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Abstract. Grasshopper Optimization Algorithm (GOA) is a novel meta-heuristic al-
gorithm for optimization problems. GOA is easy to implement but it cannot make full
utilization of every iteration, and it is easy to fall into the local optimal. To improve the
performance of GOA, an Improved Grasshopper Optimization Algorithm (IGOA) was
proposed in this paper. Firstly, the nonlinear comfort zone parameter was used to pro-
mote the utilization of the iterations of the algorithm. Then the Lévy flight mechanism
was applied to increasing the randomness and expanding the local search radius. At last
the random jumping strategy was introduced to help the algorithm jump out of the local
optimal. Several experiments involving 29 well-known benchmark functions were conduct-
ed and the performance of IGOA was compared with the basic GOA, Opposition-Based
Learning GOA (OBLGOA), Whale Optimization Algorithm (WOA), Ant Lion Optimiz-
er (ALO), Dragonfly Algorithm (DA) and Particle Swarm Optimization (PSO). IGOA
was also applied to the task scheduling problem in the resource-constrained system. The
results of the experiments demonstrated that the proposed IGOA outperformed GOA and
other algorithms.
Keywords: Grasshopper optimization algorithm, Nonlinear parameter, Lévy flight,
Random jumping strategy, Task scheduling problem

1. Introduction. An optimization problem is a process to search for the global optimal
value and the corresponding best location of a mathematical function [1]. An optimization
problem can be abstracted in many areas. While cloud computing and edge computing are
developing rapidly, the problem of task scheduling becomes more and more prominence.
The task scheduling problem can be abstracted as a kind of optimization problem in
mathematics. It is essential for a scheduling system that the performance of the scheduling
algorithm is outstanding. A superior algorithm can optimize the task execution results
and reduce much extra makespan and budget.

Recently, many studies have been developed on task scheduling problems. As the study
goes on, many meta-heuristic algorithms are used to handle complicated optimization
problems. Meta-heuristic algorithms have the ability to find the global optimum with
simple operation and less overhead. Grasshopper Optimization Algorithm (GOA) is a
novel meta-heuristic algorithm proposed by S. Saremi et al. in 2017 [1]. GOA, which is
inspired by the natural behavior of the grasshopper swarm, makes utilization of the swarm
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intelligence to solve optimization problems. The two tendencies of the optimization search
process, which are exploration and exploitation, coincide with the migration behaviors of
the grasshopper swarm.

GOA has been widely used in many areas since it was proposed. S.  Lukasik et al.
used GOA to generate accurate data clusterings and compare the performance with the
standard K-means algorithm [2]. N. Rajput et al. applied GOA to solving three types of
economic dispatch problems in electrical power systems, and the results of the experiments
showed that GOA is superior to other methods [3]. Z. Elmi and M. Ö. Efe employed GOA
to search for a better path in robot navigation [4]. As far as our research results are
concerned, there are not many improvements on the algorithm itself or the applications
for GOA on handling the task scheduling problems in cloud computing or edge computing.

While there are many advantages with the GOA algorithm, the disadvantage of be-
ing easy to fall into the local optimum also prevents the search process from finding a
better solution. To overcome the disadvantages and improve the accuracy of GOA when
handling the optimization problems, an improved grasshopper optimization algorithm
was proposed in this paper. And the proposed IGOA was applied on solving the task
scheduling problems. The main academic contributions of this paper are as follows.

• Attach a nonlinear comfort zone parameter to the original GOA to enhance the
search ability of the algorithm by making full utilization of every iteration.

• Introduce a local search mechanism based on Lévy flight to improve the performance
of the algorithm by expanding the search radius of the search agents.

• Add a random jumping strategy to promote the capability of jumping out of the
local optimum and to continue the influence of the newly obtained information of
the jumping action.

The remainder of this paper is organized as follows. A literature survey about classical
and novel optimization algorithms is proposed in the second section. The basic theory of
grasshopper optimization algorithm is introduced in Section 3. The proposed improved
grasshopper optimization algorithm is described in detail in Section 4. Several experiments
of 29 benchmark functions are implemented and the results are shown in Section 5. A
model of task scheduling problems is proposed with experiments about 7 algorithms in
Section 6. Some conclusion and future work are proposed in the last section.

2. Related Work. Many meta-heuristic algorithms are introduced to optimization prob-
lems. GA is a classical meta-heuristic algorithm proposed by Goldberg in 1988, and it
introduces the theory of natural selection into the process of optimization with several
natural operators including mutation, crossover, and selection [5, 6, 7, 8]. While the per-
formance of GA is pretty good, the operations of GA are too complicated to implement,
and it is not suitable for some situations. Some meta-heuristic algorithms are inspired by
the natural behavior of insects, fishes, birds, and other group creatures. Particle Swarm
Optimization (PSO) is a classical meta-heuristic algorithm proposed by Kennedy in 1995.
The principle of PSO is simple, and the performance is remarkable [9, 10, 11]. Ant Colony
Optimization algorithm (ACO) is inspired by the natural foraging behavior of ants be-
tween the nest and the food sources. ACO makes utilization of chemical pheromone to
communicate among the swarm of ants [12, 13].

Some novel meta-heuristic optimization algorithms are proposed recently. There are
not many pieces of research on the improvement of those algorithms. The Ant Lion
Optimizer (ALO) proposed in 2015 is inspired by the hunting behavior of antlions [14].
Whale Optimization Algorithm (WOA) was proposed in 2016. WOA simulates the natural
hunting behavior of whales [15]. Dragonfly Algorithm (DA) proposed in 2016 is inspired
by the static and dynamic behaviors of the dragonfly swarm in nature [16].
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In 2017, S. Saremi et al. proposed a novel meta-heuristic optimization algorithm called
Grasshopper Optimization Algorithm (GOA). GOA simulates the migration behavior of
the grasshopper swarm by utilizing the influence of the interaction within the swarm and
the wind influence outside the swarm to find the target food [1]. The GOA algorithm
makes utilization of swarm intelligence, which fixes the search direction and finds the
best or the approximate best location by sharing the experience among the grasshopper
swarm. GOA also uses the evolutionary approach with several iterations to make the
swarm intelligence efficient.

Some improved algorithms based on GOA have been developed. OBLGOA was pro-
posed by A. A. Ewees et al. in 2018 [17]. The opposition-based learning strategy was
introduced to generate an opposite solution as a candidate according to the current search
position. The OBL strategy could improve the convergence rate of the algorithm, but the
improvement was limited because of its lack of randomness. S. Arora and P. Anand pro-
posed chaotic grasshopper optimization algorithm in 2018 [18]. The chaotic maps were
applied to the algorithm to improving the performance of GOA. 10 chaotic maps were
employed to evaluate the impact of the chaos theory. The results were not very particu-
larly ideal because the chaotic factors were not suitable when handling many benchmark
functions. This paper proposed a new algorithm based on GOA to solve optimization
problems and task scheduling problems.

The proposed method involves Lévy flight. Lévy flight is a kind of random search walk
proposed by Paul Lévy [16]. X. Yang and S. Deb formulated a meta-heuristic algorithm
called Cuckoo Search (CS) based on Lévy flight [19]. L. Ying et al. applied Lévy to
the Lévy flight trajectory-based Whale Optimization Algorithm (LWOA) [20] in 2017.
Random walk can be generated by Lévy flight in both local and global scope, which can
make the algorithm more creative.

Task scheduling problem is a problem to schedule several tasks to several nodes under
constraints. Task scheduling problem can be an optimization problem. Many algorithms
are applied to solving the task scheduling problem. Some algorithms based on Best Re-
source Selection (BRS) such as Max-Min, Min-Min, and Sufferage are traditional methods
to solve task scheduling problems. Some meta-heuristic algorithms such as PSO and PSO-
based improved algorithms are novel methods to handle task scheduling problems [21].

3. Grasshopper Optimization Algorithm. Grasshopper optimization algorithm sim-
ulates the insect swarm behavior of grasshoppers [1]. The grasshopper swarm migrates
over a long distance to find a new habitat with food. In this process, the interaction
among grasshoppers influences each other inside the swarm. The power of the wind and
the gravity outside the swarm influence the trajectory of the grasshoppers. The target of
food is also an important influence factor.

With the influence of the three factors mentioned above, the migration process is divided
into two stages which are exploration and exploitation. In the exploration stage, the
grasshoppers are encouraged to move rapidly and abruptly to find more potential target
areas. In the stage of exploitation, the grasshoppers tend to move locally to find better
target areas. The two migration tendencies of exploration and exploitation to find a food
source are achieved by grasshoppers naturally. This process can be abstracted as an
optimization problem. The grasshopper swarm is abstracted as a swarm of search agents.

S. Saremi presented the mathematical model of the migration of the grasshopper swarm
[1]. The simulating equation is shown as follows:

Xi = Si + Gi + Ai (1)



1970 R. ZHAO, H. NI, H. FENG, Y. SONG AND X. ZHU

where Xi is the position of the i -th search agent, Si represents the force of social interac-
tion, Gi represents the influence factor of gravity force on the i -th search agent, and Ai

represents the influence factor of the wind. Si is defined as follows:

Si =
N∑

j=1,j ̸=i

s(dij)d̂ij (2)

where dij defines the Euclidean distance between the i -th and the j -th search agent in

space, and it is calculated as dij = |xj −xi|, d̂ij is the unit vector from the i -th to the j -th

search agent, defined as d̂ij =
xj−xi

dij
, and s is a function which shows the social relationship

affection in the grasshopper swarm. The s function is defined as follows:

s(r) = fe
−r
l − e−r (3)

where e is the Natural Logarithm, f represents the concentration of attraction and the
parameter of l shows the attractive length scale.

When it is used to handle the mathematical optimization problem, some change factors
should be added into Equation (1) to optimize the mathematical module. The parameters
of Gi and Ai which represent the outside influence should be replaced by the parameter
of food target. Thus, the equation is reformulated as follows:

xi = c

(
N∑

j=1,j ̸=i

c
u− l

2
s(|xj − xi|)

xj − xi

dij

)
+ T̂d (4)

where u and l represent the upper and lower boundaries of the search space respectively,

and T̂d is the food target position which represents the best fitness position which all
the search grasshoppers can find in all-time in the mathematical module. Besides, the
parameter c is the comfort zone parameter changing to balance the process of exploitation
and exploration which is calculated as follows:

c = cmax − iter
cmax − cmin

MaxIteration
(5)

where cmax and cmin are the maximum value and the minimum value of c respectively,
iter represents the current iteration, and MaxIteration represents the maximum number
of iterations.

Equation (4) should be iterated over as an evolution for the optimal solution. The
evolution should be stopped when the termination condition is reached. Usually, it is
when the preset maximum iteration number is reached. After the process of the evolution
ends, the algorithm can get the approximate best fitness and its corresponding target
position.

4. Improved Grasshopper Optimization Algorithm. GOA has a simple theory
foundation, and it is easy to implement. On the other hand, it has some disadvan-
tages which prevent the algorithm from getting better solutions. The linearly decreasing
comfort zone could not help the original GOA to make full utilization of every iteration.
The original algorithm has little variability because of the lack of random factors. The
algorithm is easy to fall into a local optimum. To handle the disadvantages, three im-
provements were introduced which were the nonlinear comfort zone parameter, the local
search mechanism based on Lévy flight and the random jumping strategy. The details of
the three improvements are explicitly described in this part.
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4.1. Nonlinear comfort zone parameter. The original GOA varies the radius of the
comfort zone, which can make the search agents converge towards the global optimum
solution through iterations. GOA uses the comfort zone parameter to restrict the search
space. In the exploration stage, the comfort zone parameter should be large enough to
make the search agents get enough space to find the approximate optimum rapidly. In
the exploitation stage, the restrictive factor should be small to search accurately towards
the local optimum and avoid the over-speed movement of the search agents. However, the
linearly decreasing factor could not make the search ability harmony with the exploration
and the exploitation stage during the search iterations.

To match the two search stages and enhance the search ability of the algorithm, the
sigmoid function was introduced to this work. The sigmoid function is a commonly used
threshold function and a nonlinear adjustment factor. It is widely used in the field of
information science. The formula of the sigmoid function is shown as follows:

f(x) =
1

1 + e−x
(6)

A nonlinear comfort zone parameter based on a variant of the sigmoid function is proposed
as follows:

m =
−0.5

1 + e(−1.5(cx−5)+2 sin(cx))
+ u (7)

where u is the adjustment parameter and its value should be in the interval [0, 1]. And
cx is defined as follows:

cx =
v(iter + 50)

MaxIteration
(8)

where v is the accuracy adjustment factor and its value should be in the interval [1, 10].

4.2. Local search mechanism based on Lévy flight. All the parameters of GOA
are deterministic. The lack of randomness might lead to the lack of creativity during
the search iterations, and every search agent could only search the determinate position.
Introducing random factor to a deterministic system is a commonly used method to
improve its performance.

Lévy flight is a random search walk proposed by Paul Lévy [16], and it is an efficient
mathematical method to provide a random factor. Because Lévy flight is very complicated
to implement, a simulating algorithm is used here as follows:

Levy(d) = 0.01 × r1 × σ

|r2|
1
β

(9)

where d is the dimension of the problem, r1, r2 are two random numbers in [0, 1] and β
is a constant number which is set to 1.5 according to S. Mirjalili in [16]. σ is calculated
as follows:

σ =

(
Γ(1 + β) × sin

(
πβ
2

)
Γ
(
1+β
2

)
× 2

(
β−1
2

) ) 1
β

(10)

where Γ(x) = (x− 1)!.
Lévy flight could give vision to all the search agents when they are moving towards the

optimal position. The search agents could see the small areas around them. To expand
the search radius of the search agents and enhance the ability to find the optima, a local
search mechanism based on Lévy flight is proposed. When a location updating process is
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finished, the position of every search agent should be adjusted through Lévy flight with
a certain probability. The adjustment formula is defined as follows:

Xi = Xi + 10c× sthreshold × Levy(dim) ×Xi (11)

where sthreshold is the threshold parameter which controls the direction and the probability
of the variation. sthreshold is calculated as follows:

sthreshold = sign(xtrans − 1) + sign(xtrans + 1) (12)

where sign(x) is the sign function and xtrans is a random number in [−3, 3].

4.3. Random jumping strategy. The basic theory of GOA is elementary. The algo-
rithm only focuses on the process of convergence to the global optimum and ignores the
mechanism about jumping out of the local optimum. Hence the search process of GOA
was easy to be trapped in local optimum, and the search could not go further. The ad-
vantage that GOA was simple to implement could not contribute to getting rid of the
local optimum, which could be a disadvantage of GOA instead.

To promote the ability to jump out of the local optimum, a random jumping strategy is
introduced. When a search agent finds an optimal position, the new position can replace
the old target position. When it does not, the random jumping equation starts to work.
It is described as follows:

Xnew
i = ((0.5 − rand) × 2 + 1)Xi (13)

where Xi is the position of the i -th search agent, and Xnew
i is the new position after

random jumping. If Xnew
i has better fitness, it will replace Xi. Thus, action of jumping

out occurs successfully.
The evolution formula of the original GOA only takes the best position obtained by

the current iteration as the search direction, and it ignores some other useful information.
To continue the influence of the newly obtained information of the jumping action, the
evolution formula of the location is transformed as follows:

X iter+1
i = m× c× Si + (1 − p)T̂d + p×X iter

i (14)

where p is the coefficient parameter to control the impact of the position of the search
agent. p is initialized as 0 at the first iteration. If the search agent does not jump or it fails
to jump out of the local optimal location, p is still set to 0 to make sure that the evolution
can be affected only by Si and Td. When the search agent jumps out successfully, p is set
to a variable linearly decreasing to 0 in three iterations to continue the influence of the
behavior of jumping. After some trial, the decreasing step of p is set to 0.3478 which is
not discussed in this paper. Thus, p is calculated in this work as follows:

p =


p− 0.3478 p > 0

0 p ≤ 0

3 × 0.3478 when jumping out successfully

(15)

4.4. Procedure of IGOA. This paper proposed an Improved Grasshopper Optimization
Algorithm (IGOA). The procedure of the IGOA is divided into four stages which were
the initialization stage, the evolution stage, the fitness updating stage and the jumping
stage.

In the initialization stage, the parameters are set, and the original positions of all the
search agents are initialized randomly. The best target position and the corresponding
fitness are also calculated in this part. The search loop starts to work in the evolution
stage. Every search agent moves towards the target position by Equation (14). The
nonlinear comfort zone parameter m is set by Equation (7). After that, every search agent
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conducts Lévy flight in a particular probability by Equation (11) and a new position is
generated. In the updating stage, the fitness of the new position is calculated. If the new
fitness is better than the global fitness, the new position can replace the old global target.
If the new fitness is not more optimal than the global target, it comes to the jumping
stage. In this stage, the search agent tries to jump out of the local optimum by Equation
(13) and a new fitness is calculated. If the new fitness is better than personal fitness, the
new position can replace the old personal position. Parameter p is updated by Equation
(15) as well. So far, one iteration in the loop is finished. After the maximum number of
iterations is reached, the loop ends, and the fitness and the target position are presented
as the final result. The pseudo code of the IGOA is shown as Algorithm 1. The figure
framework of the procedure of IGOA is shown as Figure 1.

Algorithm 1 Improved Grasshopper Optimization Algorithm

1: initialize the parameters
2: initialize the swarm position with random matrix
3: calculate the original target fitness and mark the target position
4: while (iter < MaxIteration and target fitness > destination fitness) do
5: set the nonlinear comfort zone parameter m by Equation (7)
6: update xi by Equation (14)
7: xi conducts Lévy flight by Equation (11)
8: calculate the fitness
9: if current fitness is better than the target fitness then

10: update the target fitness and the target position
11: else
12: xi jumps out by Equation (13)
13: calculate the fitness
14: if current fitness is better than the personal fitness then
15: update the personal position
16: end if
17: set parameters p by Equation (15)
18: end if
19: end while
20: Return target fitness and target position

5. Experimental Results on Benchmarks.

5.1. Experimental setup. To evaluate the performance of the proposed IGOA, a se-
ries of experiments were conducted. In this work, IGOA was compared with 6 meta-
heuristic algorithms including the original Grasshopper Optimization Algorithm (GOA),
the Opposition-Based Learning GOA (OBLGOA), three recently proposed algorithms,
Whale Optimization Algorithm (WOA), Dragonfly Algorithm (DA) and Ant Lion Opti-
mizer (ALO), and a classical heuristic algorithm, Particle Swarm Optimization (PSO).
The parameters of the other 6 algorithms compared with IGOA were set as [1, 9, 14, 15,
16, 17] described.

In this part, 29 well-known benchmark functions were used to test the search ability
of the proposed IGOA. The benchmarks are divided into 3 types which can evaluate the
different capabilities of the algorithms. Benchmarks F1-F7 listed in Table 1 are unimodal
functions with only one optimal location which can estimate the ability of exploitation.
Benchmarks F8-F23 listed in Table 2 and Table 3 are multimodal functions with several
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yes

no

no

no

yes
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Figure 1. The figure framework of the procedure of IGOA

local optimums which can evaluate the exploration capability [1]. Benchmarks F24-F29

listed in Table 4 are composite functions [22] which combine some basic test functions
under a framework and are more complicated. They can evaluate the performance of get-
ting out of local optimum. In Tables 1-4, Dim represents the dimension of the benchmark
functions, Range is the search boundary of the optimization problems, and fmin is the
optimal fitness of the functions.

A series of experiments related to the 29 benchmark functions described above were
conducted with Matlab code. For F1-F23, each algorithm was evolved for 500 iterations
with 30 search agents to make a complete search process. For F24-F29, a search process
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Table 1. Unimodal functions

Function Dim Range fmin

F1(x) =
n∑

i=1

x2
i 30 [−100, 100] 0

F2(x) =
n∑

i=1

|xi| +
n∏

i=1

|xi| 30 [−10, 10] 0

F3(x) =
n∑

i=1

(
i∑

j=1

xj

)2

30 [−100, 100] 0

F4(x) = max
i

{|xi| , 1 ≤ i ≤ n} 30 [−100, 100] 0

F5(x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
30 [−30, 30] 0

F6(x) =
n∑

i=1

([xi + 0.5])2 30 [−100, 100] 0

F7(x) =
n∑

i=1

ix4
i + random[0, 1) 30 [−1.28, 1.28] 0

contained 100 iterations. Each search process would be repeated 30 times for every algo-
rithm to eliminate contingency and some statistical data, such as average (avg), standard
deviation (std), best fitness of 30 (best) and worst fitness of 30 (worst), was calculated
to compare the performance of the algorithms. Besides, the Wilcoxon rank-sum test was
conducted, and the p-value was calculated to demonstrate the statistical significance of
the results.

5.2. Evaluation of exploitation capability. F1-F7 are unimodal functions with only
one global optimum, which can test the exploitation capability of the algorithms. If an
algorithm has a superior ability of exploitation, it can search more accurately and find a
solution closer to the global optimum.

The results on F1-F7 are shown in Table 5. It could be seen that IGOA could get the
best average results in F5-F7, and in F1-F4 IGOA behaved only worse than WOA. As
for std and worst value, IGOA could also perform better than the other algorithms in
F3-F7, which indicates that the proposed algorithm can reduce the probability of getting
terrible solutions and promote the stability of the algorithm. Compared with GOA and
OBLGOA, the proposed IGOA can significantly improve the exploitation capability of
the original algorithm.

5.3. Evaluation of exploration capability. F8-F23 are multimodal functions with sev-
eral local optimums, which can test the exploration capability of the algorithms. If an
algorithm cannot do well in exploration, the search will most likely fall into local opti-
mum when dealing with the multimodal functions and even the best ability of exploitation
cannot help. A wrong direction can probably lead to a wrong result.

The results on F8-F23 are presented in Table 6 and Table 7. It can be found that the
proposed IGOA can get the best average fitness in 11 of 16 benchmark tests and in F10,
F20 and F23 IGOA can get the second best result. The results about standard deviation
show that the stability of IGOA might not be as excellent as it shows in average fitness,
but it still is the best of all the 7 algorithms in most of the tests. The results on best



1976 R. ZHAO, H. NI, H. FENG, Y. SONG AND X. ZHU

Table 2. Multimodal functions-1

Function Dim Range fmin

F8(x) =
n∑

i=1

−xi sin
(√

|xi|
)

30 [−500, 500]
−418

×Dim

F9(x) =
n∑

i=1

[
x2
i − 10 cos(2πxi) + 10

]
30 [−5.12, 5.12] 0

F10(x) = −20 exp

−0.2

√√√√ 1

n

n∑
i=1

x2
i


− exp

(
1

n

n∑
i=1

cos(2πxi)

)
+ 20 + e

30 [−32, 32] 0

F11(x) =
1

4000

n∑
i=1

x2
i −

n∏
i=1

cos

(
xi√
i

)
+ 1 30 [−600, 600] 0

F12(x) =
π

n

{
10 sin(πy1) +

n−1∑
i=1

(yi − 1)2
[
1 + 10 sin2(πyi+1)

]
+ (yn − 1)2

}
+

n∑
i−1

u(xi, 10, 100, 4)

+
n∑

i=1

u(xi, 10, 100, 4)

yi = 1 +
xi + 1

4

u(xi, a, k,m) =


k(xi − a)m xi > a

0 −a < xi < a

k(−xi − a)m xi < −a

30 [−50, 50] 0

F13(x) = 0.1

{
sin2(3πx1) +

n∑
i=1

(xi − 1)2
[
1 + sin2(3πxi + 1)

]
+ (xn − 1)2

[
1 + sin2(2πxn)

]}
+

n∑
i=1

u(xx, 5, 100, 4)

30 [−50, 50] 0

fitness and worst fitness can show that the proposed IGOA has the most reliable ability to
find the best solution in almost all the benchmark tests and get the minimum probability
to find the worst solution. In comparison with the original GOA and OBLGOA, the
proposed IGOA can naturally enhance the performance of exploration of the algorithm a
lot.

5.4. Evaluation of capability of getting rid of local optimum. F24-F29 are the
composite test functions, which combine some basic benchmark functions under a partic-
ular framework to construct new controllable test functions. The composite benchmark
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Table 3. Multimodal functions-2

Function Dim Range fmin

F14(x) =

(
1

500
+

25∑
j=1

1

j +
∑2

i=1(xi − aij)6

)−1

2 [−65, 65] 0

F15(x) =
11∑
i=1

[
ai −

xi(b
2
i + bix2)

b2i + bix3 + x4

]2
4 [−5, 5] 0.00030

F16(x) = 4x2
1 − 2.1x4

1 +
1

3
x6
1 + x1x2 − 4x2

2 + 4x4
2

2 [−5, 5] −1.0316

F17(x) =

(
x2 −

5.1

4π2
x2
1 +

5

π
x1 − 6

)2

+ 10

(
1 − 1

8π

)
cos x1 + 10

2 [−5, 5] 0.3979

F18(x) =
[
1 + (x1 + x2 + 1)2

(
19 − 14x1 + 3x2

1

−14x2 + 6x1x2 + 3x2
2

)]
×
[
30 + (2x1 − 3x2)

2

×
(
18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

) ] 2 [−2, 2] 3

F19(x) = −
4∑

i=1

ci exp

(
−

3∑
j=1

aij(xj − pij)
2

)
3 [1, 3] −3.86

F20(x) = −
4∑

i=1

ci exp

(
−

6∑
j=1

aij(xj − pij)
2

)
6 [0, 1] −3.32

F21(x) = −
5∑

i=1

[
(X − ai)(X − ai)

T + ci
]−1

4 [0, 10] −10.1532

F22(x) = −
7∑

i=1

[
(X − ai)(X − ai)

T + ci
]−1

4 [0, 10] −10.4028

F23(x) = −
1∑

i=1

0
[
(X − ai)(X − ai)

T + ci
]−1

4 [0, 10] −10.5363

functions are more complicated and more challenging than multimodal test functions, and
they are more convincing when evaluating the search capability of an algorithm.

According to the results on F24-F29 listed in Table 8, it can be seen that the proposed
IGOA can be very competitive compared with the other algorithms. In F24 and F26 IGOA
can get the best fitness and in F25, F27 and F29 IGOA can get the second-best results.
IGOA cannot perform best nor worst in the aspect of the standard deviation on all the
benchmark tests. IGOA can perform best in 4 tests and 3 tests respectively on best value
and worst value. Although IGOA can perform generally in terms of standard deviation, it
can outperform other algorithms in the potency of finding a better solution and controlling
risk. Compared with the original GOA and the OBLGOA, IGOA performs far better.
According to the results on composite function tests, it can be demonstrated that IGOA
has the ability to handle such complex and challenging problems.

5.5. Significance of the results. The comparison based on average value and stan-
dard deviation for 30 independent operations did not compare the difference between
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Table 4. Composite functions

Function Dim Range fmin

F24(CF1)
f1, f2, f3, . . . , f10 = Sphere Function,
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [5/100, 5/100, 5/100, . . . , 5/100]

30 [−5, 5] 0

F25(CF2)
f1, f2, f3, . . . , f10 = Griewank’s Function,
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [5/100, 5/100, 5/100, . . . , 5/100]

30 [−5, 5] 0

F26(CF3)
f1, f2, f3, . . . , f10 = Griewank’s Function,
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [1, 1, 1, . . . , 1]

30 [−5, 5] 0

F27(CF4)
f1, f2 = Ackley’s Function, f3, f4 = Rastrigin’s Function,
f5, f6 = Weierstrass Function, f7, f8 = Griewank’s Function,
f9, f10 = Sphere Function,
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]
[λ1, λ2, λ3, . . . , λ10] = [5/32, 5/32, 5/32, . . . , 5/32]

30 [−5, 5] 0

F28(CF5)
f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function,
f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function,
f9, f10 = Sphere Function,
[σ1, σ2, σ3, . . . , σ10] = [1, 1, 1, . . . , 1]

[λ1, λ2, λ3, . . . , λ10]
= [1/5, 1/5, 5/0.5, 5/0.5, 5/100, 5/100, 5/32, 5/32, 5/100, 5/100]

30 [−5, 5] 0

F29(CF6)
f1, f2 = Rastrigin’s Function, f3, f4 = Weierstrass Function,
f5, f6 = Griewank’s Function, f7, f8 = Ackley’s Function,
f9, f10 = Sphere Function
[σ1, σ2, σ3, . . . , σ10] = [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]

[λ1, λ2, λ3, . . . , λ10]
= [0.1 ∗ 1/5, 0.2 ∗ 1/5, 0.3 ∗ 5/0.5, 0.4 ∗ 5/0.5, 0.5 ∗ 5/100,

0.6 ∗ 5/100, 0.7 ∗ 5/32, 0.8 ∗ 5/32, 0.9 ∗ 5/100, 1 ∗ 5/100]

30 [−5, 5] 0

each operation. It was still possible that the results of the experiment contained certain
contingency. To dispel this contingency and demonstrate the significance of the results
of the experiment, the Wilcoxon rank-sum test was introduced in this work. Wilcoxon
rank-sum test is a nonparametric test of the null hypothesis, and it is used to determine
whether two independent datasets were from the same distributed population. In this
work, p-values about the statistical data between IGOA and each of the other algorithms
on F1-F29 were calculated. When p-value is less than 0.05, it can be considered that the
difference between the two samples is significant.

From Table 9 it can be seen that the p-values between IGOA and another compared
algorithm in most of the benchmark tests are less than 0.05. Some p-values are more
than 0.05 in some of the test functions which have a higher probability of achieving the
same optimal solution by different algorithms, such as F14, F19, F20, F21, F22, and F23.
By analyzing the results of the composite functions, p-values are more than 0.05 between
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Table 5. Results of unimodal functions

Function Type IGOA GOA WOA DA ALO PSO OBLGOA

F1

avg 3.3538E-15 0.8386 1.0082E-71 0.0012 17.1234 6.6310E-06 2.77E-05
std 1.9129E-15 0.8473 5.3671E-71 0.0008 17.8648 2.1612E-05 1.57E-05
best 8.0120E-16 0.0683 5.0175E-87 0.00010 2.4120 1.5608E-07 7.75E-06

worst 9.1885E-15 4.4591 2.9415E-70 0.0030 78.3488 0.0001 6.68E-05

F2

avg 2.4358E-08 10.2444 1.5782E-51 47.0419 4.9289 0.0953 0.0136
std 1.0173E-08 22.2516 4.8668E-51 43.4815 3.7734 3.0196E-01 0.0377
best 9.0029E-09 0.0290 2.5368E-57 3.8197 1.4484 0.0003 0.0011

worst 5.7194E-08 79.1046 2.1838E-50 120.4026 21.3472 1.6419 0.1505

F3

avg 0.0121 1789.3452 43942.9825 4632.0793 1154.2060 227.7776 0.0061
std 0.0211 1030.4488 1.6119E+04 2008.3302 1332.5907 81.0377 0.0021
best 8.6626E-12 450.4535 17269.6957 1883.2010 249.1874 127.3043 0.0020

worst 0.0983 4603.9086 85296.2126 10156.9819 5729.0798 425.9704 0.0103

F4

avg 0.0257 9.7756 56.3543 16.9378 31.4847 3.2311 0.0165
std 0.0182 3.5013 25.3903 4.3129 8.2314 1.1774 0.0081
best 9.7116E-07 3.0335 3.2199 6.5808 17.7108 1.4918 0.0010

worst 0.0694 19.5647 89.1869 57.2014 48.8229 5.5785 0.0297

F5

avg 26.4488 965.6578 28.1591 348.5174 1615.4578 61.9257 28.3790
std 0.3046 1572.3600 0.4797 553.5976 2814.6516 64.9991 0.3087
best 25.8503 25.6988 27.2726 28.4537 143.9488 1.7275 27.6749

worst 27.0365 7522.9967 28.7708 2223.6927 14636.9499 268.0065 28.7678

F6

avg 1.4451E-06 0.8997 0.3866 0.0023 20.5677 2.2973E-05 1.2542
std 4.8437E-07 2.0343 0.2498 0.0055 29.2793 5.0099E-05 0.4237
best 5.2803E-07 0.0203 0.0856 0.0001 3.0268 1.5390E-07 0.6616

worst 2.5210E-06 11.0963 1.0626 0.0306 148.1366 0.0002 2.1687

F7

avg 0.0010 0.0234 0.0032 0.2504 0.1588 0.0274 0.0014
std 0.0014 0.0106 0.0032 0.0768 0.0934 0.0113 0.0007
best 1.0746E-05 0.0090 5.1138E-05 0.1003 0.0467 0.0115 0.0006

worst 0.0072 0.0602 0.0118 0.4105 0.3750 0.0538 0.0033

Table 6. Results of multimodal functions-1

Function Type IGOA GOA WOA DA ALO PSO OBLGOA

F8

avg −7594.1662 −7728.4324 −9969.6875 −6189.11 −7320.0609 −6688.3058 −7901.9216
std 767.0277 593.4825 1919.0327 1833.8338 886.1388 684.8647 591.8701
best −9009.3177 −8903.0523 −12564.8051 −12568.5831 −9628.8472 −7869.7845 −9598.7278
worst −5993.9317 −6468.5651 −5709.2023 −5417.6748 −6101.1009 −5224.2865 −6823.4703

F9

avg 0.0000 9.4853 0.4119 8.8883 7.4670 4.5109 1.7919
std 0.0000 5.4604 1.6505 4.5100 4.1855 2.8231 2.1937
best 0.0000 1.9899 0.0000 0.9950 0.9959 0.9950 4.42E-09
worst 0.0000 27.8586 8.1471 16.9143 16.9159 10.9445 6.9648

F10

avg 1.30E-08 3.0892 4.56E-15 5.0040 9.9207 1.3594 0.0010
std 3.13E-09 0.8305 2.18E-15 3.1845 3.9783 0.8583 0.0002
best 8.58E-09 1.5021 8.88E-16 1.1582 3.3950 0.0002 0.0005
worst 1.97E-08 4.5855 7.99E-15 12.3302 16.3216 2.8857 0.0015

F11

avg 5.50E-15 0.6966 0.0069 0.0610 1.1803 0.0258 0.0002
std 5.71E-15 0.1924 0.0379 0.0268 0.1822 0.0354 8.83E-05
best 6.66E-16 0.3226 0.0000 0.0068 1.041 9.58E-07 7.36E-05
worst 2.52E-14 1.0411 0.2076 0.1151 1.9360 0.1590 0.0004

F12

avg 8.93E-08 5.6658 0.0242 14.9630 25.6688 0.5808 0.0347
std 3.28E-08 2.3767 0.0162 7.2414 14.1457 0.8898 0.0211
best 4.62E-08 1.8994 0.004 6.9778 6.3337 1.89E-07 0.0051
worst 1.85E-07 9.7664 0.0832 35.5319 55.4036 3.4350 0.1028

F13

avg 0.0138 8.7624 0.6039 24.9054 261.6986 0.2117 0.4087
std 0.0298 9.0372 0.2536 15.4205 1186.8265 0.5112 0.2177
best 4.85E-07 0.3005 0.1459 0.3854 1.3788 9.86E-07 0.1211
worst 0.0989 35.2838 1.2995 56.9980 6534.7729 2.0239 1.1019
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Table 7. Results of multimodal functions-2

Function Type IGOA GOA WOA DA ALO PSO OBLGOA

F14

avg 3.5566 0.9980 2.7622 2.2142 1.7242 4.5076 3.0103
std 2.9933 6.4341E-16 3.3587 2.1646 1.2701 3.0100 1.5672
best 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980 0.9980

worst 10.7632 0.9980 10.7632 10.7632 5.9288 12.6705 5.9288

F15

avg 0.0003 0.0071 0.0007 0.0032 0.0029 0.0038 0.0063
std 3.24E-05 0.0089 0.0005 0.0062 0.0059 0.0076 0.0087
best 0.0003 0.0007 0.0003 0.0006 0.0003 0.0003 0.0003

worst 0.0004 0.0204 0.0022 0.0206 0.0204 0.0204 0.0210

F16

avg −1.0316 −1.0316 −1.03162 −1.0316 −1.0316 −1.0316 −1.0316
std 4.44E-16 8.1630E-13 1.6137E-09 1.0917E-13 5.1620E-07 6.5195E-16 4.63E-06
best −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

worst −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316 −1.0316

F17

avg 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979
std 0 7.3750E-13 8.4140E-06 2.1005E-14 1.0879E-06 0.0000 1.82E-06
best 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

worst 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979 0.3979

F18

avg 3.0000 8.4000 3.0000 3.0000 3.0000 3.0000 3.0000
std 4.11E-08 20.5503 7.0794E-05 6.2232E-13 7.7233E-06 6.0036E-16 3.07E-10
best 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000 3.0000

worst 3.0000 84.0000 3.0003 3.0000 3.0000 3.0000 3.0000

F19

avg −3.8628 −3.7288 −3.8582 −3.8628 −3.8628 −3.8628 −3.8628
std 1.67E-10 0.3062 0.0054 2.4040E-13 2.2464E-05 2.6402E-15 2.95E-05
best −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628 −3.8628

worst −3.8628 −2.7847 −3.8408 −3.8628 −3.8627 −3.8628 −3.8627

F20

avg −3.2863 −3.2943 −3.2364 −3.2621 −3.2819 −3.2783 −3.2295
std 0.0554 0.0511 0.1007 0.0610 0.0577 0.0584 0.1062
best −3.3220 −3.3220 −3.3213 −3.3220 −3.3220 −3.3220 −3.3220

worst −3.2031 −3.2031 −3.0184 −3.1981 −3.1974 −3.1996 −3.0334

F21

avg −8.2870 −6.0675 −8.5287 −5.8753 −6.6400 −5.9796 −7.2158
std 2.4947 3.6827 2.7585 3.0237 3.2604 3.3646 3.3058
best −10.1532 −10.1532 −10.1498 −10.1532 −10.1532 −10.1532 −10.1532

worst −5.0552 −2.6305 −2.6292 −2.6305 −2.6305 −2.6305 −2.6303

F22

avg −9.3413 −7.1190 −7.2448 −7.1785 −5.1249 −5.5091 −8.0724
std 2.1597 3.6556 3.0850 3.3668 2.5737 3.1769 3.1972
best −10.4029 −10.4029 −10.4020 −10.4029 −10.4029 −10.4029 −10.4029

worst −5.0877 −1.8376 −1.8352 −1.8376 −2.7517 −1.8376 −2.7658

F23

avg −7.9281 −4.9279 −6.5554 −6.6569 −5.4597 −4.7287 −8.0791
std 2.8536 3.2796 3.3755 3.7558 3.0183 3.2997 3.5845
best −10.5364 −10.5364 −10.5348 −10.5364 −10.5364 −10.5364 −10.5364

worst −3.8354 −2.4217 −1.6721 −2.4217 −2.4217 −2.4273 −2.4217

IGOA and GOA in F25 and F28 where GOA gets the best fitness and IGOA does not.
Considering comprehensively, it can still be demonstrated that the proposed IGOA can
significantly promote the performance of GOA.

5.6. Evaluation of convergence rate. The convergences rates of the algorithms are
discussed in this part. The convergence curves of IGOA and all the other 6 algorithms for
comparison over part of the benchmark functions are shown in Figure 2. The horizontal
axis is the number of the current iterations, and the vertical axis is the best fitness value
obtained so far. To make the curve more distinguishable, the logarithm is used in the
vertical axis. The curve image in Figure 2 indicates that IGOA can keep a large slope
relatively for the entire search process in most of the search processes. This phenomenon
can mean that the proposed nonlinear comfort zone parameter can contribute to making
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Table 8. Results of composite functions

Function Type IGOA GOA WOA DA ALO PSO OBLGOA

F24

avg 94.0428 135.9242 341.2250 1098.8600 189.5840 326.5899 189.6304
std 130.6690 127.0964 164.2449 99.4449 117.6155 149.6609 83.2598
best 3.3965 29.6057 163.2687 796.3368 72.0563 118.9426 92.1210

worst 504.8393 514.7878 844.9761 1261.1685 554.4573 717.0723 411.3461

F25

avg 324.3197 284.6066 521.9304 1211.2487 413.5431 393.6293 472.0768
std 151.6351 163.1829 130.9867 94.2232 156.9269 126.4408 143.6411
best 21.2736 28.9418 244.2571 1006.3367 72.6341 161.9665 66.0628

worst 497.3555 510.3606 673.6729 1354.7747 662.1609 610.8645 606.4133

F26

avg 525.7384 624.5092 1052.0733 1547.6195 884.9306 608.4939 875.4033
std 128.5247 176.1401 155.6153 155.8894 157.8576 103.4249 151.2467
best 317.4166 200.8044 849.0492 1064.4776 644.6867 326.5611 627.7263

worst 900.011 1196.9114 1351.5909 1710.9641 1222.5593 828.4274 1217.9587

F27

avg 894.6861 945.6744 902.6182 1421.5043 929.5948 757.5836 895.7587
std 29.1104 101.1013 15.0373 46.9584 128.2259 114.6504 34.7088
best 740.5569 638.304 896.3862 1319.5644 650.1341 538.8135 719.3590

worst 900.0053 1030.5605 982.1588 1519.1409 1066.455 1012.7758 953.3374

F28

avg 304.9727 142.0615 456.9052 1354.378 194.2336 303.9595 497.1264
std 367.9136 102.2128 255.4945 127.0279 182.4486 143.7137 351.6947
best 46.3796 54.2782 179.8317 992.2916 87.2393 113.7433 110.5681

worst 900.0040 435.4893 900.0000 1505.6248 1025.2583 675.3012 900.0049

F29

avg 900.0003 907.4664 900.0000 1371.4241 925.7089 931.1013 900.0004
std 0.0001 5.1380 0.0000 56.4060 7.5901 19.0467 0.0002
best 900.0000 901.0860 900.0000 1254.6648 913.0986 910.3009 900.0001

worst 900.0006 920.7888 900.0000 1000.7252 1000.7252 1000.7252 900.0009

full utilization of every iteration. The curve span is ample in most of the functions, which
can suggest that the local search mechanism based on Lévy flight makes the algorithm
more creative. Some sudden drops of the curve occurring frequently in F3, F4, F7, and
F28 show that the random jumping strategy can help the search jump out of the local
optimum. The convergence curves demonstrate that the proposed IGOA can make the
search process converge more rapidly than others generally.

6. Application on Task Scheduling Problems. Task scheduling problem is a com-
mon problem in cloud computing area [21], edge computing area [23] and SEA Service
System [24]. Massive users produce massive tasks. Thus, the system should handle the
tasks efficiently when a large number of users ask the service at the same time, which
can be an essential problem of the computing system, especially in resources constrained
conditions. In task scheduling problems, a series of tasks arriving at the scheduling center
wait to be allocated to a particular execution node.

The execution node might be heterogeneous in this problem because of the difference
in the resource condition, workload, processing speed and the type of task. A different
solution to task scheduling could lead to different consequences, and an excellent solution
can affect a lot. For service providers, allocating a task to the proper node can save energy
and reduce the budget. For service consumers, scheduling the task to the efficient node
can decrease the waiting time and improve the user experience.

Task scheduling problem can be an optimization problem, and it is an NP-hard prob-
lem [25]. Many algorithms are applied to solving the task scheduling problem. Some
algorithms based on Best Resource Selection (BRS) such as Max-Min, Min-Min, and Suf-
ferage are traditional methods to solve task scheduling problems [21]. The dimension of
the tasks can also increase when the number of tasks increases, which can enlarge the
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Table 9. Results of Wilcoxon rank-sum test

Function GOA WOA DA ALO PSO OBLGOA
F1 3.02E-11 3.02E-11 3.02E-11 3.02E-11 9.53E-07 2.03E-07
F2 3.02E-11 3.02E-11 3.02E-11 3.02E-11 7.12E-09 2.37E-10
F3 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 5.57E-10
F4 3.02E-11 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.21E-10
F5 1.86E-09 1.60E-07 3.02E-11 3.02E-11 0.5201 5.07E-10
F6 3.02E-11 3.02E-11 3.02E-11 0.0099 3.02E-11 3.02E-11
F7 3.16E-10 0.7618 3.02E-11 3.02E-11 8.15E-11 0.0594
F8 0.0030 3.82E-09 0.7958 2.59E-06 0.0133 0.0002
F9 3.02E-11 1.24E-09 3.02E-11 3.02E-11 2.86E-11 4.98E-11
F10 3.02E-11 3.02E-11 3.02E-11 3.02E-11 1.43E-08 3.83E-05
F11 3.02E-11 4.56E-11 3.02E-11 3.02E-11 1.34E-05 3.02E-11
F12 3.02E-11 3.02E-11 3.02E-11 3.02E-11 0.0002 3.02E-11
F13 3.02E-11 3.02E-11 3.02E-11 3.02E-11 0.9117 3.02E-11
F14 1.67E-05 0.1578 0.0265 0.0082 0.7842 0.6951
F15 1.33E-10 1.07E-09 2.87E-10 2.87E-10 0.3328 2.15E-10
F16 0.0064 6.72E-10 3.02E-11 1.81E-05 4.08E-12 3.02E-11
F17 3.20E-06 3.01E-11 3.01E-11 6.78E-06 4.56E-12 3.01E-11
F18 1.73E-07 3.02E-11 3.02E-11 0.01911 1.55E-11 5.09E-08
F19 0.5997 0.002266 2.13E-05 3.33E-11 5.14E-12 0.0003
F20 0.5395 0.0003 0.00250 0.7958 0.0003 0.0001
F21 0.0002 1.25E-05 6.74E-06 0.0850 0.2822 5.46E-06
F22 0.0005 5.27E-05 3.83E-06 0.5493 0.0627 0.0013
F23 6.05E-07 3.83E-06 1.73E-06 0.1858 0.0009 5.27E-05
F24 0.0016 6.01E-08 0.0001 3.02E-11 3.81E-07 0.0001
F25 0.7618 1.09E-05 0.0138 3.02E-11 0.1907 1.02E-05
F26 0.0046 5.49E-11 5.57E-10 3.02E-11 0.0038 4.20E-10
F27 7.74E-06 7.34E-09 0.0064 3.02E-11 3.08E-08 2.68E-06
F28 0.3711 0.0042 0.0083 3.02E-11 0.0073 0.0001
F29 3.02E-11 2.14E-11 3.02E-11 3.02E-11 3.02E-11 0.0024

search space and make the optimization problem more complicated. The traditional al-
gorithms could not handle this situation. In recent years many meta-heuristic algorithms
were applied to solving the task scheduling problem. Genetic Algorithm (GA) proposed
by Goldberg in 1988 is a famous evolutionary algorithm, and it represents a scheduling
scheme as a chromosome to solve the task scheduling problem. GA is complicated to
calculate because of its operations of crossover and mutation. Particle Swarm Optimiza-
tion (PSO) is a classical meta-heuristic algorithm proposed by Kennedy and Eberhard
in 1995. PSO represents a scheduling solution as a discrete particle and evolves by the
information of the personal best and the global best of the swarm. PSO is easy to fall into
local optimum, and it does not perform well when dealing with multimodal problems.

Some recently proposed meta-heuristic algorithms are used such as DA, WOA, and
GOA. In this work, the proposed IGOA is employed for task scheduling problems. A
solution of N tasks scheduled to M nodes is abstracted as an N -dimension discrete vec-
tor which represents a position in the search space. Each solution can correspond to a
makespan and a budget of the system, and a fitness value can be calculated with the
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Figure 2. Convergence curves for all the 7 algorithms over some bench-
mark functions

makespan and budget. Several search agents search in the whole search space for the best
fitness by the search strategy of IGOA.

6.1. Task scheduling model. In this paper, we assume that users start N tasks which
are {T1, T2, . . . , TN} and M nodes which are {S1, S2, . . . , SM} are waiting to handle them.
The task scheduling model is described as follows.
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1) The set of N tasks is {T1, T2, . . . , TN}, and Ti represents the resource that the i -th
task consumes.

2) The set of M nodes is {S1, S2, . . . , SM} and Sj represents the maximum amount of
resources that the j -th node can provide.

3) A task can be operated at any node as long as the node can provide enough resource,
which means Ti ≤ Sj.

4) Every node can handle only one task at the same time. Multiple tasks can be run
sequentially on the same node.

5) There are K types of all the tasks. The vector of types of tasks is tot[N ], and toti
which is an integral value in [1, K] represents the type of the i-th task.

6) The ability of every node to handle different types of tasks is different. The matrix
of operating speed is mips[M,K]. mipskj represents the resource that the type k task
can consume on the j -th node in a unit time. The working time for the i -th task
running on the j -th node which is etij is calculated as follows.

etij =


Ti

mips totij

task i runs on node j

0 task i does not run on node j

(16)

7) The makespan of the j -th node which is stj is calculated by adding all the operating
time of the tasks handled on the j -th node. The equation is shown as follows.

stj =
N∑
i=1

etij (17)

The total Makespan is the longest time for all the nodes. Makespan is calculated as
follows.

Makespan = max{stj|j = 1, 2, 3, . . . ,M} (18)

8) The work node can produce the extra budget when it is working. The budget is only
related to the time of working, regardless of the type of task running on it. The
vector of the price of the nodes is bps[M ] which represents the budget that the j -th
node generates in a unit time.

9) The total Budget is calculated by adding all the budget of all the nodes. Budget is
calculated as follows.

Budget =
M∑
j=1

(stj × bpsj) (19)

10) Makespan and budget can describe the cost of the problems in two aspects. A unified
evaluation fitness is required. In this module, the fitness of the problem is defined as
the mixture of makespan and budget with weight parameters of α and β. The fitness
is calculated as follows.

fitness = αMakespan + βBudget (20)

11) The search process is continuous, but the solution to the problem is discrete. When a
step of search is finished, the search agent should adjust itself to the nearest integral
location.

12) The switching time between two tasks on the same node is ignored in this module.
The transmission time among the edge nodes is also ignored.
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6.2. Results of IGOA on task scheduling problems. In this task scheduling module,
N tasks are divided into K types, and M working nodes are preparing to handle them.
The specifics of the parameter selection of the task scheduling module depend on the
specific problem and will not be discussed here. In this work, without loss of generality,
K, N and M are set to 4, 10 and 5 respectively. To balance the impact of Makespan
and Budget on fitness, the coefficients α and β are set to 0.7 and 0.3. Those parameters
mentioned above are set as follows.

K = 4; N = 10; M = 5; α = 0.7; β = 0.3 (21)

The vector T, tot, S and bps, and the matrix mips are set as Tables 10-12.

Table 10. Resources and types about tasks

Task 1 2 3 4 5 6 7 8 9 10
T 40 20 30 40 25 35 45 10 5 10

tot 1 1 1 2 2 2 3 3 4 4

Table 11. Resource and bps about nodes

Node 1 2 3 4 5
S 100 50 150 100 80

bps 0.5 0.2 0.8 0.1 0.5

Table 12. Mips about tasks and nodes

mipskj k:1-4

j:1-5

5 2 10 8

2 4 2 1

8 10 10 5

2 1 3 4

5 5 8 8

In this work, 6 algorithms were compared with the proposed IGOA. 30 search agents
were employed in each algorithm. In order to reduce the impact of accidental factors,
every algorithm was tested for 30 times and the statistical data such as average value,
standard deviation, best value and worst value were calculated and compared. The result
of the experiment is listed as Table 13.

Table 13. Results about task scheduling

Algorithm average std best worst promotion
IGOA 13.50 0.62 12.63 14.62 0
GOA 14.95 0.82 13.50 16.67 9.7%
WOA 14.08 0.75 13.02 15.93 4.1%
ALO 19.83 2.89 16.02 26.76 31.9%
DA 19.00 2.49 15.62 26.81 29.0%
PSO 17.93 1.68 13.96 22.29 24.7%

OBLGOA 14.85 0.74 13.30 16.27 9.1%
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The result of the experiment demonstrated that the proposed IGOA outperformed the
other algorithms in all fields. IGOA can do best in average values, and it can be more
stable for the smallest standard deviation. It can have the ability to find the best solution
over all the algorithms, and it can control the worst value which it can find. Compared
with the other algorithms, IGOA can promote the average values respectively by 9.7%,
4.1%, 31.9%, 29.0%, 24.7%, and 9.1%.

7. Conclusion. Grasshopper Optimization Algorithm (GOA) is a novel meta-heuristic
algorithm inspired by the natural behavior of grasshoppers for solving single-objective
numeric optimization problems. In this paper, an Improved Grasshopper Optimization
Algorithm (IGOA) was proposed to enhance the performance of the original algorithm.
The nonlinear comfort zone parameter can help the algorithm to make full utilization of
all the iterations. A local search mechanism based on Lévy flight is introduced to give
vision and creativity to the algorithm. The random jumping strategy can contribute to
getting rid of local optimal.

29 benchmark functions were used to test the search ability of the proposed IGOA,
and several statistical data were estimated. Then IGOA was used to handle the task
scheduling problem. The performance of IGOA was compared with the original algorithm
of GOA, OBLGOA, new meta-heuristic algorithms of DA, WOA and ALO and a classical
meta-heuristic algorithm of PSO. The experimental results demonstrate that the proposed
IGOA can efficiently improve the performance of the algorithm in aspects of accuracy,
stability, convergence rate, the ability to find the best solution and the ability of controlling
the worst solution. The p-value of the Wilcoxon rank-sum test can illustrate that the
promotion is significant. When applied to task scheduling problems, IGOA can promote
the performance of the original GOA and OBLGOA by 9.7% and 9.1% respectively.

Our future work will focus on further developing the ability of the algorithm to handle
more complex optimization problems. Additionally, modifying the task scheduling module
and adding more constrained conditions to make it more practical are also what concerns
us.
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