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ABSTRACT. Deep neural networks (DNNs) were shown to be vulnerable to adversarial
examples which contain small perturbations. Attacks based on adversarial examples can
be classified as either white-box or black-box attacks. In the white box attacks the ad-
versary has complete knowledge about the model being attacked. Black-box attacks are
perfromed without any internal model information. As one of the black-box attacks on
computer vision, a method of generating adversarial examples using differential evolution
(DE) has been reported. DE is as a stochastic direct search method using population, and
enables to generate adversarial examples without having access to any information about
the network parameter values or their gradients. In this paper, we generate adversari-
al examples using JADE, which is a variant of adaptive DE. JADE employs a control
parameter adaptation mechanism and exhibits high accuracy and rapid convergence in
various optimization problems. The effectiveness of the generation of adversarial exam-
ples using JADE is examined and discussed by experiments of adversarial attacks against
state-of-the-art DNNs.
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1. Introduction. Recently, deep neural networks (DNNs) have shown outstanding per-
formance on a wide range of domains like computer vision and natural language processing
[1, 2, 3]. However, several studies have demonstrated that in image classification domain,
deep neural classification models are easily fooled by adversarial examples [4, 5, 6]. Ad-
versarial examples are inputs to a predictive machine learning model that are designed to
cause poor performance [7]. In computer vision, adversarial examples are generated by
adding a small amount of calculated noise to input images. Such modification can cause
the classifier to label the modified image as a completely different class.

The adversarial attacks can be broadly classified into either white-box or black-box
attacks. A white-box attack assumes the attacker has full knowledge and access to the
machine learning model, including its parameter values, architecture, training method.
However, such assumptions are clearly unrealistic. Instead, a black-box attack assumes
the attacker only has access to the inputs and outputs of the model, and knows nothing
about the underlying architecture or weights. Several black-box attacks that require no
internal knowledge about the target systems such as gradients, have also been proposed
8,9, 10].

Su et al. [11] have proposed a black-box attack against image classifiers named one-
pixel attack. The one-pixel attack uses differential evolution (DE) to find out which
pixel is to be changed and how. DE [12] is a simple yet effective evolutionary algorithm

DOTI: 10.24507 /ijicic.16.01.405

405



406 J. KUSHIDA, A. HARA AND T. TAKAHAMA

to solve continuous function optimization problems. In the one-pixel attack, adversarial
perturbation for image is encoded to candidate solution of DE. A population of candidate
solutions evolve by the application of the mutation and crossover. In [11], the experiments
showed that DE is actually possible to deceive image classifiers by changing a single pixel.
However, the adopted strategy is classical strategy: DE/rand/1 with no crossover.

Meanwhile, various improved DE methods have been proposed. Among them, JADE
[13] is a well-known effective DE variant which employs a control parameter adaptation
mechanism. JADE shows a superior performance comparing with classic DE in various
benchmark functions. Therefore, in this paper, we apply JADE for search of adversarial
perturbation and aim to speed up the generation of adversarial examples. The effec-
tiveness of applying JADE for adversarial attack is evaluated by experiments against
state-of-the-art DNN models. This paper is organized as follows. In the next section, we
briefly describe algorithm of differential evolution and JADE. Section 3 introduces the
adversarial attack using adaptive DE. Section 4 gives the experimental results of adver-
sarial attack using JADE and standard DE against three DNNs. Finally, conclusions and
future works are summarized in Section 5.

2. Differential Evolution and JADE.

2.1. Differential evolution. DE is one of the variants of evolutionary algorithms that
use a population. An individual of DE is represented by vector & = (x1,2s,...,2p).
There are some variants of DE that have been proposed. The variants are denoted as
DE/base/num/cross, where “base” denotes the manner of constructing the mutant vec-
tor, “num” denotes the number of difference vectors, and “cross” indicates crossover
method. The pseudo-code of DE/rand/1/- is presented in Algorithm 1, where Giax
is the maximum number of generations. In the initialization phase, NP individuals
P = {x;,i = 1,2,..., NP} are randomly generated in a given search space. Each in-
dividual contains D genes as decision variables.

Algorithm 1: DE/rand/1/-
1 Set scaling factor F' and crossover rate CR;

2 Set the generation number g = 0;

3 Initialize a population P = {1, ..., xyp} randomly;
4 for g =1 to G. do

5 for 7 =1 to NP do
6
7
8
9

(xy,, @y, T,,) = randomly selected from P s.t. 1y # ro # r3 # i;
v; = T, + F(x,, — x,;);
u; = trial vector generated from @x; and wv; by a crossover;

10 ‘ TV = uy;
11 else
12 L T = x;;

13 P={xv i=1,2,..., NP};

At each generation, DE creates a mutant vector v; = (v, V9, ..., v;p) for each indi-
vidual @; (called a target vector) in the current population. Some well-known mutation
operations are listed as follows.
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“rand/1”:
v, =z, + F(x,, — z,,) (1)
“best /17:
Vi = Tpest + (20, — T0) (2)
“current-to-best /1”:
v, = T; + F(Tpest — ;) + F(x,, — T)y) (3)

In the above equations, the indices r1, ro and r3 are distinct integers uniformly chosen
from the set {1,2,..., NP} \ {i}. @pes is the best individual in the current population.
The parameter F' is called the scaling factor, which amplifies the difference vectors.

After mutation operation, DE performs crossover operator between target vector and
mutant vector, and generates a trial vector w; = (u;1, U2, - .., u;p). There are two mostly
used crossover operators used in DE: binomial crossover (bin) and exponential crossover
(exp). In this paper, we use binomial crossover as follows:

T rand;(0,1) < CR or j = jrand
" x;; otherwise

(4)

where rand;(0, 1) is a uniform random number in (0, 1) for jth dimension, j,uma € (1, D)
is an integer randomly chosen from 1 to D. CR is the crossover rate within the range
(0,1) and presents the probability of generating genes for a trial vector u; from a mutant
vector v;. If the jth element u;; of the trial vector u; is infeasible (i.e., out of the boundary
[L;,U;]), it is reset as follows:

w — 2L] — Tyjj (Uj < LJ) (5>
" QUJ — Tyj (Uj > U])

The selection operator is performed to select a better one from the target vector a; and
its corresponding trial vector u; according to their fitness values f(-). For example, if we
have a minimization problem, the selected vector is given by

new _ {uz if f(u;) < f(a;)

T .
t x; otherwise

(6)
and " is used as a target vector in the next generation. The algorithm is terminated
when the maximum number of function evaluations is reached.

2.2. JADE. In general, the performance of DE is significantly influenced by the con-
trol parameter settings. The optimal control parameter settings depend on not only the
characteristics of the objective function but the state of the search progress. Therefore,
several adaptive variants of DE have been proposed, and JADE [13] has excellent perfor-
mance among them. JADE modifies classic DE in three aspects: a new mutation strategy
(current-to-pbest/1), an external archive, and adaptive control of the F'; CR parameter
values.

The mutation strategy used in JADE is current-to-pbest/1. It is a variant of the
current-to-best /1 strategy where the greediness is adjustable using a parameter p.

v, = x; + F(Tppest — ;) + Fi(x, — 1) (7)

where @y is a vector chosen randomly from the top p% individuals. F; is the mutation
factor that is associated with x;.

In order to maintain diversity, JADE uses an optional, external archive. Target vectors
x; which were worse than the trial vectors u; are preserved in archive A. When the
archive is used, ,, in Equation (7) is selected from P U A. The size of the archive is set
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to the same as that of the population (i.e., |A| = |P|). Whenever the size of the archive
exceeds |A|, randomly selected elements are deleted for the newly inserted elements.
Each individual x; is associated with its own CR; and F; and generates trial vectors
according to these values. These parameters are set probabilistically at the beginning
of each generation using adaptive control parameters jcg, pp according to the following
equations:
CR; = randn;(pcg,0.1) (8)
F; = randc;(pup,0.1) (9)
where randn;(ucg, 0.1) denotes a value generated by a normal distribution of mean pcp
and standard deviation 0.1. randc;(ug,0.1) denotes a value generated by a Cauchy dis-
tribution with location parameter pr and scale parameter 0.1. In case a value for CR;
outside of [0, 1] is generated, it is replaced by the limit value (0 or 1) closest to the gen-
erated value. When F; > 1, F; is truncated to 1, and when F; < 0, Equation (9) is
repeatedly applied to try to generate a valid value. At the beginning of the search, pcg
and pp are both initialized to 0.5, and adapted during the search as follows.
In selection operation, CR; and F; values that succeed in generating a trial vector u;
which is better than the target vector x; are recorded as Scr, Sr. At the end of the
generation, pcog, pp are updated as:

per = (1 —¢) - per + ¢ - meana(Scg) (10)
pr = (1—c)- ppr+ c-meany(Sr) (11)

where, ¢ is a positive constant between 0 and 1. meany(-) is an arithmetic mean, and
meany(-) is a Lehmer mean which is computed as:

— ZFGSF F2
ZFESF F

3. Adversarial Attack Using Adaptive DE.

meanL(SF) (12)

3.1. Problem description. Generating adversarial examples in an image classification
task can be formalized as an optimization problem with constraints. We assume an input
image can be represented by an n-dimensional vector where each scalar element represents
one pixel. Let f be the target image classifier which receives n-dimensional inputs and
x = (z1,...,x,) be the original natural image classified with predicted label ¢ according
to f. The probability of & belonging to the class ¢ is fi(x). A vector e(x) = (eq,...,e,)
represents a specific additive perturbation with respect to a specific natural image x. It
alters the label of @ from t to the target class t,4, where t # t,4, with the modification
strength less than maximum modification limitation L. The goal of adversarial attacks
is to find the optimized solution e(x)* for Equation (13) or Equation (14). In the case of
targeted attack, the target class .4, is designated beforehand, and it can be defined as
the following optimization problem:

maximize f; , (x +e(x))
e()” (13)
subject to  |le(x)|| < L

Regarding non-targeted attack, the objective function can be defined as the minimization
of the soft label for the outputted class fi(x):
minimize  fi(x + e(x))
e(x)*
subject to  |le(x)|| < L

(14)
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In the few-pixel attack using DE [11], the constraint changes to ||le(x)||o < d where d
is a small number of dimensions (d = 1 for the one-pixel attack). That is, the number of
nonzero elements of e(x) (i.e., the number of pixels changed) must be less than or equal
to d.

3.2. Applying adaptive DE to finding adversarial perturbation. To perform one-
pixel modification, it is necessary to specify the coordinates to be changed and its RGB
values. Figure 1 shows an example of one-pixel modification. In this image, one pixel
surrounded by a red circle has changed yellow.

Original image

Perturbed image

Coordinates: (15, 19)
RGB Values: (240, 250, 10)

‘ Perturbation

“cat” 98% confidence “dog” 71% confidence

FIGURE 1. An example of one-pixel perturbation

In this paper, we use an adaptive DE variant named JADE to perform adversary attack.
To this end, it is necessary to encode the perturbation into an array. Accordingly, the
one-pixel modification X is defined as a 5-component tuple:

X = (:I:7 y7 T?.g? b) (15)

where x, y are the coordinates of the pixel, and r, g, b are the red, green, and blue values
from 0 to 255. The range of z, y are determined by the size of input images. In addition,
multiple perturbations can simply be a concatenation of these tuples.

In JADE, these perturbations are treated as individuals which evolve by the genetic
operators; therefore, initial perturbations are generated randomly in the search space. In
this paper, we use the same coding as the original paper [11]. Assuming a d-pixel attack,
each individual is represented as real-valued vector of size D = d x 5 as shown in Figure 2.
In standard DE variants, the length of individual vector does not change even if mutation
and crossover are executed. Naturally, the solution generated by JADE always satisfies
the constraint ||e(x)||o < d. The elements of the vector will be followed back into integers
only when computing image perturbations.

Xy
coordinate RGB values
| ]

X y r g b X y r g b
3.2 6.1 120.2 80.1 220.3 10.2 12.3 10.4 120.1 21.9

one-pixel perturbation

FIGURE 2. Perturbation coding to apply JADE

The fitness function design depends on the type of adversarial attack. The focus of
this paper is the non-targeted attack where the purpose is to perturb the original image
originally classified correctly by the classifier to cause misclassification. Due to this, when
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evaluating individuals, the perturbed image by the individual is input to the classifier,
and the value of the probabilistic label (confidence) of the correct class is taken as the
fitness. The goal of the non-targeted attack using JADE is to minimize this fitness value.

4. Experiments.

4.1. Setup. In this section, in order to confirm that JADE is useful in generation of
adversarial examples, we conduct adversarial attack using JADE and standard DEs and
compare their performances. We trained three types of common networks: LeNet [14],
ResNet [15], and DenseNet [16] as target image classifiers on cifar-10 dataset [17]. The
cifar-10 dataset consists of 60000 32 x 32 colour images split into 10 classes, with 6000
images per class. There are 50000 training images and 10000 test images. Table 1 shows
the number of parameters of the networks and accuracy for cifar-10.

TABLE 1. The number of parameters of the networks and accuracy for cifar-10

name #parameters | accuracy
LeNet 62006 0.7488
ResNet 470218 0.9231
DenseNet 850606 0.9467

For each model, 200 images are randomly selected from correctly classified test images,
and non-targeted one and three pixel attacks using JADE and DE are performed. The
strategies of DE are DE/rand/1/bin and DE/best/1/bin with F' = 0.5 and CR = 0.9.
In JADE and both DEs, the population size NP is set to 100. The parameter values of
JADE are selected as ¢ = 0.1 and p = 5%, as suggested in [13]. The maximum number
of generation G, is set to 200.

As a result of each attack, we calculate attack success rate and difference of confi-
dence cg45. The success rate is defined as the percentage of adversarial images that were
classified by the target DNN as a class different from true class (i.e., the probability of
misclassification). cqg is the difference between the true class probability of the original
image and the probability of it in the adversarial image. This measure indicates how
much perturbations have decreased the probability of the true class.

4.2. Results. Table 2 and Table 3 show success rate and cqz in each adversarial attack
respectively. For all models, JADE achieves almost the highest success rate and cgp.
It can be seen that the success rate of the attack improves as the number of pixels
increases, and also the difference in performance between JADE and both standard DEs
becomes greater. In other words, the larger the search space, the more effectively JADE’s
parameter adaptation works. Besides, the model with more parameters has a higher
robustness against adversarial attacks.

Next, the change of fitness values of JADE in DenseNet is shown in Figure 3. When
the attack is successful, the fitness decreases from the early stage of the search, and it

TABLE 2. Success rates of conducting one-pixel attack and three-pixel at-
tack on each model

LeNet ResNet DenseNet
#pixels = 1|#pixels = 3|#pixels = 1|#pixels = 3|#pixels = 1|#pixels = 3
JADE 53.5% 91.0% 32.5% 77.5% 28.0% 69.5%
DE/rand/1/bin|  49.0% 88.0% 26.0% 73.0% 25.5% 64.5%
DE/best/1/bin 53.0% 79.0% 32.0% 63.0% 27.5% 56.0%
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TABLE 3. cgp of conducting one-pixel attack and three-pixel attack on each model

LeNet ResNet DenseNet
#pixels = 1|#pixels = 3|#pixels = 1|#pixels = 3|#pixels = 1|#pixels = 3
JADE 0.430 0.765 0.308 0.760 0.253 0.677
DE/rand/1/bin 0.392 0.734 0.258 0.717 0.234 0.627
DE/best/1/bin| 0.431 0.636 0.305 0.613 0.250 0.535
1.0- - 1.0 —
“:\\_ L
0.8 | 0.8
-
gos- | r S os-
g 1 g
§ 0 l 1 gos
0.2- 0.2 -
A
0.0- L_ ; . . ; . 0.0- . . ! . . .
© 25 S0 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
generation generation
(a) Successful attack (b) Unsuccessful attack

F1GURE 3. The change of fitness values of 5 random images in three-pixel
attack using JADE against DenseNet
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FIGURE 4. The change of fitness values of 10 independent trials for a certain
one image in three-pixel attack against DenseNet

is finally close to 0. Meanwhile, in the case of failure, the decreasing speed of fitness is
slow. Also, for some images, the fitness hardly decreases and it seems that population
gets trapped in a local optimum. Furthermore, in order to compare the convergence speed
of JADE and DE/rand/1/bin, the results of 10 independent trials for a certain one image
in three-pixel attack against DenseNet are shown in Figure 4. The results clearly show
that the convergence speed of JADE is faster and more stable than DE/rand/1/bin.
Figure 5 and Figure 6 show the change of ur and pop values in three-pixel attack against
DenseNet. Figure 5 shows the parameters for successful attack, and Figure 6 shows the
case for failure. Regardless of the success or failure of the attack, the parameter adaptation
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F1GURE 6. The change of ur and peg values of 5 random failure images
using JADE against DenseNet

of JADE showed almost the same result in all models. g tends to increase progressively,
and pcgr conversely tends to decrease. Since a low CR is suitable, it is thought that the
dependency between variables is small in the search for perturbations. Low values of CR
produce exploratory moves parallel to a small number of search space axes [18], which
means that JADE independently searched for perturbation positions and colors on the
image.

Figure 7 shows sample images of one and three-pixel attack using JADE. These images
are the case when the attack is successful, and the output labels are different from the
true class label of the input respectively. However, since these are generated by non-
targeted attack, it cannot be designated in advance to which class the perturbation image
is misclassified.

5. Conclusion. Most machine learning models have been shown susceptible to adversar-
ial examples resulting from adding small perturbations to inputs. In image classification
task, adversarial attack with DE enables to generate adversarial examples by perturbing
only few pixels. In this study, we used adaptive DE, called JADE, for generating adver-
sarial examples and tried to speed up the search of perturbations. In order to confirm
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True: deer True: horse True: ship True: cat
Predicted: frog Predicted: dog Predicted: airplane Predicted: dog

FIGURE 7. Sample images of one and three-pixel attack using JADE

the difference in the performance of generation of adversarial examples using JADE and
DE, we performed one and three-pixel attack on three different DNN models on cifar-10
dataset. From the experimental results we confirmed that the attack success rate of JADE
outperformed two standard DEs (DE/rand/1/bin and DE/best/1/bin) in all models. In
addition, it was confirmed that ur and peg of JADE showed similar behavior regardless
of the success or failure of the attack. Since pogp becomes smaller and pp becomes larger,
a global exploratory search is considered to be effective to find adversarial perturbation.

In the future, we will intend to conduct fitness landscape analysis in the search of
adversarial example, and then verify the effectiveness of the adversarial attack using
other evolutionary algorithms such as particle swarm optimization or real-coded genetic
algorithm.
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