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ABSTRACT. Cyberattacks on a vulnerability in a server application are threats to cloud
servers. Advanced endpoint security techniques can detect and mitigate cyberattacks on
known and unknown vulnerabilities, but their detection causes the server application to
terminate, resulting in a denial of service. Intrusion detection systems with machine
learning combine high accuracy and high speed of detection, but they require a wide variety
of samples for learning. To solve these drawbacks, this paper proposes an immunity-
enhancing module that adaptively acquires immunity to known and unknown cyberattacks
without the need for prior learning of attack data. The module consists of innate and
adaptive immune functions. The innate immune function detects known and unknown
cyberattacks using advanced endpoint security techniques, whereas the adaptive immune
function learns and detects the cyberattacks identified by the innate immune function
using a gradient boosting classifier, thereby preventing a denial of service due to the
innate immune function. This paper describes implementation of the module for a DNS
server application. Its performance was evaluated by attacking vulnerabilities of CVE-
2015-5477 and CVE-2016-2776. The module showed a detection accuracy of 99.94%,
including a true negative rate of 100.00% and a true positive rate of 99.88%, and an
overhead of 2.70%.

Keywords: Cloud server, Intrusion detection system, Adaptive machine learning, DNS,
Gradient boosting

1. Introduction. Advances in cloud computing technologies have motivated many or-
ganizations to move their on-premises servers to the cloud. The dominant characteristics
of cloud servers are their availability, scalability, and ubiquity, reducing downtime, al-
lowing on-demand scale-up/down of service resources, and permitting ubiquitous access,
respectively. In addition, cloud providers offer security features for data protection, such
as authentication, access control, and encryption, and some have optional features that
enhance security from cyberattacks, such as content delivery networks (CDNs) and intru-
sion detection systems (IDSs) including web application firewalls (WAFs). Despite these
security features, challenges remain in cybersecurity, including preventing cyberattacks
on vulnerabilities of server applications. Such cyberattacks can be handled by IDSs,
classified as network-based and host-based IDSs.

Network-based IDSs detect and prevent cyberattacks by monitoring byte sequences in
network traffic. Most commercial IDSs, however, are based on signature-matching meth-
ods, which may have difficulties detecting unknown cyberattacks, such as zero-day attacks,
especially cyberattacks on vulnerabilities in original server applications. In contrast, these
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IDSs are better able to detect cyberattacks on vulnerabilities in commercial-off-the-shelf
(COTS) server applications.

Unknown cyberattacks may be detected by machine learning based IDSs, with state-
of-the-art IDSs found to be highly accurate in detecting cyberattacks when coupled with
high-speed classification and learning [1-4]. These systems, however, require a wide vari-
ety of samples for learning and they may have difficulty collecting samples of cyberattacks
on original server applications. In contrast, some anomaly based IDSs, including machine
learning-based IDSs, do not require any samples of attack data. An immunity-based
anomaly detection system showed higher accuracy of detection than other anomaly de-
tection methods, and at a low computational cost [5]. However, these immunity-based
IDSs require large numbers of normal samples to build an identification model. Difficulties
may be encountered in ensuring that all the normal samples are actually normal.

Host-based systems detect and mitigate known and unknown cyberattacks on vulner-
abilities in an application by monitoring the behavior of the application process, such
as system call sequences [6-8] and control flow integrity [9-14]. Upon detecting cyber-
attacks, these host-based systems cause the application to terminate, preventing these
cyberattacks, but resulting in a denial of service.

Intrusion-tolerant systems tolerate cyberattacks on vulnerabilities in server applica-
tions, using different implementations of the same server specification [15-19], as all im-
plementations may not be affected by the same vulnerabilities [20,21]. Intrusion-tolerant
systems require considerable resources to run diverse server applications, drastically in-
creasing their operating costs, including those involved in the setup and maintenance of
all configurations for all server applications.

To enhance the resilience of a server application against cyberattacks on its vulnerabili-
ties, we propose an immunity-enhancing module that satisfies the following requirements.

e The module requires no additional physical or virtual machines such as security
appliances.

e The module requires only one sample of normal data in advance; i.e., the module
requires no samples of attack data, including known and unknown attack data.

e The module adaptively detects and prevents known and unknown cyberattacks in
real-time.

e The module autonomously recovers the service of the server application compromised
by cyberattacks.

The immunity-enhancing module has two properties of self-adaptive software [22]: self-
protecting, defined as the ability to detect attacks and recover from their effects; and
self-healing, defined as the ability to detect and diagnose failures, and subsequently re-
cover from them. Studies on an IDS with self-protecting features showed that they can
adaptively detect unknown attacks by continuously learning them using machine learn-
ing [23,24]. However, they may cause erroneous learning due to false detections, thereby
reducing the accuracy of detection. In contrast, the immunity-enhancing module can pre-
vent, erroneous learning by diagnosing the result of detection. A study on self-healing for
cybersecurity proposed a software self-healing framework that detects vulnerable code in
an application and then repairs it by transforming it to secure code based on public vul-
nerabilities data [25], while the immunity-enhancing module can recover the application
without its source code and public vulnerabilities data.

Section 2 of this paper presents a design of the immunity-enhancing module, and Sec-
tion 3 describes implementation of a prototype for Berkeley Internet name domain (BIND)
provided by Internet systems consortium (ISC), the most commonly used server imple-
mentation of domain name system (DNS), as the DNS service is an essential component
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of Internet infrastructure. Section 4 shows evaluations of the performance of the proto-
type, including its accuracy of detection and overhead. The accuracy of detection was
evaluated by exploiting two vulnerabilities of the server application: CVE!-2015-5477
and CVE-2016-2776. The overhead of the module was evaluated by comparing round
trip times between a client and a server with and without the module. Section 5 is the
conclusion.

2. Design of an Immunity-Enhancing Module. An immunity-enhancing module
allows a server application to adaptively acquire immunity to known and unknown cyber-
attacks without the need for prior learning of cyberattacks and to autonomously recover
from the effects of cyberattacks. That is, the immunity-enhancing module provides a
server application with high resilience against cyberattacks. The immunity-enhancing
module is equipped with both innate and adaptive immune functions. These functions
are incorporated into a server application by modifying the source code of that server
application or by runtime injection into a process of that server application (Figure 1).
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F1GURE 1. Overview of an immunity-enhancing module

Similar to innate immunity in biological systems, which non-specifically identifies and
eliminates pathogens by recognizing molecules that are broadly shared by pathogens, the
innate immune function of the server application non-specifically detects and prevents
cyberattacks on known and unknown vulnerabilities by recognizing behaviors common to
those cyberattacks. Subsequently, the innate immune function presents those cyberattacks
to the adaptive immune function. Upon detecting a cyberattack, however, the innate
immune function restarts the server application, because the server application process
may lose its own normal execution control or may be unable to receive requests and send
responses due to that cyberattack.

Similar to adaptive immunity in biological systems, which generates immunological
memory of a specific antigen, resulting in faster and stronger elimination upon repeat
exposure to pathogens bearing that antigen, the adaptive immune function learns a specific
cyberattack upon initial detection by the innate immune function. This prevents the
innate immune function from restarting the server application.

2.1. Innate immune function. The innate immune function has the ability to detect
cyberattacks on known and unknown vulnerabilities in a server application that cause
denial of service (DoS) and remote code execution (RCE). Upon detecting a cyberattack,
the innate immune function notifies the adaptive immune function of the detection of that

LCVE: Common Vulnerabilities and Exposures
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cyberattack. The innate immune function subsequently restarts the server application
process by creating a new server application process and terminating the compromised
server application process.

2.1.1. Detection of DoS attacks. A remote attacker may place a server application into a
DoS state. This type of DoS attack can be classified into three types:

e Exploiting a vulnerability in a server application that causes DoS (e.g., a cyberattack
on CVE-2016-2776 and CVE-2017-7651);

e Exhausting the internal resources of the server, such as memory, sockets, and threads
(e.g., an SYN flood attack and a slow read attack);

e Exhausting the network bandwidth of the server by continuously sending a flood of
requests or responses (e.g., a UDP-based amplification attack).

The first type of DoS attack can be detected by signature matching, response check,
and assertion check methods.

Signature matching methods, such as Snort and YARA, look for patterns of byte se-
quences specific to cyberattacks in network traffic. These methods detect and prevent
known attacks before a server application process loses its normal execution control, there-
by sustaining the service of the server application without a need to restart it. Signature
matching methods have difficulty detecting unknown attacks due to their lack of known
signatures. These unknown attacks can be detected by response check and/or assertion
check methods.

Response check methods look for the absence of a response, as DoS attacks force a server
application process not to send a response. These methods, however, cannot prevent
DoS attacks, because these attacks have been successfully completed at the time of their
detection.

Assertion check methods validate the contents of a request received by a server appli-
cation. These methods, however, cannot prevent DoS attacks, because assertion failure
aborts the execution of the server application.

Upon detecting the first type of DoS attack, the response and assertion checks require
that the server application be restarted to recover its service. To detect subsequent similar
attacks without restarting, the innate immune function must identify a request used by the
first attack and then pass the contents of that request to the adaptive immune function.

The second type of DoS attack is mitigated by security features, such as SYN cookies
and firewalls, built into operating systems. These attacks, however, are not learned by
the adaptive immune function, because these attacks are blocked by the operating system
before a server application receives a request.

The third type of DoS attack cannot be prevented, because the innate immune function
cannot stop attackers from sending a flood of requests or responses. This type of attack
can be mitigated by an external service, such as CDN and IP anycast on a commercial
cloud provider, or by a distributed DoS open threat signaling (DOTS) service [26] on
Internet service providers.

2.1.2. Detection of remote code execution attacks. An attacker remotely executes mali-
cious code by exploiting a vulnerability in a server process, compromising the most im-
portant properties of information security; i.e., confidentiality, integrity, and availability.
The process of such an RCE attack passes through three stages:

1) Hijacking program control of an application process by exploiting a vulnerability in
the application, such as stack buffer overflow;
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2) If necessary, bypassing data execution prevention (DEP) by invoking a critical mem-
ory function for security, such as the VirtualProtect function on Windows and the
mprotect function on Linux, via return-oriented programming (ROP);

3) Performing malicious operations, such as downloading and executing malware by exe-
cuting a small piece of code, called “shellcode”.

The first stage can be detected and prevented by a signature matching method (Section
2.1.1) and/or a vulnerability-based method. The latter method detects malicious modifi-
cation of critical data, such as a return address on a stack memory. An RCE attack on a
stack buffer overflow can be detected and prevented by stack canary [27,28] and SafeSEH
[29]. They require compiling the source code of the application to enable their feature. An
RCE attack on a heap buffer overflow can be mitigated by methods built into Windows
[30].

The second stage can be detected and prevented using a control flow integrity (CFI)
detection method [9], which permits only a legitimate control flow path of an application
during execution. CFI detection methods can be classified into two granularity detection
levels: fine-grained CFI [9] and coarse-grained CFI [10,11,13] detection methods.

The third stage can be detected and prevented using the signature matching method,
the CFI detection method, or a behavior-based method. The latter method prevents
behaviors specific to shellcode during execution by monitoring critical data structures,
such as the PE header of NTDLL.DLL in an application process [31], or Windows APIs
used in shellcode [32].

Upon detecting an RCE attack, all these methods, except for signature matching meth-
ods, raise an exception, resulting in the cessation of the server application. The innate
immune function subsequently restarts the server application to recover its service. To
detect subsequent similar attacks without restarting, the innate immune function identi-
fies a request used by the first attack and then passes the contents of that request to the
adaptive immune function.

2.2. Adaptive immune function. The adaptive immune function has the ability to
classify and learn a request using a supervised machine learning method, such as support
vector machines, neural networks, naive Bayes, and random forests. Although supervised
machine learning requires a wide variety of supervised data for learning before classifica-
tion, the adaptive immune function requires only one normal request as supervised data,
because additional supervised data are continuously supplied by the innate immune func-
tion while the server application is running. This continuous supply of supervised data
is the key mechanism of the adaptive immune function, resulting in adaptive learning
without the need for prior learning of attack requests, i.e., the more requests the adaptive
immune function learns, the more it will improve the accuracy of detection.

Supervised data include both normal and attack requests. An attack request is supplied
to a queue for attack requests just after the innate immune function detects a cyberattack,
whereas a normal request is supplied to a queue for normal requests just after the server
application sends a response corresponding to that normal request without error. The
maximum sizes of the two queues are parameters of the immunity-enhancing module, as
described in Section 4.3.

All the requests in the two queues are learned every time the innate immune function
restarts the server application rather than every time a normal request is received, because
the latter may impose a heavy load on the server application due to the large number of
normal requests in normal times.

A request is classified just after being received by the server application (i.e., before
it is detected by the innate immune function). If the request is classified as an attack,
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it is discarded or neutralized by the adaptive immune function before it breaches the
vulnerability (i.e., before it is detected by the innate immune function), thereby preventing
the innate immune function from restarting the server application. If the request is
classified as normal, it is passed to the server application.

3. Prototype for ISC BIND. The domain name system (DNS) is an essential com-
ponent of Internet infrastructure. The application most widely used by the DNS server
is Berkeley Internet name domain (BIND), provided by Internet systems consortium (IS-
C). Unfortunately, many critical vulnerabilities have been found in the application, with
some, such as CVE-2016-2776 and CVE-2017-3145, causing denial of service. Such vul-
nerabilities may be found in the near future.

In this study, a prototype was designed for [ISC BIND 9 to protect its vulnerability from
cyberattacks. The prototype was implemented as a dynamic link library (DLL) module for
Windows, IMMUNITY.DLL, which is equipped with both innate and adaptive immune
functions (Figure 2). Upon creation of a BIND process, the module is automatically
injected into the BIND process via a fix library, known as a shim, created by the Microsoft
Application Compatibility Toolkit [33]. Once the DLL file is injected into the address
space of the process, the D11Main function is called on the process. The D11Main function
is responsible for API hooking, which allows injection of new features into Windows APIs
by intercepting their calls. Thus, both the innate and adaptive immune functions are
incorporated into Windows APIs used by the BIND process. The APIs are hooked using
mhook [34], an inline hooking library for x86 and x64 platforms.

NAMED .EXE (BIND module) IMMUNITY .DLL

. KERNEL32 .DLL

T o ot || | Adepiveinmune functon
NTDLI .DLL = Other DLLs

F1GURE 2. Layout of a BIND process

3.1. Retrieval of a query and a response. The prototype requires a query and a
response to learn and classify a query. The BIND process receives a query and sends
a response using “I/O completion ports”, which provides a threading model for pro-
cessing asynchronous I/0 requests. Although the BIND process calls the WSARecvFrom
function to receive a query, this function is unable to receive any query. Rather, the
WSARecvFrom function sends an I/O request to a network device driver, with the I/O
request subsequently added to an I/O completion queue. The BIND process retrieves a
query from multiple receiving buffers using the GetQueuedCompletionStatus function in-
stead of the WSARecvFrom function. The prototype therefore retrieves a query by hooking
the GetQueuedCompletionStatus function.

The BIND process sends a response using the WSASendTo function. The second pa-
rameter of the WSASendTo function contains the contents of the response. The prototype
therefore retrieves the response by hooking the WSASendTo function.

The contents of each query are stored in a query table, allowing their retrieval. The
query table is indexed by the transaction ID (TID) of a query. A query corresponding
to the specific response is retrieved from the query table by specifying the TID of the
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response. This is based on the specification of the DNS protocol that the TID of a query
is identical to the TID of the response to that query [35]. However, when the BIND process
simultaneously receives several queries with the same TID, the contents of one query will
be overwritten by those of another in the query table, causing erroneous learning by the
adaptive immune function. The overwriting of a query is prevented by replacing its TID
with a cryptographic hash-based TID derived from the contents of that query. This hash-
based TID is truncated to the upper two bytes of the SHA256 hash value, as the size of
each TID filed is two bytes. The original contents of a query are stored in the query table,
the key to which is the hash-based TID of that query. The query with the hash-based TID
is passed to the BIND process. When the BIND process sends a response, the hash-based
TID of that response is restored to its original TID, which is retrieved from an original
query corresponding to that response using the query table.

3.2. Detection of DoS attacks. The first type of DoS attack exploits a vulnerability
in a server application (Section 2.1.1), preventing the server application from sending a
response. This type of DoS attack can therefore be detected by checking for the absence
of a response. However, a recursive request to DNS servers can result in the absence of
responses due to failures of authoritative DNS servers. Thus, the innate immune function
of the prototype may yield false positive results.

To prevent false positives, the innate immune function of the prototype uses assertion
check, which allows the innate immune function to detect the DoS attack. DoS attacks
on vulnerabilities in the BIND server application, such as CVE-2016-2776 and CVE-2016-
9444, cause an assertion failure owing to assertion check, which raises an exception by
calling the abort function. Because the exception can be regarded as an indicator of a
DoS attack, the innate immune function detects DoS attacks by handling the exception.
However, the innate immune function cannot identify a query used by the DoS attack, as
no information about that query is present in the context of an exception handler.

To identify a query used by the DoS attack, the innate immune function of the pro-
totype checks for the absence of a response using a thread pool timer by calling the
CreateThreadpoolTimer function, which executes a thread after a specified time. The
specified time represents the time-out period of a query, which was set to 10 sec. in
the prototype. A thread pool timer is created every time the BIND process receives
a query. After the specified time, the thread pool timer executes a notification thread
with a hash-based TID of a query. If the above exception occurs, the exception handler
suspends its own thread using the Sleep function, resulting in execution of the notifica-
tion thread. The notification thread recognizes a query with the hashed-based TID as
an attack. The attack query is retrieved from the query table and the adaptive immune
function is notified, followed by restarting of the BIND process.

If the BIND process sends a response before the notification thread is executed, the
innate immune function recognizes a query corresponding to that response as normal. The
normal query is retrieved from the query table by specifying the hash-based TID of that
response, followed by notification of the adaptive immune function. At the same time,
the innate immune function deletes the thread pool timer corresponding to the normal
query to prevent execution of the above notification thread.

3.3. Detection of remote code execution attacks. Methods of detection of cyber-
attacks on vulnerabilities that cause RCE can be classified into three categories (Section
2.1.1). The prototype uses SecondDEP [32], classified in the third category (i.e., shellcode
detection), because this method can detect more extensive and varied RCE attacks than
the other methods. SecondDEP detects and prevents shellcode execution by checking
Windows API calls. This is based on behavior, in which normal executable code calls
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Windows APIs in executable code areas into which executable files have been mapped. In
contrast, shellcode calls Windows APIs in data areas in which code execution is permitted.

SecondDEP cannot identify a query used by RCE attacks, as there is no information
on that query in the context of shellcode detection. To identify a query used by RCE
attacks upon their detection, the innate immune function of the prototype suspends its
own thread using the Sleep function, resulting in execution of the notification thread. The
notification thread identifies that query and notifies the adaptive immune function of it.

3.4. Classifier for an adaptive immune function. The adaptive immune function
uses LightGBM [36], a gradient boosting algorithm, to learn and classify queries. Our
previous work showed that the gradient boosting algorithm had the highest accuracy of
detection [37]. In addition, LightGBM is suitable for the prototype, because both the
prototype and LightGBM are implemented with C++4, enabling the adaptive immune
function to directly call Light GBM APIs for learning and classification. Other classifier
algorithms are discussed in Section 4.2, as they affect not only the accuracy of detection
but the speed of classification.

Classification of a query is performed by calling the Booster: :GetPredictRawData
member function of Light GBM. If the adaptive immune function classifies a query as an
attack, it neutralizes that query by zero-filling its contents. If not, it passes that query to
the BIND process. Queries are learned by repeatedly calling the Booster: : TrainOneIter
member function of Light GBM up to the maximum number of boosting iterations. All the
parameters of Light GBM are set by default, except for three: objective, min data in_
leaf, and metric. These parameters are set to “pbinary”, “2”, and “binary, auc”,
respectively.

In our previous prototypes [37,38], the fuzzy hash value [39] of a raw query was fed into
the classifier. In this prototype, however, the byte sequence of a raw query is fed into
the classifier to improve the accuracy of detection. The byte sequence is mapped to an
N-dimensional vector, in which each element is initialized with a value of 0 x 100. This
value indicates that there is no element at that position in the vector. If the length of the
query is greater than the number of dimensions, the adaptive immune function discards
the query by zero-filling it. The number of dimensions in the prototype is set at 1,000.

4. Performance Tests. The accuracy of detection and the overhead of the prototype
were evaluated using ISC BIND 9.7.0, which has vulnerabilities that can be exploited
using Metasploit Framework.

4.1. Performance test data and scenario. Each item of normal data is a DNS query
containing one of eight resource records (A, AAAA, NS, SOA, CNAME, TXT, PTR, and
MX), which are frequently queried to a cache server. In contrast, each item of attack data
is a query that causes denial of service by exploiting either CVE-2015-5477 [40] or CVE-
2016-2776 [41]. These vulnerabilities cause the BIND process to crash with an assertion
failure. Figure 3 represents the contents of each attack query, based on auxiliary modules
provided by Metasploit Framework [42,43]. All performance tests were conducted using
the following three steps.

1) The process of BIND was created as a cache server and received 80 normal queries: 8
types x10 queries.

2) Cyberattacks on the above vulnerabilities caused denial of service, resulting in learning
of the 80 normal queries and the attack query, followed by restarting of the BIND
process.

3) The BIND process continuously received normal and attack queries.
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® DNS header ® DNS header
> TID: 16-bit number » TID: 16-bit number
» Flags: 0x0100 » Flags: 0x0100
» Query count: 1 » Query count: 1
» Answer count: 0 » Answer count: 0
» Authority count: 0 » Authority count: 0
» Additional information count: 1 » Additional information count: 1
® Query record ® Query record
» Name: random string up to 42 characters » Name: random string up to 256 characters
» Type: TKEY » Type: A
» Class: IN » Class: IN
® Additional information record @ Additional information record
» Name: same as that of the query record » Name: random string of 250 characters
»  Type: TXT » Type: TSIG
» Class: IN *EE snip FEE
*EK gnip FHK » Data length: 252
» Data length: text length » Algorithm name: random string of 215 characters
» Text: random string up to 42 characters *EE snip FR*
(a) CVE-2015-5477 (b) CVE-2016-2776

FIGURE 3. Query data of attacks on (a) CVE-2015-5477 and (b) CVE-
2016-2776

The accuracy of detection and the overhead of the prototype were evaluated during
the third step. The test data from the third step consisted of 1,600 randomly generated
queries. Half of these queries were normal, consisting of 100 each of the above eight
resource records. The remaining half of these queries were attack queries, consisting of
400 each of the above two vulnerabilities. Each trial was performed by rearranging the
order of transmission of queries for the test data.

4.2. Comparison of classifier algorithms. The algorithm of the classifier will affect
the accuracy of detection and the speed of classification. Various algorithms were exam-
ined using scikit-learn, which provides a Python library for machine learning. Because
the prototype used LightGBM, Light GBM was used instead of the gradient boosting
algorithm of scikit-learn. All parameters of these algorithms were set by default. Light-
GBM parameters were the same as those described in Section 3.4 and were identical to
the default parameters of the gradient boosting algorithm provided by scikit-learn. The
algorithms were evaluated by simulating the performance tests described in Section 4.1.
Table 1 shows the specifications of the simulation machine.

TABLE 1. Specifications of a simulation machine

CPU AMD Opteron 6234 2.4 GHz
(2 processors x 12 cores)
Memory 32 GB
Benchmark score [44] 10,079
(Single thread score) (914)

Figure 4 shows box-and-whisker plots of the accuracy of detection and the speed of
classification of 100 trials for each algorithm, except for algorithms with low accuracy
(< 85%) or slow speed (time > 0.04 msec.). The five most accurate algorithms were
tree-based, with Light GBM being the most accurate and the third-fastest. The speeds of
the tree-based algorithms were almost the same, except for the random forests algorithm.
LightGBM is widely-used in many winning solutions of machine learning competitions
[45]. Therefore, Light GBM was the most suitable algorithm for the prototype.
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FIGURE 4. Comparison of 15 algorithms, each assessed over 100 trials (each
red cross indicates a mean value)

4.3. Size of learning queues. We previously reported that the size of the learning
queue affected the accuracy of detection [37,38]. To determine a suitable query size, the
accuracy of detection and the time required for learning were evaluated for 1-800 queries
using the simulating performance tests described in Section 4.1. The accuracy of detection
of each was > 99.91% when the queue size was set at greater than three, suggesting that
the prototype had to learn only three normal and three attack queries, much fewer than
the 450 queries required in our previous prototype. This improvement was achieved by
replacing the random forests algorithm with the gradient boosting algorithm. In addition,
the time required by each for learning was nearly equal to 50 msec. over all queue sizes,
suggesting that queue size had no effect on learning time.

4.4. Accuracy of detection. The accuracy of detection of the prototype using only
the innate immune function was evaluated. All attacks were detected, with no false
positives. However, the BIND process was restarted after every attack as there was no
adaptive immune function. The restart resulted in loss of cache in the BIND process
and temporal stop of the service. The adaptive immune function can play an important
role in preventing restarting by adaptively learning attack queries supplied by the innate
immune function.

The accuracy of detection of the prototype using both the innate and adaptive immune
functions was evaluated, with queue size set at 80. Figure 5 shows line plots of the average
true negative rate (TNR), true positive rate (TPR) and detection accuracy of 100 trials
of 1-40 queries. The initial TPR was quite low, as the adaptive immune function learned
only one query during the second step of the test scenario described in Section 4.1. Only
the first 10 queries markedly increased the accuracy of detection with large fluctuations.
The accuracy reached 99.9375% before the final query, number 1,600, was received. This
result indicated that the prototype adaptively detected and prevented attacks on the
BIND server application without the need for prior learning of attack queries.
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FicUrE 5. Average TNR, TPR, and accuracy as a function of the num-
ber of queries (each vertical black line indicates a range from minimum to
maximum accuracy, and each red bar indicates median accuracy)

Table 2 shows the statistics for the final TNR, TPR, and detection accuracy of 100
trials. The prototype showed no false positives and only one false negative in each trial.
At the final query in all trials, the queue for attack queries contained only two queries:
one an attack on CVE-2015-5477 and the other an attack on CVE-2016-2776. This result
indicated that only one learning of an attack enabled the adaptive immune function to
detect all attacks on the same vulnerability as that first attack.

TaBLE 2. Final TNR, TPR, and detection accuracy of 100 trials

Rate Mean + SD
Accuracy | 99.9375 + 0.0000

TNR | 100.0000 % 0.0000

TPR 99.8750 4+ 0.0000

To investigate detection performance specific to each vulnerability, attacks on each
vulnerability were evaluated, assuming that either CVE-2015-5477 or CVE-2016-2776
was fixed with security updates. Table 3 shows detection performances for CVE-2015-
5477, CVE-2016-2776, and both together. The detection performances were almost the
same, indicating that the prototype was not dependent on the type of vulnerability.

TABLE 3. TNR, TPR, and detection accuracy for cyberattacks on each
vulnerability alone and the two together

Rate Two CVEs CVE-2015-5477 | CVE-2016-2776
Accuracy | 99.9375 £ 0.0000 | 99.9994 4 0.0001 | 99.9375 % 0.0000

TNR 100.0000 £ 0.0000 | 99.9988 £ 0.0001 | 100.0000 =£ 0.0000

TPR 99.8750 £ 0.0000 | 99.9875 £ 0.0000 | 99.8750 £ 0.0000
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4.5. Overhead of the prototype. The immunity-enhancing module increases the over-
head of the BIND server application due to its having both innate and adaptive immune
functions, such as response check and classification. The overhead of the prototype was
evaluated by comparing round trip times (RTTs) of the BIND server with and without the
prototype. The RTT was measured by dnsperf, a collection of DNS server performance
testing tools [46]. The dnsperf command was executed on a DNS client connected to a
BIND server via a layer 2 Gigabit Ethernet switch. Table 4 shows the specifications of
the server machine.

TABLE 4. Specifications of a server machine

Intel Core 15-4300U 1.9 GHz
CPU (2 cores x 2 threads)
Memory 8 GB
Benchmark score [44] 3,741
(Single thread score) (1,569)

Table 5 shows the statistics of RT'Ts of 100,000 trials for the BIND process with and
without the prototype. The overhead of the prototype was 2.70% (+0.004 msec.), much
lower than the overhead of our previous prototype, which was 10.81% [38]. This reduction
was achieved by replacing a random forests classifier (ranger [47]) with a gradient boosting
classifier (Light GBM). Disabling the adaptive immune function alone showed that 80% of
the overhead was shared by the innate immune function and 20% by the adaptive immune
function. Further investigation of the overhead of the innate immune function indicated
that this function spent too much time detecting DoS attacks using a thread pool timer,
rather than detecting RCE attacks using Second DEP. The overhead of the innate immune
function may be reduced by improving detection of DoS attacks. The overhead of the
adaptive immune function may also be reduced by tuning the parameters of Light GBM
for classification, such as the maximum number of bins.

TABLE 5. RTTs of BIND 9 with/without a prototype (msec.)

Test cases Mean + SD
BIND 9 without a prototype | 0.148 + 0.002
BIND 9 with a prototype | 0.152 + 0.003

4.6. Cyberattacks on an adaptive immune function. Adaptive machine learning
was shown to have potential risks of security violations of integrity, availability, and
privacy [48]. Cyberattacks on adaptive machine learning can be taxonomically divided
into two types.

The first type of attack can result in an attack query being misclassified as a normal
query. This type of attack first sends various normal queries similar to the attack query,
and then sends an attack. Fortunately, even if the adaptive immune function misclassifies
an attack query as a normal query, it will be detected by the innate immune function,
allowing the adaptive immune function to learn the attack query and to detect subsequent
similar attacks.

The second type of attack can result in a normal query being misclassified as an attack
query. This type of attack first sends an attack query very similar to a normal query
before the adaptive immune function learns that normal query, resulting in denial of
normal queries similar to that attack query. Evaluation of the risk of the second type of
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misclassification resulted in false positives, but the more attack queries detected by the
innate immune function resulted in better accuracy of detection by the adaptive immune
function. Fortunately, no normal query was similar to attack queries of CVE-2015-5477
and CVE-2016-2776, because commonly used normal queries differ significantly from those
attack queries.

5. Conclusions. This paper has proposed a design of an immunity-enhancing module
that adaptively acquires immunity to known and unknown cyberattacks without learning
attack data in advance. The module consists of innate and adaptive immune functions.
The innate immune function detects known and unknown cyberattacks using Second DEP,
whereas the adaptive immune function learns and detects cyberattacks detected by the
innate immune function using Light GBM.

To evaluate the performance of the module, a prototype for ISC BIND was implement-
ed. The performance of the prototype was evaluated by attacking two vulnerabilities of
ISC BIND, CVE-2015-5477 and CVE-2016-2776. The accuracy of detection was 99.94%,
corresponding to a true negative rate of 100.0% and a true positive rate of 99.88%, and
the overhead of the prototype was 2.70%. The overhead may be reduced by tuning the
parameters of Light GBM.

Future work includes implementation and evaluation of the module for server applica-
tions of 10T, such as a message queueing telemetry transport (MQTT) broker, to enhance
the protection of IoT services.

REFERENCES

[1] A. L. Buczak and E. Guven, A survey of data mining and machine learning methods for cyber
security intrusion detection, IEEE Commun. Surv. Tutor., vol.18, no.2, pp.1153-1176, 2016.

[2] W. C. Lin et al., CANN: An intrusion detection system based on combining cluster centers and
nearest neighbors, Knowledge-Based Systems, vol.78, pp.13-21, 2017.

[3] R. A. R. Ashfaq et al., Fuzziness based semi-supervised learning approach for intrusion detection
system, Information Sciences, vol.378, pp.484-497, 2017.

[4] S. Mohammadi et al., Cyber intrusion detection by combined feature selection algorithm, Journal
of Information Security and Applications, vol.44, pp.80-88, 2019.

[5] M. Mohammadi et al., A fast anomaly detection system using probabilistic artificial immune algo-
rithm capable of learning new attacks, Fvolutionary Intelligence, vol.6, no.3, pp.135-156, 2014.

[6] S. A. Hofmeyr et al., Intrusion detection using sequences of system calls, Journal of Computer
Security, vol.6, no.3, pp.151-180, 1998.

[7] W. Haider et al., Detecting anomalous behavior in cloud servers by nested arc hidden SEMI-Markov
model with state summarization, IEEE Trans. Big Data, 2017.

[8] W. Khreich et al., Combining heterogeneous anomaly detectors for improved software security, Jour-
nal of Systems and Software, vol.137, pp.415-429, 2018.

[9] M. Abadi et al., Control-flow integrity principles, implementations, and applications, ACM Trans.
Information and System Security, vol.13, no.1, pp.1-40, 2009.

[10] 1. Fratrié, ROPGuard: Runtime Prevention of Return-Oriented Programming Attacks, Technical
Report, https://www.ieee.hr/_download /repository/ Ivan Fratric.pdf, 2012.

[11] V. Pappas et al. Transparent ROP exploit mitigation using indirect branch tracing, Proc. of the
22nd USENIX Security Symposium, pp.447-462, 2013.

[12] Y. Cheng et al., ROPecker: A generic and practical approach for defending against ROP attack,
Proc. of the 21st Annual Network and Distributed System Security Symposium, Internet Society,
pp-1-14, 2014.

[13] T. Okamoto, ROPGuard bypass prevention method using last branch recording facilities, IPSJ
Journal, vol.57, no.9, pp.1933-1943, 2016.

[14] M. Rahman et al., Origin-sensitive control flow integrity, Proc. of the 28th USENIX Security Sym-
posium, pp.195-211, 2019.

[15] A. Saidane et al., The design of a generic intrusion-tolerant architecture for web servers, IEEE Trans.
Dependable and Secure Computing, vol.6, no.1, pp.45-58, 2009.



150
[16]
[17]

[18]

[19]

T. OKAMOTO

P. Sousa et al., Highly available intrusion-tolerant services with proactive-reactive recovery, IEEFE
Trans. Parallel and Distributed Systems, vol.21, no.4, pp.452-465, 2010.

H. Seondong et al., Designing and implementing a diversity policy for intrusion-tolerant systems,
IEICE Trans. Information and Systems, vol.100, no.1, pp.118-129, 2017.

T. Okamoto, F. Sano, I. Winarno, Y. Hata and Y. Ishida, Implementation and evaluation of an
intrusion-resilient system for a DNS service, International Journal of Innovative Computing, Infor-
mation and Control, vol.13, no.5, pp.1735-1749, 2017.

J. Zheng et al., Security evaluation of a VM-based intrusion-tolerant system with pull-type patch
management, IEEE Proc. of the 19th International Symposium on High Assurance Systems Engi-
neering (HASE), pp.156-163, 2019.

1. Gashi et al., Fault tolerance via diversity for off-the-shelf products: A study with SQL database
servers, IEEE Trans. Dependable and Secure Computing, vol.4, no.4, pp.280-294, 2007.

M. Garcia et al., OS diversity for intrusion tolerance: Myth or reality?, The 41st International
Conference on Dependable Systems and Networks, pp.383-394, 2011.

M. Salehie et al., Self-adaptive software: Landscape and research challenges, ACM Trans. Au-
tonomous and Adaptive Systems, vol.4, no.2, pp.14:1-14:42, 2009.

Y. Al-Nashif et al., Multi-level intrusion detection system (ML-IDS), IEEE Proc. of 2008 Interna-
tional Conference on Autonomic Computing, pp.131-140, 2008.

M. Danforth, WCIS: A prototype for detecting zero-day attacks in web server requests, Proc. of the
25th Large Installation System Administration Conference (USENIX LISA’11), 2011.

A. ur R. Jaffar, M. Nadeem, M. Alenezi and Y. Javed, Using public vulnerabilities data to self-heal
security issues in software systems, ICIC Ezpress Letters, vol.13, no.7, pp.557-567, 2019.

R. Dobbins et al., Use Cases for DDoS Open Threat Signaling, Internet draft, IETF, https://
datatracker.ietf.org/doc/draft-ietf-DOTS-use-cases/, 2018.

C. Cowan et al., Stackguard: Automatic adaptive detection and prevention of buffer-overflow attacks,
Proc. of the 7Tth USENIX Security Symposium, pp.63-78, 1998.

N. Burow et al., SoK: Shining light on shadow stacks, Proc. of 2019 IEEE Symposium on Security
and Privacy, vol.1, pp.985-999, 2019.

Microsoft Developer Network, /SAFESEH (Image has Safe Exception Handlers), https://msdn.
microsoft.com/en-us/library /9a89h429.aspx, 2016.

Microsoft SWI, Software Defense: Mitigating Heap Corruption Vulnerabilities, https://blogs.technet.
microsoft.com/srd/2013/10/29/software-defense-mitigating-heap-corruption-vulnerabilities /, 2013.
Microsoft, Enhanced Mitigation Experience Toolkit 5.52 User Guide, http://download.microsoft.
com/download/B/F/B/BFBFDAB1-225C-4ECD-906F-C1DF61D7DB64/EMET%205.5.2%20User’s
%20Guide_J.pdf, 2016.

T. Okamoto, SecondDEP: Resilient computing that prevents shellcode execution in cyber-attacks,
Procedia Computer Science, vol.60, pp.691-669, 2015.

Windows Dev Center, Application Compatibility Toolkit (ACT), https://docs.microsoft.com/en-
US/windows/desktop/win7appqual/application-compatibility-toolkit—act-, 2018.

A. Marton, mhook, an API Hooking Library, v2.4, https://github.com/martona/mhook, 2014.

P. Mockapetris, RFC-1035 Domain Names — Implementation and Specification, Network Working
Group, 55, 1987.

G. Ke et al., Lightgbm: A highly efficient gradient boosting decision tree, Advances in Neural
Information Processing Systems, pp.3146-3154, 2017.

M. Tarao, Toward an artificial immune server against cyber attacks: Enhancement of protection
against DoS attacks, Procedia Computer Science, vol.96, pp.1137-1146, 2016.

T. Okamoto, Implementation and evaluation of an immunity-enhancing module for ISC BINDSY,
Procedia Computer Science, vol.126, pp.1405-1414, 2018.

J. Kornblum, Identifying almost identical files using context triggered piecewise hashing, Digital
Investigation, vol.3, pp.91-97, 2006.

M. McNally, CVE-2015-5477: An error in handling TKEY queries can cause named to exit with a
REQUIRE assertion failure, ISC Knowledge Base, https://kb.isc.org/article/AA-01272, 2015.

B. Conry, CVE-2016-2776: Assertion failure in buffer.c while building responses to a specifically
constructed request, ISC Knowledge Base, https://kb.isc.org/article/AA-01419, 2016.

J. Foote et al., BIND TKEY Query Denial of Service, https://github.com/rapid7/metasploit-
framework /blob/master /modules/auxiliary/dos/dns/bind _tkey.rb, 2015.

M. Rocha et al., BIND TKEY Query Denial of Service, https://github.com/rapid7/metasploit-
framework /blob/master /modules/auxiliary /dos/dns/bind_tsig.rb, 2017.



AN IMMUNITY-ENHANCING SECURITY MODULE FOR CLOUD SERVERS 151

[44] PassMark Software, CPU Benchmarks, https://www.cpubenchmark.net/cpu_list.php, 2019.

[45] Microsoft, Machine Learning Challenge Winning Solutions, Light GBM/Examples, GitHub, https://
github.com/microsoft /Light GBM /blob/master/examples/README.md, 2019.

[46] DNS-OARC, dnsperf, https://www.dns-oarc.net/tools/dnsperf, 2019.

[47) M. N. Wright, Ranger: A fast implementation of random forests for high dimensional data in C++
and R, Journal of Statistical Software, vol.77, no.1, pp.1-17, 2017.

[48] L. Huang et al., Adversarial machine learning, The 4th ACM Workshop on Security and Artificial
Intelligence, pp.43-58, 2011.



