present
a new stable criterion for T-S fuzzy MJGNNs with reaction-diffusion terms and the design
scheme of corresponding fuzzy nonfragile memory-based controller. Then we propose two
related corollaries. Finally, the feasibility and effectiveness of the proposed method is
verified. It is worth noting that the influence of the number of Lyapunov function variables
has been analyzed, and the controller gain optimization method is also used in this paper.
Compared with some existing results, the system model considered in this paper is more
general and the processing method of some issue is more effective. In future work, based
on [26, 30], the nonfragile memory-based sampled-data control strategy will be applied to
the T-S fuzzy GNNs with Markovian jumping parameters and reaction-diffusion terms.
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