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ABSTRACT. The big data comprises a relatively developing area of study which is due
to numerous facts gathered daily and the wishes to be helpful information for use in our
day by day life. One of the most crucial pre-processing of data is the feature selection.
This paper proposes a hybrid technique that combines two algorithms namely Gray Wolf
Optimization (GWO) and Particle Swarm Optimization (PSO), the manner that lets in
the critical functions to be recognized and lets the insignificant ones and the complexity to
be erased. This enables the obligations of the gadget learning classification while making
use of training to the classifier with the data set. A hybrid approach is primarily based
on metaheuristics swarm intelligence algorithms, which simulate the gray wolf’s man-
agement and hunting manner in nature and PSO which people are moving impacted by
their local best positions and by the global best position. This hybridization is to acquire
the balance between exploitation and exploration. We used seventeen datasets from UCI
machine gaining knowledge of repository within the experiments and comparisons results
to assess the effectiveness and quality of the GWOPSO.

Keywords: Feature selection, Hybrid optimization, Grey wolf optimizer, Metaheuris-
tics, Particle swarm optimizer

1. Introduction. The many facts are one of the quickest growing fields resulting from a
lot of data gathered everyday and the need for information to be used in our everyday life
[1]. Numerous fields are making use of massive information like machine learning and data
mining. One of the most important parts in pre-processing of data is feature selection. It
presents a way of detecting the essential features and disposing of irrelevant ones from the
dataset [2]. The goals of feature selection are the reduction of data dimensions, improve-
ment of prediction quality, and a good understanding of data for various machine learning
applications [3]. Data representations frequently use many redundant features in real ap-
plications, which means that certain features can take on the role of others and delete
unimportant features. Also, the interdependence features have an impact on output and
contain important information that will be unknown if any of them are removed [4]. In
the classification of machine learning, knowing the optimal subset of features that reduce
a large number of features that are usually introduced in data sets is a very important
step before classification processing. The following are categorizations of feature selection
techniques: filter, wrapper, and hybrid-based [5]. The filter-based selection techniques
or conventional feature selection techniques have the merit of being fast and having the
ability to scale up to large datasets [6]. For situations where wrappers can overfit such as
Information Gain (IG), the process of selecting features is often more useful [7]. Informa-
tion Gain (IG) calculates how much “information” a feature gives us about the category
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and is useful in reducing the number of features in the classification model that give us
more accuracy [8,9]. Wrapper feature selection strategies minimize search space for select-
ing features. As part of their select feature, the wrappers include the learning algorithm.
Wrappers have greater precision, but it takes much longer. Exploitation and exportation
are two concepts of the algorithm for optimization. Exportation is a technique to explore
the promising points of search space. On the other hand, exploitation is the method of
using a promising point in search space to locate a more promising point. For quality
search algorithms, balancing between exploration and exploitation is essential. A hybrid
strategy is used where it blends two or more algorithms to achieve the balance between
exploitation and exportation.

In this paper, we suggest a hybrid approach combining two algorithms namely Gray
Wolf Optimization (GWO) and Particle Swarm Optimization (PSO). The Gray Wolf
Optimizer (GWO) is stimulated by the hierarchy of leadership and the hunting behavior
of gray wolves in nature, with gray wolves preferring to live in a pack [10,11]. They are
among themselves divided into more than one leader alpha, beta, omega, and delta. The
alphas have the highest level in the hierarchy and are considered to be the most dominating
among the group hence responsible for making decisions about hunting, sleeping, wake-
up time and so on. The next level in the leadership hierarchy is beta. The betas are
subordinate wolves who support the alpha in making decisions or other pack activities.
The beta wolf is the group’s best member who, if one of the alpha wolves passes away or
becomes very old, can become the alpha. Next comes the omega that performs the role of
scapegoat. Omega wolves should always submit to all the other dominant wolves. They
are the last wolves which are allowed to eat. In some instances if a wolf is not alpha, beta,
or omega, it is called delta. Alphas and betas must be submitted to by delta wolves, but
they dominate the omega. The Particle Swarm Optimization (PSO) is an evolutionary
computing technique that Kennedy and Eberhart suggested in 1995. PSO is motivated
by social behaviors such as flocking birds and fish schooling; it works by having a (swarm)
population of candidate solutions (particles) [12,13]. In the search space, these particles
are moved around. The particle movements are controlled by their best-known space
location and the best-known position of the whole swarm. These will come to direct the
swarm’s movement as improved locations are discovered. The process is repeated several
times to achieve a satisfactory solution (hopefully). For example, one can determine the
value of a subset of attributes after performing the search task by considering the feature’s
individual predictive ability along with the degree of redundancy between them.

To take advantage of the social behavior of PSO along with the hunting behavior of
GWO, we combine both the powerful optimizers proposed in our hybrid approach. The
suggested hybrid approach divides the population into two groups. The first group follows
the GWO procedures while the second group follows the PSO procedures.

The rest of the paper is organized as follows. Section 2 presents related work for opti-
mization algorithms GWO and PSO. The proposed hybrid algorithm GWOPSO describes
in Section 3. Section 4 presents hybrid algorithm for feature selection. The experimental
results are discussed in Section 5. Finally, conclusions are stated in Section 6.

2. Related Work. The idea of optimization occurs in several areas of research such as
engineering, health, agriculture, computer science, and feature selection. In optimization,
according to the problem description, the main goal is to settle the optimal solution to
a particular problem from the available solutions. Also, there is a goal in optimization
algorithms for maximizing the classification performance (minimizing classification error
rate) and minimizing the number of features. In [14] framework for big data analyzing and
extracting has been introduced, and in this framework for training multilayer perception
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GWO has been used. Recently, researchers have gained further interest in the field of
hybrid metaheuristics [15]. GWO is a new optimization algorithm that simulates the
gray wolf’s leadership and hunting manner in nature [16]. GWO is characterized by
flexibility, deprivation-free mechanism, simplicity, and local optima avoidance [17]. Due
to that, it has been used in many fields in the last years such as DC motors control [18],
feature subset selection, economic emission dispatch problems [19], Radial Basis Function
(RBF) networks training, and image registration [20]. In this paper data set has been
hashed into buckets, then used the GWO+BRNN for finding the top 5 best candidates in
each bucket and escalate them to the next level in our tournament [21]. GWO algorithm
is also used to train the MLP network [22]. In the field of optimization, PSO has also
gained a lot of popularity. To solve various optimization issues: artificial neural network
training, fuzzy system control, and others, PSO has been successfully applied [23]. In the
mechanical domain, PSO has been applied successfully to optimizing various solutions
like optimal weight design of a gear train, process parameter optimization in casting,
simultaneous optimization of design and machining tolerances, and machine scheduling
problem [24].

3. GWOPSO.

1. Gray wolf optimization. GWO is an algorithm based on the population. GWO
begins with an initial random population and they are modified during iteration. GWO
maintains a balance between exploitation and exportation. Exportation is a technique
to explore the search space for promising points in search space. Exploitation is the
technique of using the promising point to find the best promising point in search space.
Every person is considered a solution to the problem being solved. Then, for all solutions,
the fitness function is calculated. Therefore, alpha, beta, and gamma can be identified.
The following equations are used to update the position of each wolf.

B:‘ﬁ-?t —?t)(
X(t+1) = 4.7 (1)

where t refers to the current iteration, Z and 8 are coefficient vectors, X is the preposi-

tion, and ? is the position of the gray wolf. The vectors are calculated using the following
equation:

A=2d.-7-7

=27 (2)
where a is linearly decreased from 2 to 0 over the course of iterations and r; and ry are
a random number in the range [0,1]. The whole pack reaches the prey and attack by

updating the position based on the best locations of the alpha, beta, and delta using the
following equations:

B-|a. % |
5 -[a%-%|
i |2 x - X| 8
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= = = =
X3:X5—A3*D5 (4)
- = =
Xi+Xo+ X
X(t4+1)= 2 32 3 (5)

3.2. Particle swarm optimization. In the PSO algorithm, it mimics the intelligence
of bird swarms in nature that the potential solutions called particles are flown in the
search space for problems. The change of position of a particle is known as velocity. With
time, the particles change their position. During the flight, the velocity of a particle is
stochastically accelerated to its previous best position and the following equations are
used to update it to a neighborhood best solution. A particle ¢ is defined by its position
vector, x;, and its velocity vector, v;

v =0 + erry (Phest] + xf) 4 cara (Goest — 27 ) (©)
I,];H_l _ xf + UZI_C"FI (7)

3.3. Hybrid GWOPSO. The procedure for finding global optima is a challenging task.
Two efficient algorithms are given for the proposed approach. The first algorithm is the
PSO in which individuals move guided by their global best positions and by their local best
position. The global best position is the best position found by the population whereas the
local best position refers to the best position found so far by an individual. This social
behavior allows individuals in PSO to converge to their global target. This behavior
is influenced by nature’s flock of birds and fish school. Due to its strength, reliability,
simplicity, we selected PSO for our proposed hybrid optimizer. Gray wolf optimizers is
the second optimizer in our proposed hybrid approach. GWO is a swarm-based meta-
heuristic optimizer that imitates the gray wolves’ social hierarchy and foraging behavior.
Individuals moved in the GWO are influenced by the position of the three leader’s alpha,
beta, and delta.

The optimization process begins with a random group of individuals in our hybrid
optimizer. Such people have been repressing candidate solutions to the problem being
solved. The fitness function is then determined for all individuals for each iteration and
the first three leaders are labeled as alpha, beta, and delta. As mentioned above, the
population is then divided equally into two classes where the first group follows the GWO
procedures while the second group follows the PSO procedures. By doing so, the search
space is highly searched for promising points and these points are exploited using the
powerful PSO and GWO.

The pseudo-code of the GWOPSO algorithm is presented in Figure 1.

The flow-chart for proposed GWOPSO algorithm is presented in Figure 2.

4. GWOPSO for Feature Selection. The problem with feature selection is so unique
because the search space is limited to two binary values 0 and 1. It is, therefore, we
used sigmoid equations which are necessary to modify the traditional optimizer to work
properly for this problem. In this section, a hybrid approach based on metaheuristics
swarm intelligence algorithms (GWOPO) begins with an initial random vector population
to select features than fitness function, KNN has been used for training instances and
clarify how it has been used to features that are at pick.

4.1. Binary modified hybrid GWOPSO optimizer. To convert the values of stan-
dard optimizer from continuous to binary values, we modified equation (GWOPSO) to
the following equations.
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Initialization
Initialize A, a, C

Randomly initialize an agent of n wolf’s positions 2 [1,0].
Based on the fitness function the «; 3; ¢ solutions.

While (¢ < Max_iter)
if t % 2==0:

Calculate fitness using (GWO)

Else

Calculate fitness using (PSO)

Update A, a, C

Evaluate all particles using the objective function
Update the positions of the three best agents «; 3; 0

t=t+1
end while

FiGURE 1. Pseudo-code of the GWOPSO algorithm

Initialization of the
population

.

NO

t<Clmax

Yes

t=t+1

Calculate fitness using Calculate fitness using
PSO GWO
s Update Aand C :
s Return
v
Calculate Xa , Xp and X3
End

F1GURE 2. Flow-chart for proposed GWOPSO algorithm
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2t { 1 if sigmoid (z4') > 0.5

(8)

0 otherwise

where ycf;rl is the updated binary position of the dimension d at iteration ¢ and xffl is

the position for current dimension.

1

The role of the sigmoid is to scale the continuous values of the optimizer between 0 and
1. Then using the conditions we decide whether the value of the dimension will be zero
or one.

4.2. Solution representation. For the problem of feature selection, the solution may be
defined as a vector of features with size h where h is the number of features. Each element
in that vector is a binary value (0 or 1) where 0 means the feature is not included and 1
means that feature is included. Thus, the hybrid GWOPSO begins with an initial random
vector population holding randomly selected features. After all, using high exploitation
and exploration capabilities of the hybrid GWOPSO will be able to find the feature’s
most optimal subset.

4.3. Fitness function. The functions of fitness are used to measure the quality of each
solution of the hybrid GWOPSO. The fitness function depends on two factors: the clas-
sification error rate and the number of selected features. The solutions are considered to
be good if it selected a subset of features that give a lower classification error rate and a
lower number of selected features. To evaluate the quality of each solution, the following
equation is used:

s
Fitness = hyE(D) + hg% (10)
where E(D) is the classification error rate for each dimension, s is the number of selected
features, f is the number of features and h € [0, 1], hy = 1 — hy are constants that manage
the importance of classification error rate and the number of the selected features.

4.4. K-nearest neighbor. Wrapped feature selection approaches include a learning al-
gorithm for determining the performance of the selected function sub-set. In this work,
we use the K-Nearest Neighbor (KNN) [25]. KNN is a supervised learning algorithm.
It is commonly used because it is simple and easy to implement. To decide the class of
the unknown instance, KNN uses training instances instead of building models. In our
experiments, KNN is used for classification tasks to measure the quality of the selected
subset of features.

5. Experimental Results and Discussion. To evaluate our proposed algorithm, the
hybrid GWOPSO tested against seventeen datasets from the UCI machine learning repos-
itory in the experiments and comparisons results. The datasets were selected to have
various numbers of attributes and instances as representatives of various kinds of issues
that the proposed technique will be tested on.

5.1. Configurations. Each dataset is divided into three randomly equal-size parts: train-
ing, validation, and test. Training is used to train KNN classifier during the learning
phase. Validation is used to test. When calculating the fitness function for a specific
solution, KNN configuration parameters are shown in Table 2.
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TABLE 1. Datasets description

Dataset name | Number of rows | Number of columns (Features)
Hepatitis 155 10
Tonosphere 351 33
Vertebral 310 6
Seeds 210 7
Parkinsons 195 22
Australian 690 14
Blood 744 4
Breast_Cancer 699 8
Diabetes 768 8
Lymphography 148 18
Parkinson 195 22
Ring 7400 20
Titanic 2201 3
Towonorm 7400 20
WaveformEW 5000 21
Tic-Tac-Toe 985 9
M-of-n 1324 10

TABLE 2. Experiments configuration

Parameter Value
No of search agents 10
No of iterations 80
Problem dimension Number of features in the data
Search domain 0,1]
No. repetitions of runs 20
Inertia factor of PSO 0.1
« parameter in the fitness function 0.99
[ parameter in the fitness function 0.01

5.2. Evaluation metrics.

e Classification Average Error shows the accuracy of the classifier given the set
of selected functions. The classification average error can be calculated in Equation

(11).
1 1w
AvgPref = i JZI N ZlMatch (Cy, Ly) (11)

where M is the number of the runs to the algorithm, N number of test points, C;
the classifier output label for the point #, L; is the class label for data point ¢, and
Match is the function that calculates if two inputs are matched or not.

e Best Fitness is the minimum fitness function obtained for a certain optimizer at the
distinct M operations of an optimization algorithm. It represents the most optimistic
solution acquired and can be formulated in Equation (12).

best = min}’, g (12)

where M is the number of running the optimization algorithm to select the feature
subset, and ¢’ is the optimal solution resulted from a run number <.
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e Worst Fitness is the worst solution to run an optimization algorithm for M times
among the best solutions found. Worst is the negative solution that can be formu-
lated in Equation (13).

worst = Maz g (13)
where M is the number of running the optimization algorithm to select the feature
subset and ¢’ is the optimal solution resulted from a run number 3.

e Average Fitness size represents the average size of the selected features to the

total number of features. This measure can be formulated as in Equation (14).
M A

_ _ 1 size (gL)

AVG Selection Size = — —

M 4 D

=1

(14)

where M is the number of times to run the optimization algorithm to select the
feature subset, g’ is the optimal solution resulted from run number i, size(z) is the
number of on values for the vector x, and D is the number of features in the original
dataset.

e Mean is the average of solutions acquired from running an optimization algorithm
for different M running. Mean represents the average value that can be formulated
in a given Equation (15).

1
1 )
Mean = — g N 15

where M is the number of times to run the optimization algorithm to select the
feature subset, and g’ is the optimal solution resulted from a run number i.

e Std (Standard Deviation) reflects the variance of the best solutions obtained to
run a stochastic optimizer for different runs. Std can be used as an indication of
optimizer stability and robustness, whereas Std being smaller this means that the
optimizer always converges to the same solution; while larger values for Std mean
many random results are formulated as in Equation (16).

Std = \/Ml_ ! Z (¢i — Mean)® (16)

where M is the number of times to run the optimization algorithm to select the
feature subset, ¢| is the optimal solution resulted from run number ¢, and Mean is
the average defined in Equation (15).

5.3. Experimental results and analysis. Seven tests were conducted to determine the
efficiency of the GWOPSO hybrid optimizer as shown below. Experimental 1, Table 3
shows the average error of various algorithms. The lower error shows that the optimizer
has selected the correct set of features that can train the classifier and make a lower error
on the hidden test data. Table 3 and Figure 3 reveal that the lowest error is achieved
by the proposed hybrid GWOPSO, which proved to be highly exploring the search space,
and this is due to GWO’s high exploration and very good exploitation achieved by PSO.
The proposed hybrid GWOPSO then uses PSO intensity to push towards the optimal
solution which includes the optimal subset of features that can mitigate the error.

Table 4 shows the average features selected by different optimizers in Experimental
2. While choosing a lower number of features indicates that the selection of features
performed by the optimizer is more important to maintain a lower error. For this reason,
for the classification error, the fitness function assigns a higher weight and still encourages
optimizer to select the lower number of features. The proposed hybrid GWOPSO, as
shown in the table, has been able to find the least number of channels for twelve datasets
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TABLE 3. Average error result from different optimizers in our experiments

Dataset GWOPSO | GWO | PSO | WAO | MVO | FFA GA
Hepatitis 0.192 0.203 0.219 | 0.211 | 0.215 | 0.227 | 0.211
Ionosphere 0.165 0.138 | 0.194 | 0.189 | 0.155 | 0.188 | 0.155
Vertebral 0.223 0.217 0.225 | 0.215 | 0.238 | 0.223 | 0.221
Seeds 0.202 0.254 0.248 | 0.248 | 0.228 | 0.237 | 0.251
Parkinsons 0.144 0.153 0.163 | 0.160 | 0.129 | 0.181 | 0.141
Australian 0.160 0.15334 | 0.157 | 0.161 | 0.164 | 0.181 | 0.149
Blood 0.254 0.254 | 0.238 | 0.252 | 0.248 | 0.259 | 0.268
Breast_Cancer 0.0489 0.0497 | 0.0489 | 0.0463 | 0.0472 | 0.0498 | 0.047
Diabetes 0.2535 0.256 0.258 | 0.270 0.25 0.275 | 0.266
Lymphography 3.889 4.387 5.248 | 5.0204 | 4.738 | 4.4897 | 4.6775
Parkinson 0.16 0.138 [0.1692 | 0.163 | 0.156 | 0.166 | 0.1538
Ring 0.1635 0.1635 | 0.1673 | 0.1751 | 0.1656 | 0.1602 | 0.1675
Titanic 0.2117 0.2117 | 0.2212 | 0.2316 | 0.2147 | 0.2319 | 0.239
Towonorm 0.0488 0.0428 | 0.0695 | 0.0344 | 0.0523 | 0.0482 | 0.0610
WaveformEW 0.4139 0.4285 |0.4364 | 0.3963 | 0.4147 | 0.4366 | 0.4352
Tic-Tac-Toe 0.247 0.274 0.289 | 0.287 | 0.3003 | 0.2927 | 0.2677
M-of-n 0.1619 0.03764 | 0.1324 | 0.0798 | 0.1079 | 0.1070 | 0.1383

Average Error

0.5
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0.2
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FIGURE 3. (color online) Average error for different optimizers

and has given them the lower classification. Nonetheless, for the remaining datasets,
hybrid GWOPSO selects a higher number of features, retaining the smallest error for
that dataset.

The numerical findings were listed in Tables 5, 6, 7, and 8 for Experimental 3, Ex-
perimental 4, Experimental 5, and Experimental 6 (Average, Best, Worst, and Standard
Deviation). The proposed hybrid GWOPSO has been able to find the lowest fitness qual-
ity for all datasets as shown in Table 5, which means it can pick the optimum subset of
features that offer the lowest classification error. The reason for this high performance
is the cooperative nature of the individuals of the hybrid GWOPSO which utilized the
proposed hybrid GWOPSO in highly exploration of the search space for different solu-
tions. Moreover, the proposed hybrid GWOPSO enhanced the exploitation process due
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TABLE 4. Average select size result from different optimizers in our experiments

Dataset GWOPSO | GWO | PSO | WAO MVO | FFA GA
Hepatitis 0.3800 0.4000 | 0.4800 | 0.5000 | 0.5200 | 0.4600 | 0.3600
Tonosphere 0.0909 0.2909 | 0.4242 | 0.2909 | 0.4303 | 0.4540 | 0.4000
Vertebral 0.4000 0.5000 | 0.7000 | 0.4660 | 0.4330 | 0.5000 | 0.5330
Seeds 0.4280 0.5420 | 0.5140 | 0.6280 | 0.6000 | 0.5710 | 0.5140
Parkinsons 0.2090 0.3909 | 0.5000 | 0.3900 | 0.4900 | 0.4090 | 0.4720
Australian 0.3143 0.4571 | 0.5286 | 0.7143 | 0.5714 | 0.5714 | 0.4857
Blood 0.5000 0.6000 | 0.6500 | 0.6000 | 0.6500 | 0.5500 | 0.6000
Breast_Cancer 0.5250 0.5000 | 0.6500 | 0.6750 | 0.6500 | 0.5750 | 0.5250
Diabetes 0.4000 0.5250 | 0.5250 | 0.6500 | 0.5250 | 0.7250 | 0.5750
Lymphography 0.1889 0.2778 | 0.5333 | 0.4667 | 0.5333 | 0.5222 | 0.5333
Parkinson 0.2818 0.3818 | 0.4818 | 0.3909 | 0.4909 | 0.4909 | 0.4545
Ring 0.3100 0.3400 | 0.3200 | 0.3100 | 0.3400 | 0.3400 | 0.3400
Titanic 0.7333 0.8667 | 0.8000 | 0.8000 | 0.8000 | 0.7333 | 0.8667
Towonorm 0.6800 0.8500 | 0.6700 | 0.9700 | 0.7900 | 0.8300 | 0.8100
WaveformEW 0.4381 0.5143 | 0.6857 | 0.8762 | 0.6000 | 0.6000 | 0.6095
Tic-Tac-Toe 0.2470 0.2746 | 0.2897 | 0.2878 | 0.3003 | 0.2928 | 0.2677
M-of-n 0.1619 0.0376 | 0.1324 | 0.0798 | 0.1079 | 0.1070 | 0.1383

TABLE 5. Average fitness result from different optimizers in our experiments

Dataset GWOPSO | GWO | PSO | WAO | MVO | FFA GA
Hepatitis 0.1920 0.2030 | 0.2190 | 0.2110 | 0.2150 | 0.2270 | 0.2110
Ionosphere 0.1650 0.1380 | 0.1940 | 0.1890 | 0.1550 | 0.1880 | 0.1555
Vertebral 0.2230 0.2170 | 0.2250 | 0.2150 | 0.2380 | 0.2230 | 0.2210
Seeds 0.2020 0.2540 | 0.2480 | 0.2480 | 0.2280 | 0.2370 | 0.2510
Parkinsons 0.1440 0.1530 | 0.1630 | 0.1600 | 0.1290 | 0.1810 | 0.1410
Australian 0.1609 0.1530 | 0.1574 | 0.1617 | 0.1643 | 0.1817 | 0.1496
Blood 0.2546 0.2546 | 0.2386 | 0.2522 | 0.2490 | 0.2594 | 0.2683
Breast_Cancer 0.0489 0.0498 | 0.0489 | 0.0464 | 0.0472 | 0.0498 | 0.0472
Diabetes 0.2539 0.2563 | 0.2586 | 0.2703 | 0.2500 | 0.2758 | 0.2664
Lymphography 3.8898 4.3878 | 5.2490 | 5.0204 | 4.7388 | 4.4898 | 4.6776
Parkinson 0.1600 0.1385 | 0.1692 | 0.1631 | 0.1569 | 0.1662 | 0.1538
Ring 0.1636 0.1635 | 0.1673 | 0.1752 | 0.1657 | 0.1603 | 0.1676
Titanic 0.2117 0.2117 | 0.2213 | 0.2317 | 0.2147 | 0.2319 | 0.2390
Towonorm 0.0488 0.0428 | 0.0696 | 0.0345 | 0.0524 | 0.0483 | 0.0611
WaveformEW 0.4139 0.4286 | 0.4365 | 0.3964 | 0.4148 | 0.4366 | 0.4353
Tic-Tac-Toe 0.2470 0.2790 | 0.2897 | 0.2878 | 0.3003 | 0.2928 | 0.2677
M-of-n 0.1619 0.1079 | 0.1324 | 0.0798 | 0.1079 | 0.1070 | 0.1383

to the strength of PSO. As per Table 6, hybrid GWOPSO was able to find the best fitness
compared to other optimizers throughout runs. On the other hand, in Table 7, hybrid
GWOPSO did not find the worst fitness compared to other optimizers which prove the
capability of the proposed hybrid GWOPSO to find the optimal subset of features. The
standard deviation of the statistical results is illustrated in Table 8. Relative to other
optimizers, the proposed hybrid GWOPSO has the lowest standard deviation as shown
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TABLE 6. Best fitness result from different optimizers in our experiments

Dataset GWOPSO | GWO | PSO | WAO | MVO | FFA GA
Hepatitis 0.2073 0.2267 | 0.2073 | 0.2267 | 0.2073 | 0.2073 | 0.2073
Ionosphere 0.1708 0.1370 | 0.1793 | 0.1962 | 0.1285 | 0.1878 | 0.1031
Vertebral 0.3752 0.3752 | 0.3463 | 0.3656 | 0.3752 | 0.3463 | 0.3656
Seeds 0.2414 0.2414 | 0.2697 | 0.2839 | 0.2273 | 0.2697 | 0.2414
Parkinsons 0.1057 0.1057 | 0.1514 | 0.1057 | 0.0905 | 0.1666 | 0.0752
Australian 0.2977 0.2977 | 0.3063 | 0.3020 | 0.3063 | 0.2934 | 0.3020
Blood 0.8357 0.8357 | 0.8278 | 0.8278 | 0.8278 | 0.8596 | 0.8556
Breast_Cancer 0.3210 0.3295 | 0.3295 | 0.3252 | 0.3252 | 0.3210 | 0.3252
Diabetes 0.5404 0.5636 | 0.5520 | 0.5598 | 0.5482 | 0.5559 | 0.5559
Lymphography 2.5331 2.8563 | 3.8868 | 3.7453 | 3.8261 | 1.4219 | 3.4221
Parkinson 0.1362 0.1209 | 0.1514 | 0.1209 | 0.1057 | 0.1362 | 0.1514
Ring 1.3812 1.3849 | 1.3909 | 1.4009 | 1.3844 | 1.3849 | 1.3917
Titanic 2.6358 2.6358 | 2.6358 | 2.6358 | 2.6358 | 2.6371 | 2.6520
Towonorm 1.2765 1.2672 | 1.2813 | 1.2624 | 1.2805 | 1.2668 | 1.2849
WaveformEW 1.1759 1.2015 | 1.1890 | 1.1622 | 1.1640 | 1.2139 | 1.1818
Tic-Tac-Toe 0.5821 0.5821 | 0.5821 | 0.5945 | 0.5852 | 0.6287 | 0.5852
M-of-n 0.4622 0.4779 | 0.5632 | 0.4802 | 0.4622 | 0.4779 | 0.5565

TABLE 7. Worst fitness result from different optimizers in our experiments

Dataset GWOPSO | GWO | PSO | WAO | MVO | FFA GA
Hepatitis 0.2655 0.3044 | 0.3238 | 0.3238 | 0.3238 | 0.3432 | 0.2849
Tonosphere 0.2216 0.2047 | 0.2893 | 0.2639 | 0.2301 | 0.2639 | 0.2978
Vertebral 0.4232 0.3944 | 0.4425 | 0.4040 | 0.5001 | 0.4713 | 0.4136
Seeds 0.3404 0.4394 | 0.4394 | 0.4111 | 0.4394 | 0.4394 | 0.4394
Parkinsons 0.2428 0.2428 [ 0.2732 | 0.2732 | 0.2428 | 0.2580 | 0.2580
Australian 0.3451 0.3408 | 0.3365 | 0.3365 | 0.3365 | 0.4355 | 0.3192
Blood 0.9192 0.9192 | 0.9192 | 0.9192 | 0.9192 | 0.9192 | 0.9630
Breast_Cancer 0.3677 0.3592 | 0.3465 | 0.3465 | 0.3550 | 0.3677 | 0.3592
Diabetes 0.6023 0.5791 | 0.5946 | 0.6178 | 0.5868 | 0.6255 | 0.5984
Lymphography 6.2506 5.0384 | 7.3012 | 7.1598 | 6.6547 | 5.9274 | 6.2304
Parkinson 0.2580 0.2275 | 0.2885 | 0.2580 | 0.2580 | 0.2580 | 0.2428
Ring 1.4061 1.4105 | 1.4057 | 1.4142 | 1.4130 | 1.3989 | 1.4158
Titanic 2.6776 2.6776 | 2.6898 | 2.7519 | 2.6871 | 2.7519 | 2.7614
Towonorm 1.2897 1.2829 | 1.3130 | 1.2736 | 1.2925 | 1.2957 | 1.3118
WaveformEW 1.2288 1.2502 | 1.2448 | 1.2116 | 1.2597 | 1.2448 | 1.2769
Tic-Tac-Toe 0.6318 0.6845 | 0.6907 | 0.7031 | 0.7062 | 0.6876 | 0.6597
M-of-n 0.5902 0.5722 | 0.5812 | 0.5767 | 0.5834 | 0.6508 | 0.6328

in the table. The lowest standard deviation shows the robustness and reliability of the
proposed GWOPSO model.

As shown by the experiments resulting in previous tables, we can see that, in twelve
datasets, the hybrid GWOPSO can achieve data compactness, this is due to high explo-
ration and exploitation of hybrid GWOPSO that enables it to find the best subset of
features, ensuring its robustness and reliability in classification tasks in different datasets
in finding the optimal subset of features.
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TABLE 8. Standard deviation fitness result from different optimizers in our experiments

Dataset GWOPSO | GWO | PSO | WAO | MVO | FFA GA
Hepatitis 0.0213 0.0325 | 0.0443 | 0.0398 | 0.0475 | 0.0524 | 0.0319
Ionosphere 0.0236 0.0283 | 0.0465 | 0.0277 | 0.0376 | 0.0299 | 0.0726
Vertebral 0.0192 0.0086 | 0.0356 | 0.0172 | 0.0511 | 0.0476 | 0.0185
Seeds 0.0392 0.0815 | 0.0759 | 0.0613 | 0.0794 | 0.0660 | 0.0791
Parkinsons 0.0501 0.0517 | 0.0477 | 0.0743 | 0.0576 | 0.0394 | 0.0765
Australian 0.0180 0.0189 | 0.0123 | 0.0141 | 0.0137 | 0.0541 | 0.0078
Blood 0.0338 0.0338 | 0.0361 | 0.0368 | 0.0403 | 0.0276 | 0.0446
Breast_Cancer 0.0172 0.0126 | 0.0064 | 0.0076 | 0.0116 | 0.0187 | 0.0131
Diabetes 0.0238 0.0075 | 0.0190 | 0.0241 | 0.0145 | 0.0316 | 0.0167
Lymphography 1.5429 0.8804 | 1.3669 | 1.4496 | 1.1322 | 1.7625 | 1.0943
Parkinson 0.0477 0.0444 | 0.0560 | 0.0501 | 0.0632 | 0.0486 | 0.0388
Ring 0.0093 0.0099 | 0.0059 | 0.0051 | 0.0108 | 0.0061 | 0.0102
Titanic 0.0154 0.0154 | 0.0229 | 0.0451 | 0.0187 | 0.0448 | 0.0446
Towonorm 0.0067 0.0065 | 0.0126 | 0.0043 | 0.0044 | 0.0107 | 0.0108
WaveformEW 0.0248 0.0206 | 0.0230 | 0.0191 | 0.0425 | 0.0114 | 0.0418
Tic-Tac-Toe 0.0213 0.0396 | 0.0419 | 0.0460 | 0.0434 | 0.0241 | 0.0275
M-of-n 0.0541 0.0408 | 0.0068 | 0.0437 | 0.0491 | 0.0721 | 0.0311

TABLE 9. Processing time (by second) result from different optimizers in
our experiments

Hepatitis | Ionosphere Vertebral Seeds | Parkinsons
GWOPSO 2.834 3.252 4.584 2.905 3.408
GWO 3.378 5.083 3.6 3.071 3.351
PSO 3.06 4.655 3.679 3.916 3.13
WAO 2.867 3.988 2.415 2.507 3.083
MVO 3.321 4.595 3.372 3.684 3.254
FFA 4.088 4.672 3.928 3.008 3.342
GA 3.334 4.608 3.079 3.166 2.602
Australian Blood Breast Cancer | M-of-n | Diabetes
GWOPSO 4.473 4.483 4.287 8.151 6.448
GWO 5.742 4.206 5.594 8.161 4.769
PSO 5.656 2.684 5.906 7.643 5.454
WAO 5.828 4.602 5.278 7.782 6.327
MVO 5.64 5.738 5.95 8.132 6.657
FFA 5.847 6.052 5.49 7.717 7.312
GA 5.436 5.618 5.728 7.169 5.79
Lymphographic|Parkinson| Ring |Titanic/Towonorm|WaveformEW/|Tic-Tac-Toe
GWOPSO 3.067 3.798 77.112| 7.047 155.321 48.402 5.454
GWO 3.612 4.344 |101.007| 11.821 127.76 48.051 6.946
PSO 4.759 3.145 75.948 | 10.383 137.247 54.455 6.934
WAO 3.269 4.253 68.716 | 11.236 | 722.644 64.347 6.437
MVO 3.785 3.601 76.058 | 13.286 157.921 49.838 6.7
FFA 4.335 3.599 76.924 | 12.849 164.873 52.057 6.967
GA 3.599 3.709 |49.956| 7.558 95.268 32.995 6.642
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6. Conclusion and Future Work. In conclusion, this paper had a proposal issued
concerning hybrid GWOPSO optimizer that is used with the KNN classifier to pick the
optimum subset of features for the problem of choice of features. To achieve the balance
between exploitation and exportation, we hybridize two optimizers by using the GWO,
increase and achieve higher quest space exploration for more iterations. Exploration for
a greater number of iterations is accomplished in the exponential method and PSO is
used to increase population diversity and maximize production efficiency. To assess the
quality and efficacy of the proposed solution, seventeen UCI machine learning database
datasets are used to calculate the consistency of the proposed optimizer and to ensure that
the proposed solution is reliable and stable. For prospects, we plan to test the proposed
solution on more complex datasets. More so, a parallel variant of the GWOPSO model
will be availed.
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