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Abstract. In this paper, a new multi-vehicle formation control method based on second
order terminal sliding mode control (SOTSMC) is proposed. The bounded disturbances
and uncertainties from modelling and external factors such as gusts and vortices are
considered. The conventional sliding mode formation controllers are also investigated
and designed. To improve the performance of integral sliding mode controller (ISMC),
especially chattering phenomenon and finite-time stability, a second order non-singular
terminal sliding mode surface based on an integral sliding surface is introduced to ensure
that the nonlinear formation system converges to sliding mode surface from arbitrary
initial states in finite time. The Lyapunov stability is proved and total converge time
is calculated. Finally, to verify the performance of the proposed SOTSMC formation
controller, a comparison between the ISMC and the proposed method is conducted in the
simulations with a formation consisting of two followers and one leader which tracks two
different prescribed paths.
Keywords: Multi-agent system, Sliding mode control, Disturbances and uncertainties,
Finite-time stability

1. Introduction. The multi-agent system (MAS) has drawn a lot of attention since the
last decade. As unmanned technology develops rapidly, for instance, unmanned aerial
vehicles (UAV), autonomous underwater vehicles (AUV), and mobile robots, formation
control problem of MAS has been one of the most important topics for its potential ap-
plication in military and civil areas, such as swarm combat, cooperative reconnaissance
and data collection [1-3]. Due to the nonlinear properties, especially disturbances and
uncertainties caused by system modeling, internal vortex and other factors, various con-
trol schemes have been adopted in the MAS formation control, which mainly include
conventional PID method, robust control, optimal control, adaptive control, sliding mode
control (SMC), behavior-based method and so forth [4-10]. In [4], the aerodynamic cou-
pling effects due to the leader’s vortices were accurately modeled, and the PI controller
was designed in a close leader-follower aircraft formation, but which had poor performance
in resisting external disturbances actually. [5] developed a suboptimal controller to deal
with external disturbances and model parameter uncertainties in a quadrotor formation
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under a leader-follower framework; however, an exact system model must be known for
robust and optimal control, which is hard to be satisfied in practice.
As a common nonlinear control method used in MAS formation control, the sliding

mode controller uses the switching between discontinuous control logic to force the control
system to move on the sliding mode surface, and to maintain the robustness of the system.
It can suppress the uncertainties and disturbances of the system effectively, which also has
the advantages of simple structure and quick response [11-16]. In [11], a PID controller was
proposed to reject constant disturbances, and an auxiliary integral sliding mode surface
was designed to reject the time-varying disturbances in a UAV formation. [12] proposed
SMC control laws for multiple unmanned vessels in arbitrary formations with not only
mesh and parameter uncertainties but also wave disturbances and mesh unstability. In
[13], a fuzzy sliding mode controller was combined with graph theory for a multi-robots
system.
However, due to switching motion in the control logic, chattering always happens in

sliding mode controllers (including controllers designed in the above studies). Currently,
high order sliding mode control (HOSMC) methods can not only eliminate chattering
effectively but also maintain the robustness simultaneously, where second order sliding
mode controller (SOSMC) applies discontinuous control to the second order derivative of
the sliding modulus, which ensures that the sliding modulus and its first order derivative
converges to zero and eliminates chattering with advantage. Compared with other high-
order sliding mode control, SOSMC is more preferred in practice for its fewer demands on
high order information and simple implementation [17-20]. In [17], the first and second
order SMC formation controllers were proposed and implemented respectively for coop-
erative autonomous mobile robots. [19] proposed a robust adaptive satellite formation
method by introducing two sliding variables with robust controller and SOSMC.
Finite time convergence is very significant for an MAS formation in most cases [20-24].

However, though SOSMC method based on the linear sliding surface has the ability to
eliminate chattering, the time cost of convergence to an equilibrium state cannot be guar-
anteed to be finite. In [20], an improved terminal sliding mode control (TSMC) method
was introduced in multiple under-actuated vehicles system to achieve fast converging
without excessive control effort and the singularity problem in conventional TSMC was
solved. In [21], an optimal second order sliding mode controller with two different inte-
gral sliding mode surfaces was proposed to enhance the robustness of optimal control in
a linear uncertain MIMO system.
In this paper, an improved terminal sliding mode formation controller is used for a

multi-agent system. The main contribution of this paper is the design of a new finite-time
multi-vehicle formation controller using nonsingular second order terminal sliding mode
control (SOTSMC) to reject time-varying disturbances and uncertainties and suppress
chattering phenomenon with effect in finite time, which can reduce the high-frequency
switching loss of executive system devices (such as motors) effectively and shorten the
response time. To evaluate the performance of the proposed method, the comparison with
a conventional integral SMC formation controller (similar to [10] and [11]) is demonstrated
through simulations.
The outline is organized as follows. In Section 2, the problem formulation and system

description with disturbances and uncertainties are described. The design of conventional
SMC controller and the proposed SOTSMC controller are presented in Section 3. The
bounded stability and finite-time convergence are also proved in this section. In Section
4, simulation results and analysis are given to show the effectiveness and advantages of
the proposed method. Concluding remarks are provided in Section 5.
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2. Preliminaries and Problem Formulation. The multi-vehicle formation (e.g. a
multiple unmanned vessels formation) under a leader-follower framework is shown in Fig-
ure 1. The inertial-fixed frame and body-fixed frame are denoted by x, y and XB, YB
respectively and ψ denotes the heading angle with regard to the body frame. Notice that
the Follower* denotes the desired state to be achieved for the follower. ξ represents the
actual deviations of distance and heading angle in the leader’s body-fixed frame between
the leader and the ith follower, where ξ∗ represents the desired formation geometric pa-
rameters. The leader represented by the subscript L is supposed to follow a prescribed
trajectory, the followers represented by subscript i = 1, . . . , N have access to the leader’s
attitude and position and autonomously maintain a given geometric structure ξ∗ with the
leader and reach the consensus of velocity vector ultimately. Therefore, the formation
problem can be converted to a set of dynamic tracking control problems.

Figure 1. Illustration of a leader-follower framework

To study the main aspects of the design of a formation controller, it is assumed that all
vehicles are driven by two independent propellers and a bearing regulator, the dynamics
model is neglected either. In other words, the formation kinematics model is emphasized
in this paper. The kinematic model of the ith vehicle is given as follows [23]:

ẋi = vix cosψi − viy sinψi

ẏi = vix sinψi + viy cosψi

ψ̇i = ωi (1)

where pi = [xi yi]
T represents the position of the ith vehicle in the inertial frame, vi =

[vix viy]
T denotes the linear velocities of the ith vehicle in the body-fixed frame, and ωi

represents the angular velocity of the ith vehicle.
Based on Equation (1), we can get

vix = ẋi cosψi + ẏi sinψi

viy = −ẋi sinψi + ẏi cosψi (2)

Define ξi = [ξx ξy ξψ]
T , considering the disturbances and uncertainties denoted by d =

[d1 d2 d3]
T in the formation flying and modelling, we can get

ξx = −(xL − xi) cosψL − (yL − yi) sinψL + d1

ξy = (xL − xi) sinψL − (yL − yi) cosψL + d2

ξψ = ψL − ψi + d3 (3)
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The following formula can be obtained by differentiating Equation (3):

ξ̇x = ξyωL + vix cos ξψ + viy sin ξψ − vLx + ḋ1

ξ̇y = −ξyωL − vix sin ξψ + viy cos ξψ − vLxḋ2

ξ̇ψ = ωL − ωi + ḋ3 (4)

Let u = [vix viy ωi]
T and D =

[
ḋ1 ḋ2 ḋ3

]T
represent the control input and the deriva-

tives of d of the ith follower respectively, and the formation state functions can be de-
scribed as follows:

ξ̇ = A+Bu+D (5)

where

A =

 −vLx + ωLξy
−vLy − ωLξx

ωL

 , B =

 cos ξψ sin ξψ 0
− sin ξψ cos ξψ 0

0 0 −1

 , D =

 ḋ1
ḋ2
ḋ3

 (6)

Next, we will study the improved sliding mode controller design of nonlinear dynamical
system (5) with disturbances and uncertainties.

3. Controller Design and Analysis.

3.1. Integral sliding mode controller design. Let ξ∗ =
[
ξdx ξ

d
y ξ

d
ψ

]T
; therefore, the

formation tracking error can be described by

E = ξ∗ − ξ =

 ξdx − ξx

ξdy − ξy

ξdψ − ξψ

 =

 ex
ey
eψ

 (7)

Consider a proportional integral sliding mode surface given by

S = E + λ

∫ t

0

E(τ)dτ (8)

where S = [sx sy sψ]
T is the sliding mode vector and λ = diag[λ1 λ2 λ3] is a positive

real matrix. Assume that the controlled formation would reach sliding mode boundary in
finite time under an appropriate control law u, let

Ṡ = Ė + λE = 0 (9)

Therefore, based on the sliding mode control theory, the according equivalent control law
without considering disturbances and uncertainties can be given by

ueq = B−1
(
−A+ λE + ξ̇∗

)
(10)

Remark 3.1. Apparently, the disturbances and uncertainties in vehicles formation cannot
be restrained only by the equivalent control law ueq, that is, the nonlinear system (5) cannot
be stabilized.

To decrease the unstability caused by disturbances and uncertainties, a switching con-
trol component us must be designed to achieve a better formation performance. Hence,
Equation (9) can be rewritten as

Ṡ = Ė + λE = ξ̇∗ − [A+B(ueq + us) +D] + λE = −Bus −D (11)

Using the constant plus proportional reaching law, that is

Ṡ = −ηS − ρsgn(S) (12)
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where η and ρ are positive constant parameters, consequently, we can get the correspond-
ing switching control component as follows:

us = B−1[ηS + ρsgn(S)] (13)

Theorem 3.1. The vehicles formation system (8) with disturbances and uncertainties
will be achieved asymptotically if the control law is designed as

u = ueq + us (14)

when D is bounded and ∥D∥ ≤ ρ.

Proof: Consider a Lyapunov function candidate as

V1 =
1

2
STS (15)

Using (11), (13)-(15) yields

V̇1 = ST Ṡ

= ST [−ηS − ρsgn(S) +D]

≤ −ηSTS − ρ
∣∣ST

∣∣+ ∣∣ST
∣∣ |D|

≤ −ηSTS, when |D| ≤ ρ (16)

Apparently, the nonlinear system (8) under the action of control law (14) satisfies sliding
conditions, thus the sliding mode surface becomes an invariant set though disturbances
and uncertainties exist. However, the high-frequency chattering is inevitable in the system
using control law (14). Next, we will study how to solve this problem.

3.2. Second order terminal sliding mode control for disturbances. High order,
especially second order terminal sliding mode control (SOTSMC) has been widely used in
industrial applications for its high performance in restraining high-frequency chattering,
which also needs less high order information. In SOTSMC, the discontinuous control law
is used to control the second order derivatives of a given sliding mode surface, which
ensures the sliding surface and its first order derivative converge to zero in finite time
without chattering. In general, the initial state of a nonlinear system is always outside
the sliding surface, according to the terminal sliding mode control theory, arbitrary initial
states will converge to the given sliding surface in finite time.

Consider the second order non-singular terminal sliding mode surface based on Equation
(8):

σ = S + γṠα/β (17)

where σ = [σx σy σz σψ]
T and γ = diag[γ1 γ2 γ3 γ4] is the chosen switching gain so that

γ > 0, and α and β are selected to satisfy the following conditions:

α, β ∈ 2n+ 1, n ∈ N, 1 <
α

β
< 2 (18)

Differentiating Equation (17) gives rise to

σ̇ = Ṡ +
α

β
γṠα/β−1S̈ =

α

β
γṠα/β−1

(
β

α
γ−1Ṡ2−α/β + S̈

)
(19)

Based on Equation (18), we can get{
Ṡα/β−1 > 0, for Ṡ ̸= 0

Ṡα/β−1 = 0, for Ṡ = 0
(20)
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Consequently, for Equations (18) and (20), the term (α/β) γṠα/β−1 can be substituted

by a positive scalar ζ when Ṡ ̸= 0. Therefore, Equation (19) can be rewritten as

σ̇ = ζ

(
β

α
γ−1Ṡ2−α/β + S̈

)
(21)

Use the constant plus proportional reaching law

σ̇ = −η1σ − ρ1sgn(σ) (22)

where η1 and ρ1 are positive scalar.
Defining η2 = η1/ζ and ρ2 = ρ1/ζ, based on (21) and (22), we can get

S̈ = −η2σ − ρ2sgn(σ)−
β

α
γ−1Ṡ2−α/β (23)

Differentiating Equation (11) yields

S̈ = −Bu̇s1 − Ḋ (24)

Substituting (23) by (24) yields the control law for disturbances and uncertainties as
follows

us1 =

∫
B−1

(
η2σ + ρ2sgn(σ) +

β

α
γ−1Ṡ2−α/β − Ḋ

)
dt (25)

where
∣∣∣Ḋ∣∣∣ < ρ2.

Remark 3.2. As for a multi-vehicle formation system, the term D represents the sum
of disturbances such as vortex effect caused by neighbor vehicles and uncertainties such
as parameters perturbation. However, the formation sampling rate is far larger than the
changing rate of D and D is assumed to be invariant in a sampling period, hence Ḋ = 0,
that is, the sign function gain ρ2 can be chosen as ρ2 ≥ 0 theoretically, which can eliminate
chattering and enhance the control accuracy.

Note that η2 determines the convergence rate of the sliding surface. The system states
will converge faster with a high value of η2, which means that it needs higher control inputs
and is not much feasible practically. Hence, η2 must be chosen carefully considering the
response speed and control input magnitude.
Thus, the control component (25) can be rewritten as

us1 =

∫
B−1

(
η2σ + ρ2sgn(σ) +

β

α
γ−1Ṡ2−α/β

)
dt (26)

Theorem 3.2. The states of vehicles formation system (5) with disturbances and un-
certainties can track desired states ξ∗ asymptotically if the high order sliding surface is
chosen by (17) and the control law is designed as

u = ueq + us1 (27)

with D bounded and |D| ≤ ρ, where ueq is the equivalent control law defined in (10) and
us1 is the switching control law defined in Equation (26).

Proof: Consider the Lyapunov function candidate as

V2 =
1

2
σTσ (28)

Differentiating (28) by using (19) yields

V̇2 = σT

(
Ṡ +

α

β
γṠα/β−1S̈

)
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= σT

(
Ṡ +

α

β
γṠα/β−1

(
−Bu̇s1 − Ḋ

))
= σT

(
Ṡ +

α

β
γṠα/β−1

(
−
(
η2σ + ρ2sgn(σ) +

β

α
γ−1Ṡ2−α/β

)
− Ḋ

))
=
α

β
γṠα/β−1

(
−η2σTσ − ρ2σ

T sgn(σ)− σTḊ
)

≤ α

β
γṠα/β−1

(
−ρ2 |σ| − σTḊ

)
(29)

Choose parameters which satisfy the following condition 0 <
∣∣∣Ḋ∣∣∣ < ρ2. Moreover, from

(25), it is obvious that (α/β)Ṡα/β−1 > 0, for Ṡ ̸= 0. Therefore, the above inequality (29)
satisfies

V̇2 < 0, for Ṡ ̸= 0 (30)

In other words, the nonlinear system (5) with bounded disturbances and uncertainties
is asymptotically stable.

Remark 3.3. Suppose σ reaches zero from σ ̸= 0 in time tr and σ keeps on zero when
t ≥ tr. Consequently, the control system reaches S = 0 in finite time ts if and only if S
reaches S(ts) = 0 from σ(tr), where ts represents the total time required from σ(0) ̸= 0
to S(ts). ts can be calculated as follows.

Let σ = S + γṠα/β = 0, hence

Ṡ = −Sβ/αγβ/α (31)

According to (20), (31) can be rewritten as

Sβ/α = −γβ/αdS
dt

or

∫ ts

tr

dt = −γβ/α
∫ S(tc)

S(tr)

S−β/αdS

or ts − tr = − α

α− β
γβ/α

[
S(tr)

(α−β)/α − S(tc)
(α−β)/α

]
(32)

Since S(ts) = 0, (32) gives rise to

ts = tr +
α

α− β
γβ/αS(tc)

(α−β)/α (33)

Hence, S and Ṡ converge to zero in finite time.

4. Simulations. In this section, the contrastive simulations are conducted between the
conventional sliding mode formation controller and second order terminal sliding mode
formation controller to verify the performance of the proposed method of this paper.

To validate the performance of second order terminal sliding mode formation controller
proposed in this paper, a group of three vehicles in a triangle pattern is considered within
a fixed communication network. As shown in Figure 2, the arrows represent that leader’s
states including position and attitude access to the two followers. The leader initial
states are [xL0 yL0 ψL0 vLx0 vLy0]

T = [0 5 0 0 2]T , while the followers initial states are
[xF10 yF10 ψF10 vF1x0 vF1y0]

T = [15 − 5 π/2 1 0]T and [xF20 yF20 ψF20 vF2x0 vF2x0]
T =

[−5 − 5 π 1 1]T . The desired formation states for followers are ξ∗1 = [5 − 5 0]T and
ξ∗2 = [−5 −5 0]T respectively. The conventional integral sliding mode controller of λ = 1,
η = 50 and ρ = 0.5 is used as a contrast. The proposed second order terminal SMC
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Figure 2. Formation communication topology

Figure 3. (color online) First path: Formation trajectories of three vehicles

controller of γ = diag[8 8 6], α = 5, β = 3, η1 = 50, ρ1 = 0.5 and ζ = 0.33 is also applied
in the simulations.

4.1. First path. The first path to be tracked by the leader can be written as

x = 2 cos(t+ π)

y = 2t+ 5

ψ = 0 (34)

Moreover, to simulate the time-varying bounded disturbances and uncertainties D in
the formation manoeuvring, the following bounded combinations of trigonometric function
are introduced:

d1 = −0.01 cos(0.2t)− 0.03 cos(3t)

d2 = −0.05 cos t+ 0.01 sin(0.1t)

d3 = 0.05 sin
(
t+

π

3

)
+ 0.01 cos t (35)

Figure 3 shows the trajectories of a three-vehicle formation and all vehicles achieve an
equilateral triangle pattern. Figures 4 and 5 indicate the velocities, bearing performance
and the tracking error comparison between ISMC and SOTSMC formation controllers.
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Figure 4. (color online) Velocities and bearing performance comparison
between ISMC and SOTSMC formation controllers in the first path

Figure 5. (color online) Tracking error comparison between ISMC and
SOTSMC formation controllers in the first path

Figure 6 shows the output and sliding mode surface performance comparisons using vFx
as an example, including the local magnification of uvFx when 0.5s ≤ t ≤ 1.0s.

Obviously, ISMC and SOTSMC controllers can both reject the time-varying bounded
disturbances and uncertainties effectively; however, the proposed SOTSMC controller has
the advantages of stable output and quick response. For example, the tracking error
convergence time of SOTSMC in x and y channel is 1.1s faster than ISMC.

Besides, as shown in Figure 6, the output chattering of uvFx caused by the switch-
ing item in Equation (13) still exists in the ISMC controller with an amplitude of 0.8.
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Figure 6. (color online) Output performance comparison between ISMC
and SOTSMC controller in the first path (using vF1x as an example)
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Figure 7. (color online) Second path: Formation trajectories of three vehicles

However, the output chattering has already been eliminated in SOTSMC because the dis-
continuous switching item is working on the second order derivative of the sliding surface.
Furthermore, the second order sliding mode surface σvFx converges to zero instantaneous-
ly, which proves the finite time convergence either.

4.2. Second path. The second path to be tracked by the leader can be written as

x = 2 cos(t+ π)

y = 2 sin(t) + 5

ψ = 0 (36)
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Figure 8. (color online) Velocities and bearing performance comparison
between ISMC and SOTSMC formation controllers in the second path

Figure 9. (color online) Tracking error comparison between ISMC and
SOTSMC formation controllers in the second path

This circular path is much complex than the former path for the whole formation.
The disturbances and uncertainties D in this example are the same as the one intro-

duced in the first case. Figure 7 shows the second formation trajectories; all vehicles
move along the circular path and maintain the prescribed triangle formation. Figure 8
and Figure 9 indicate the velocities, bearing performance and the tracking error com-
parison between ISMC and SOTSMC formation controllers. The local magnification in
Figure 8 shows that chattering occurs in the x channel velocity output vFx of Follower 2
when using ISMC method, while chattering does not happen in the output of SOTSMC.



2352 H. LIN, K. CHEN AND R. LIN

Figure 10. (color online) Output performance comparison between ISMC
and SOTSMC controller in the second path (using vF1x as an example)

Figure 9 shows the tracking error of SOTSMC controller converges faster than conven-
tional ISMC controller. Figure 10 further implies that the proposed SOTSMC method
has advantages in eliminating chattering and finite time convergence.
Based on the results of the above two cases, it is plain to see that the proposed SOTSMC

formation controller performs better than conventional SMC controller, which has the
value of the practical application.

5. Conclusion. This paper mainly contributed a second order terminal sliding mode
controller (SOTSMC) for a multi-vehicle formation with bounded disturbances and un-
certainties. A second order non-singular terminal sliding mode surface based on the
integral sliding mode surface was designed to ensure the nonlinear formation system to
converge in finite time, as well as to eliminate the output chattering which always exists in
conventional integral sliding mode controller (ISMC). The contrastive simulations verify
that the proposed SOTSMC controller outperforms the conventional ISMC in aspects of
output stability and convergence time.
Based on the obtained results, several more practical issues such as collision avoidance

and communication time delay have not been considered in this work, which will be
studied further. Besides, the time-varying communication network will also be taken into
account in future work.
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