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Abstract. Retinal vascular patterns are unique and individual. They provide highly
secure and correct identity authentication. In this study, we exploit an image alignment

approach based on a geometric invariant, which is the area spanned by feature-point

triplets for personal identification. First, we located the optic disc by using a projection of
the vascular structure in vascular extraction and extracted feature points that are bifurca-

tions of a retinal blood vessel in the vicinity of the optic disc as the landmarks. Delaunay

triangulation is then applied to the extracted feature points. The absolute invariant is
then derived by taking the ratio of successive triangular area patches. The alignment is

achieved by establishing correspondences between feature points after a conformal sort-

ing step based on a derived set of absolute affine invariants. The affine transformation
parameters can then be calculated by the corresponding vertices of the most robust neigh-

bouring triangle of both inquiry and reference images. The optic disc localization results
successfully located 95.95% in six widely used retinal image databases. The algorithm of

vascular extraction, applied on the DRIVE database, provided an average accuracy of ap-

proximately 94.1%. The best accuracy and sensitivity for neighbouring triangle matching
obtained were 99.90% and 87.66%, respectively.

Keywords: Vessel extraction, Optic disc localization, Retinal identification, Delaunay
triangle, Neighbour area ratio

1. Introduction. Personal authentication can be implemented in security systems using
a variety of approaches, such as personal identification numbers (PINs), passwords, cards
and keys [1]. Biometrics use basic physiological properties involving characteristic biolog-
ical patterns of individuals, such as the face, fingerprint, iris, retina, hand geometry and
DNA [2]. The significant features of these characteristics for reliable identification are the
variations of selected characteristics across the human population and the uniqueness of
these characteristics for each individual [3]. The retina is the most suitable target with
respect to these attributes.

The retina contains many blood vessels, the patterns of which in each retina are unique,
complex and complicated to modify without surgery [4]. Retinal blood vessel patterns
have a high entropy in their structure [5]; even identical twins do not have a similar pattern
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[6]. This feature is what makes them unique. Thus, retinal blood vessel recognition is one
of the most accurate and reliable human identification techniques.
Prior research efforts regarding retinal image identification have only confirmed that

this area remains a challenging problem [7]. First, the structure of the retina is a curved
surface. A weak perspective of the image is made by an uncalibrated camera, with non-
linear deformation potentially occurring. Second, image overlap may be small due to
significant viewpoint changes between images. Third, retinal images with uneven illumi-
nation in large fields make the extraction of retinal vessels particularly difficult. Fourth,
changes in both the structure and colour of the retina in diseased eyes, a process that
can take substantial time to occur, may adversely affect retinal images. The effect of
eye-movement can be accomplished by localizing the optic disc, a process that is always
conducted by the debasement of the identification performance. In some papers, the
problem of the extracted features and comparing with other images is handled, but these
solutions induce time-consuming processes on the algorithm.
Regarding human identification based on retinal images, several papers are available

in the literature. These works can be classified according to their methodology for the
extracted features and strategies of matching and identification. We also classify the prior
studies into two main groups based on method: non-vascular- and vascular-based feature
extraction approaches.
The non-vascular method uses other characteristics of retinal images, such as optic

disc features or image organization properties. Zahedi et al. [8] presented a retinal image
processing method for human identification using Radon transform. This method located
an optic disc and used the Radon transform for extracting characteristics around an
optic disc. The result was tested on DRIVE and achieved 100% accuracy. However,
disadvantages are a non-various dataset that has only 40 images and that this method
cannot tolerate an affine transform. Chihaoui et al. [9] presented a human identification
system based on detection of the optical disc ring in retinal images. There are three stages
of the method: image enhancement, optical disc detection and interest ring extraction
around the centre of the optical disc; the identification performance reached 99.89% on
the VARIA database, and the approach was relatively easy to implement. However,
this method cannot tolerate an affine transform. Human recognition based on retinal
images and using a similarity function was used by Dehghani et al. [10]. The features
were extracted by corner detection algorithms and a Harris algorithm. The matching
process, with a similarity function being used to match the elements in a dataset and
test images, was tested on DRIVE and STARE. The advantages of this algorithm are its
success rate and that it uses several images. However, it lacks the perspective of images
that apply tests on the same picture, and it uses a rather complicated algorithm. The
typical limitations of personal identification based on non-vascular are their sensitivity
to noise, eye-movement, non-uniform illumination and different illumination conditions.
However, the feature extraction in these algorithms has low computational complexity.
In another group, vascular-based methods operate with vessel characteristics by extract-

ing minutiae points from blood vessel patterns. This approach requires a correct blood
vessel pattern with straight vessels only, which becomes challenging due to the appearance
of lesions in retinal images. Köse and İkibaş [11] presented a personal identification system
using retinal vasculature and that calculates the similarity of measurement and compares
a vascular structure of a sample and stored images. This method leads to highly accurate
matching. However, it cannot tolerate affine transform and involves a substantial amount
of time for comparison of vascular patterns. Lajevardi et al. [12] addressed the retina veri-
fication system based on biometric graph matching, which considered an automatic retinal
verification framework. The vascular skeleton could be extracted by a spatial and graphic
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matching method. The advantages of this approach included the avoidance of translation,
nonlinear distortion and small rotation. Nevertheless, it provided computations in a small
dataset and non-statistical model. Ortega et al. [13] performed retinal verification using
a feature point-based biometric pattern. It was an authentication system, and a set of
feature points was expressed as landmarks in the retinal vascular tree. The advantage
of this approach was its relatively low calculation time (155 milliseconds). However, it
had lower dataset images and could not tolerate an affine transformation. Nazari and
Pourghassem [14] introduced a novel retina-based human identification algorithm based
on a geometrical shapes feature using a hierarchical structure of matching. This method
used circling regions of a blood vessel, and STARE and DRIVE retinal image datasets
were used for the algorithmic decisions. The results achieved an accuracy of 100%, and
the average time process was 3.216 seconds. However, this method involved complicated
computation. Deng et al. [15] outlined a retinal fundus image registration approach via
vascular structure graph matching that detected and was represented as global correspon-
dences between vascular bifurcations; the method showed matching images by using the
iterative closest point. The advantages of this approach are threefold: global optimum
solution, invariant to linear geometric transformations and dense local feature descriptors
are not required. The main limitations of the proposed method are consistent vascular
segments and a lack of various databases. Although they were still time consuming and
sensitive to the strengthening of engaged methods to extract the thin vessels, the previ-
ously published paper of this group reached a high performance compared to the previous
group of works.

In this paper, we study retinal image identification following vessel-based methods.
We are motivated by the fact that a retinal image may contain some unique geometric
structures within its vascular patterns. The similarity problem is not merely a one-to-one
mapping issue between point sets but rather a pairwise matching problem between two
separate vascular patterns. A short overview of our approach is represented in Figure
1, illustrating how the blood vessels in retinal feature extraction are analyzed at first
to generate a triangle mesh. Then, graph matching-based identification is completed to
accomplish both alignments of the retinal images.

There are three significant contributions of this research. First, we described that the
retinal structure problem could be efficiently solved within the combination method of
both invariant transformation and geometric techniques. Second, we proposed a simple
algorithm for optic disc localization and blood vessel extraction. The method involves a
short time calculation and provides highly accurate results. Third, we proposed neigh-
bouring triangular ratio matching to eliminate incorrect correspondences from matching
results.

This paper is organized as follows. Blood vessel extraction is shown in Section 2.1.
The optic disc localization algorithm is presented in Section 2.2. The triangular matching
method is thoroughly discussed in Section 2.3. Results are provided in Section 3. A
discussion and conclusion are given in Sections 4 and 5, respectively.

2. Methodology. This section presents the feature extraction methods used in our reti-
nal identification algorithm, including blood vessel extraction and optic disc localization.
The technique described is simple, rapid and highly accurate. A detailed process of the
above two algorithms is illustrated in Figure 1. There are three steps of retina identifi-
cation (Figure 1). First, blood vessel extraction is a process for acquiring a blood vessel
from a retinal image by using a convolutional matrix. Second, optic disc localization in-
volves using blood vessels and the intensity of light around the optic disc in order for it to
function as a reference point. Third, triangular matching chooses the strongest triangular
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Figure 1. Hierarchical retinal image feature extraction and identification
algorithm proposed in this paper. From left to right is the process of fea-
ture extraction, including blood vessel extraction, optic disc localization,
vascular bifurcations extraction and triangular mesh representation. From
right to left represents the two-step identification procedure, consisting of
triangular ratio matching and distance mapping error.

mesh for transformation parameter calculation, and a similarity of pair retinal image by
distance mapping error is used.

2.1. Blood vessel extraction. Retinal blood vessels are the most unique and apparent
anatomical structures in the retina [16]. Various methods have been introduced for retinal
vessel extraction, such as multiscale-based techniques [17], mathematical morphological
methods [18], matched filtering approaches [19], neural network-based procedures [20],
vessel tracking or tracing-based methodologies [21] and model-based techniques [22].
The proposed method uses mathematical morphological methods. Our blood vessel

extraction algorithm modifies the convolutional matrix from the ultrafast optic disc lo-
calization using projection of image features [23] to increase the ability not only to locate
the optic disc but also to extract the retinal blood vessels. Our technique comprises two
phases. In the first phase, the proposed framework performs pre-processing to extract the
vertical and horizontal edges of the blood vessel. In the second phase, the method com-
bines vertical and horizontal edges of the blood vessel, and some morphological operations
are used to reduce small isolated pixels.
In the first phase, the retinal image in Figure 2(a), which is an original retinal image,

is initially resized to a height of 565 pixels, and the width of the image has a maintained
aspect ratio. Second, the green channel of the retinal image is chosen for blood vessel
extraction. The blood vessel in the green channel has high luminance compared to both
red and blue channels. Then, the noise in the green channel is removed by a Gaussian
filter, as illustrated in Figure 2(b). After that, a contrast-limited adaptive histogram
equalizer (CLAHE) is used to improve the contrast of the blood vessel and reduce noise
amplification (Figure 2(c)). Finally, the vertical edges (VE) in Figure 2(d) are created by
using the convolution matrix A in Equation (1) with the input image, and the horizontal
edges (HE) in Figure 2(e) are created by using the convolution of a transpose of matrix
A with the input image. Both vertical and horizontal vessel edges were used in the next
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step to create a blood vessel and locate the optic disc.
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Figure 2. Output images at different stages in the first phase: a) original,
b) green channel with Gaussian filter, c) CLAHE, d) vertical edges, and e)
horizontal edges

(a) (b) (c) (d) (e)

Figure 3. Output images at different stages in the second phase: a) com-
bination of vertical and horizontal edge image, (b) thresholding, (c) binary
image with mask, (d) skeleton of retinal blood vessel without cleaning, and
(e) skeleton of retinal blood vessel with cleaning

In the second phase, the process of vascular extraction used a combination of vertical
and horizontal vessel edges (as shown in Figure 3(a)) created by matrix A. It had been
converted to a binary image by using the Otsu thresholding method. Small objects in
a binary image were removed by morphological operations (Figure 3(b)). The circular
boundary of a binary image was removed by using the mask with an AND operation
(Figure 3(c)). Then, the skeleton of the retinal blood vessel in Figure 3(d) was created by
the skeletonization process, involving the deletion of a boundary object without changing
the essential structure of the object. The skeleton of the retinal blood vessel in Figure
3(e) has many small branches. It makes the matching process relatively time consuming.
Finally, small branches in the vascular skeleton were removed by the pruning algorithm,
which is a technique used in digital image processing based on mathematical morphology
to remove unwanted parasitic components (spurs).
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2.2. Optic disc localization. One particularly important characteristic of the optic disc
is that it is brighter than the surrounding area [24]. Another essential feature of this disc
is the origin of the retinal blood vessel; branches of the blood vessel have both vertical
and horizontal directions [25]. Previous methods used optic disc localization, such as
thresholding [26], a clustering-based approach [27], support-vector machine (SVM) [28],
neuron network [29] and hybrid [30].
Our optic disc localization method modifies a mathematical operation from the ultrafast

optic disc localization using projection of image features, as mentioned previously. There
are two steps for the optic disc localization. In the first step, the horizontal optic disc
position is calculated by using the ratio of vertical blood vessel edge and light intensity. In
the second step, the vertical optic disc position is located by using a product of horizontal
blood vessel edge and light intensity. Details regarding each step are addressed in the
next section.
In the first step, the horizontal position of the optic disc is defined by the maximum

ratio of the summation of vertical vessel edges and the summation of light intensity value
in the sliding window. A sliding window is considered, the width of which is equal to 10%
of the input image, and the height is the same as the image height. The algorithm for
locating a horizontal position in Figure 4 is described below.

1) Calculate: Edgediff Vertical = Vertical edges (VE) − Horizontal edges (HE)
2) Slide window from left to right and each step of moving calculated on Edgediff Vertical

image
(a) SumVerEdg = a summation of vertical edges in sliding window
(b) SumIntVal = a summation of light intensity value in sliding window
(c) Ratio x = SumVerEdg/SumIntVal

3) Find maximum value of Ratio x, which it is the position of the optic disc in the
horizontal axis

Figure 4. Optic disc horizontal localization process

In the second step, the vertical position of the optic disc is defined by the maximum
product of the summation of horizontal vessel edges and the summation of light intensity
value in the sliding window. Consider a sliding window, the width and height of which
are equal to 10% of the input image. The algorithm for locating a vertical position in
Figure 5 is described below.

1) Calculate: Edgediff Horizaontal = Horizontal edges (HE) − Vertical edges (VE)
2) Slide window from left to right and each step of moving calculated on Edgediff Horizon-

tal image
(a) SumHorEdg = a summation of horizontal edges in sliding window
(b) SumIntVal = a summation of light intensity value in sliding window
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(c) Ratio y = SumHorEdg * SumIntVal
3) Find maximum value of Ratio y, which it is the position of the optic disc in the vertical

axis

Figure 5. Optic disc vertical localization process

2.3. Triangular matching. A Delaunay triangle involves creating a triangular mesh
using a set of scattered points [31]. There are four geometric characteristics of the De-
launay triangle. First, the affine invariant is a similar mesh to the original triangular
mesh [32]. Second, the uniqueness of the Delaunay triangle is that adding, removing and
translating points within a set of scattering affects the triangular mesh [33]. Third, this
approach has noise resistance, and disrupting a vertex does not significantly change the
shape of the triangular mesh. Finally, the Delaunay triangulation contains properties of
local shape controllability [34] (i.e., local deformation is locally contained). The method
can deal with a missing part or noise in the optic disc identification. Hence, this technique
has attractive features and suitability for triangular matching. The construction of the
Delaunay triangulation is shown in Figure 6.

(a) (b)

Figure 6. Construction of Delaunay triangulations: a) scattering, b) tri-
angular mesh

The definition of a neighbour triangle is that it has two triangles [35], with one common
edge. A part of the triangular mesh has a neighbouring triangle from 1 to 3. For example,
Triangle T4 in Figure 7 has three neighbours: T1, T3 and T5. Triangle T2 has two
neighbouring triangles – T1 and T3, and T5 has one neighbouring triangle (T4).

Figure 8 shows a diagram of the triangular mesh matching process, both a triangular
mesh of the reference retina and another triangular mesh of a floating retina, which
was created from bifurcation points in retinal vessels, which were classified by type of
neighbour triangle. Then, the ratio of the area of the neighbour triangle was calculated
for sorting by ascending order. After that, both reference and floating area ratios were
compared one by one to find an error. A set of points in a triangular mesh, the candidate
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(a) (b)

Figure 7. A Delaunay triangular mesh in the local area: a) original De-
launay triangular mesh, b) Delaunay triangular mesh with a point added

Figure 8. Matching neighbour triangle process

points of which are defined by points of an error ratio less than a threshold, was set for
the transformation matrix calculation [36]. Finally, the matrix was estimated by the least
square from the standard equation, as shown in Equation (2).
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(
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x and y are the set of the candidate bifurcation points in reference images and inquiry
images, respectively.
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 9. (color online) Matching process: a) optic disc from the same
person, b) skeleton of optic disc, c) bifurcation of skeleton, d) Delaunay
triangular mesh, e) match neighbour triangle, and f) comparison of distance
mapping error
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The vascular skeleton of both reference and floating retinal images, obtained from the
same person at different angles (Figure 9(a)), was extracted by a vascular extraction, as
illustrated in Figure 9(b). Then, bifurcations of the vascular skeleton at the optic disc in
Figure 9(c) were used to create a triangular mesh by using the Delaunay triangle (Figure
9(d)). The ratio of the area of the neighbour triangle was calculated and compared to
find the candidate points. The transformation parameter was also calculated by the
candidate points of the triangle, which passed a triangular matching process in Figure
9(e). The mapping image in Figure 9(f) was mapped by the transformation parameter
and calculated an error. Finally, the value of the distance mapping error was used to
decide the similarity of retinal images. The green line in Figure 9(f) is a vascular skeleton
of a reference image, and the purple line is a vascular skeleton of a floating image that
was mapped by the transformation parameter. The white line is formed by overlapping
both green and purple lines. The error of the mapping with the transformation parameter
was calculated by the distance mapping error, which indicates the distance between any
point in the original space and the closest point on the transformation image. Thus, two
optic discs in a similar eye have a distance mapping error close to zero. In addition, a
comparison of the optic disc from the same person but another side of the eye of another
person has a large distance mapping error.

3. Experimental Results.

3.1. Material. The proposed system was evaluated using six public databases: DRIVE
[37,38], DIARETDB0 [39], DIARETDB1 [40], E-OPHTHA [41], FIRE [42] and RODREP
[43]. DRIVE comprises 40 retinal images and size is 565× 584 pixels. There are 33 nor-
mal retinal images, and 7 retinal images show signs of mild early diabetic retinopathy.
The DIARETDB0 database includes 130 retinal images, 20 of which are normal and 110
containing signs of diabetic retinopathy – the image size is 1000× 1152 pixels. DIARET-
DB1 includes 89 images, and each image has a size of 1000 × 1153 pixels. There are 5
normal retinal images and 84 retinal images that show signs of mild diabetic retinopathy.
E-OPHTHA comprises 148 images with microaneurysms or small haemorrhages, 77 pairs
of eyes and with each image having a size of 2544 × 2696 pixels. FIRE has 129 images;
31 pairs of eyes are split into three different categories depending on their characteristics,
and their size is 2544 × 2696 pixels. Finally, RODREP has 1120 images and consists of
119 eyes of 70 patients with diabetic retinopathy, and the size of each image is 2000×2312
pixels. All results were obtained using Windows 10. The programming environment was
MATLAB 2018a. The CPU primary frequency was 2.9 GHz, with 8 GB of memory.

3.2. Vessel extraction. The proposed vessel extraction’s performance is validated by
using three performance measures: accuracy, specificity and sensitivity [44,45]. Four
parameters referred to the classification. True positive (TP) is the number of pixels that
are correctly classified as a vessel. False positive (FP) indicates the number of non-vessels
that are incorrectly classified as a vessel. True negative (TN) is the number of non-
vessels or background, with the correct type being identified. Finally, false negative (FN)
indicates the number of pixels that were vessels but classified as non-vessels. Accuracy
(ACC) is the ability of the method to differentiate a vessel and background correctly. It
is calculated by determining the proportion of TP and TN. Mathematically, this can be
stated as Equation (4).

Accuracy =
(TP + TN)

(TP + FP + TN + FN)
(4)
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Specificity (SP) is defined in this case as the ability to determine the background
correctly. It is calculated by the proportion of TN. Mathematically, this can be stated as
Equation (5).

Specificity =
TN

(TN + FP)
(5)

Sensitivity (SE) involves the ability to determine the vessel correctly and is calculated
by the proportion of TP. Mathematically, this can be stated as Equation (6).

Sensitivity =
TP

(TP + FN)
(6)

Some results of the retinal blood vessel extraction are shown in Figure 10. A compar-
ison of the performance in the vascular extraction on the DRIVE database with other
techniques is presented in Table 1. The proposed method achieved an accuracy of 94.1%,
which is above average. Specificity and sensitivity were 95.9% and 75.2%, respectively.
Further, the blood vessels from the vascular extraction were sufficient for the triangular
matching.

(a)

(b)

(c)

Figure 10. Some results of blood vessel extraction on DRIVE databases:
a) original images, b) results of extraction, and c) ground truth

3.3. Optic disc localization. The performance of the proposed method for optic disc
localization was determined for all six databases. Then, the success rate was computed
for each database individually, as shown in Equation (7).

successful rate =
total number of correctly identified OD

total images
(7)
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Table 1. Comparison of blood vessel extraction method with published
methods on DRIVE database

Author Year Method ACC SE SP
Liskowski and Krawiec [20] 2016 Deep neural network 0.923 0.924 0.916

Zhu et al. [46] 2016
An ensemble classification using

0.962 0.746 0.983
36-d feature vector

Farokhain et al. [47] 2017
Gabor filter and parameter

0.939 0.693 0.979
optimization

Rad et al. [48] 2017
Morphological region-based

0.961 0.696 0.972
initial contour (MRBIC)

Orlando et al. [49] 2017
Discriminatively trained fully

− 0.789 0.968connected conditional random
field model

Yanhui et al. [50] 2018
Convolution neural network with

0.908 0.899 0.928
reinforcement sample learning

Ahamed et al. [51] 2018 Multiscale line + hysteresis 0.959 0.742 0.980
Narkthewan and
Maneerat [52]

2019
Image enhancement, scaling,

morphological operator and filter
0.962 0.639 0.992

Fan et al. [53] 2019 Hierarchical image matting model 0.960 0.736 0.981
Dash and Senapati [54] 2020 DWT + Tyler Coye 0.949 0.731 0.989

Proposed method 0.941 0.959 0.752

The calculation of success rate for optic disc localization is based on ground truth
marked by human experts. Table 2 shows a performance evaluation of the proposed
system for the entire database used here.
The results of optic disc localization considered the correct location inside the actual

boundary of the optic disc. The algorithm of such localization could be located in the
position of an optic disc with an average accuracy of 95.59% and achieved an accuracy of
100% for DRIVE. DIARETDB0 and DIARETDB1, both of which are databases that use
a diabetes retinal image, could be located 96.15% and 98.87%, respectively. E-OPHTHA,
FIRE and RODREP, which are used for triangular matching, reached an accuracy 97.4%,
97.7% and 93.7%, respectively. Table 3 shows the overall performance of the proposed
system compared with the state-of-the-art methods in terms of success rate. The average
running time was 0.26 seconds per image. Figure 11 gives some results of the successful
optic disc localization in these six databases, with the optic disc centre being highlighted
with a green point.

3.4. Triangular matching. The performance of the neighbour triangular matching ap-
proach was good when using parameters such as vascular extraction. However, the mean-
ing of accuracy, specificity and sensitivity had been changed. In matching, accuracy is
the method’s ability to identify one person from another correctly. Specificity is its a-
bility to identify another person correctly. Sensitivity involves the ability to identify a
person correctly. TP is the number of times the same person is correctly classified. FP
indicates the number of times someone was classified as the same person, whereas TN is
the number of times different people were correctly classified. FN indicates the number
of times the same person was classified as a different person. The results of the triangular
matching by using a ratio of the neighbour area were decided by the distance mapping
error, which is a distance between two points [61]. Figure 12 shows some mapping images
with the transformation equation. Optic discs R1 and I1 in Figure 11 are similar but
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Table 2. Comparison of optic disc localization method with published
methods on DRIVE database

Author Year Method Database
Success
Rate (%)

Bharkad [55] 2017 Morphological dilation and DRIVE 100
median filtering operation DIARETDB0 96.92

DIARETDB1 98.98
Panda et al. [25] 2017 Vessel symmetry line DRIVE 100

DIARETDB0 96.92
DIARETDB1 100
E-OPHTHA 100

Gui et al. [56] 2018 Corner detection method DRIVE 100
Jois et al. [57] 2018 Particle swarm optimization DRIVE 100

DIARETDB0 96.15
DIARETDB1 98.87

Dietter et al. [58] 2019 Vessel orientation and brightness DRIVE 100
and modify a score function DIARETDB0 97.8

DIARETDB1 98.8

Ünver et al. [59] 2019 Statistical edge detection and DRIVE 100
circular Hough transform DIARETDB0 96.92

DIARETDB1 98.88
Oza et al. [60] 2019 Multiscale low-rank image DRIVE 100

decomposition DIARETDB0 96.15
DIARETDB1 97.75

Proposed method DRIVE 100
DIARETDB0 96.15
DIARETDB1 98.87
E-OPHTHA 97.4

FIRE 97.7
RODREP 93.7

with a different perspective. The error of R1 and I1 is less than R1 and I2 or R1 and I3.
The triangular mesh of similar optic discs in different angled images had an error close to
zero, with a maximum of overlapping between reference and inquiry skeletons. Although
the triangle meshes had a ratio of the neighbouring area less than the threshold, differ-
ent retinal images had significant or indeterminable errors. Table 3 shows a performance
evaluation of the proposed system for the entire database used here.

The performances of the triangular matching on E-OPHTHA, FIRE and RODREP, all
of which combined 227 reference retinal images and 1484 inquiry images, were divided
into three parts. The first production is the 3-neighbour area ratio – it having an average
accuracy of 99.90%. However, the sensitivity was 80.62%, as shown in Table 4. The
average time of matching was 0.06 second per image. Next, the average accuracy of
the 2-neighbour area ratio in Table 5 was found to be less than the 3-neighbour one, at
0.16%. Further, the sensitivity was increased to 83.76%. However, the computation time
was increased to 0.38 second per image. The last example is the 1-neighbour area ratio.
The performance in Table 6 can be seen to have an accuracy of 98.97%. Sensitivity was
increased to 87.66%. However, the time of calculation was 1.64 second per image.
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Table 3. Comparison of retinal identification method with published
methods on DRIVE database

Author Method Database
Success
Rate (%)

Waheed et al. [2] Vascular and non-vascular retinal DRIVE 100
features STARE 100

Nazari and
Pourghassem [14]

Circling regions of a blood vessel DRIVE 100

STARE 100

Köse and İkibaş [11] Retinal vascular network Own 99.5
Deng et al. [15] Graph matching iterative closest Own 100

point Delaunay triangulation graph Own 75
Aleem et al. [62] Retinal vascular network DRIVE 100

STARE 100
Sadikoglu and

Üzelaltınbulat [63]
Neural network DRIVE 97.5

Roy and Biswas [64] Angle of any bifurcation point DRIVE 100
STARE 100

Proposed Method DRIVE 100
DIARETDB0 100
DIARETDB1 100

4. Discussion. Retinal blood vessel identification systems are stable and suitable for
biometric systems. One of the main goals of this experiment was to attempt to identify
a person by using retinal vascular patterns with the Delaunay triangle. Our algorithm
demonstrated excellent ability not only to locate the optic disc but also to extract blood
vessels of retinal images. These results – optic disc localization, vascular extraction and
triangular matching – achieved high performance and short time calculation.
In some works, the vessel segmentation has been applied to providing a more efficient

identification with an improved success rate for the algorithm. For example, Waheed
et al. [2] used retinal vascular features. They achieved a success rate of 100% both for
DRIVE and STARE. Aleem et al. [62] studied retinal identification by using the retinal
vascular network and reached a success rate of 100% for DRIVE and STARE.
In some studies, Delaunay triangulation has been adopted to tolerate an affine invariant

that affine transformation consists of translation, scaling, rotation and shearing. Wang
and He [35] proposed a matching method with images captured under affine transfor-
mation conditions. The results demonstrated excellent matching. Chuchart et al. [32]
studied fingerprint alignment based on local features combined with affine geometric in-
variants. The approach found correspondences between the minutia points on the two
different perspectives of fingerprint images. The results of this method could be used to
find the corresponding minutiae and align any fingerprints in a case considered as the
affine transformation.

5. Conclusion. The identification based on using geometric invariance, which is the area
spanned by feature points extracted from the bifurcation of the vascular pattern in the
vicinity of the optic disc, is proposed. After sorting the extracted area in a conformal
order, the feature point correspondence is well established. The affine transformation
parameters, including scale, rotation, translation and shear, are estimated. The query
and retinal reference image can then be aligned. The similarity criterion is then calculated
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Figure 11. (color online) Some results of successful optic disc localizations
in the six databases: a) results in DRIVE, b) results in DIARETB0, c)
results in DIARETB1, d) results in E-OPHTHA, e) results in FIRE, and
f) results in RODREP

and used for personal identification. The proposed methods were divided into three parts.
First, optic disc localization used a characteristic of vascular patterns. It could achieve
an accuracy of 95.56% and short calculation time. However, the algorithm was unable to
specify the exact centre of the optic disc and did not detect optic discs located on the edge
of an image. Second, vascular extraction used a combination image of a vertical vessel
and horizontal vessel. The results were compared with the standard, and an accuracy
of vessel extraction of more than 90% was achieved. The algorithm can detect the main
blood vessel, but the small blood vessel cannot be identified. The last process – triangular
matching – used the neighbouring triangular ratio to calculate transformation parameters
and used the distance mapping error to verify the similarity of an optic disc. It provided
an average accuracy of more than 98%. The 3-neighbour area ratio performed well with
respect to time. Whereas 1-neighbour had the best accuracy, it trades off between time
and efficiency. Although the research problem proposed the application of retinal image
registration for person identification, the application can be more feasible for personal
verification when the aim is to check the true identity of the suspected person. Another
possible real-world application is to use the proposed algorithm to evaluate the healing
process of the retinal lesion. For diabetes patients, for example, the retinal image shows
evidence of a microaneurysm blot and flame haemorrhage, which is the leading causes of
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Figure 12. Some results of triangular matching and distance mapping
error. R1 and I1 are the same eyes but from different perspectives. R2 and
I2, R3 and I3 are the same eyes from different perspectives and luminance.

Table 4. A performance of 3-neighbour area ratio

Database Accuracy (%) Specificity (%) Sensitivity (%)
E-OPHTHA 99.46 100 58.44

FIRE 99.69 100 90.32
RODREP 99.92 99.9 92.44
Overall 99.90 99.9 80.62

Table 5. A performance of 2-neighbour area ratio

Database Accuracy (%) Specificity (%) Sensitivity (%)
E-OPHTHA 99.31 99.76 64.94

FIRE 99.58 99.78 93.55
RODREP 99.80 99.85 93.28
Overall 99.74 99.81 83.76

Table 6. A performance of 1-neighbour area ratio

Database Accuracy (%) Specificity (%) Sensitivity (%)
E-OPHTHA 98.05 98.36 72.73

FIRE 98.15 98.82 96.77
RODREP 99.36 99.39 95.80
Overall 98.97 99.02 87.66

blindness. After medical treatment, the doctor wishes to evaluate the efficiency of the
treatment. To do so, the retinal image before and after the treatment will be aligned
using the proposed algorithm. Differences in the images can then be used as criteria for
treatment efficiency.



PERSONAL IDENTIFICATION USING A RETINAL VASCULAR PATTERN 895

REFERENCES

[1] R. Clodfelter, Biometric technology in retailing: Will consumers accept fingerprint authentication?,
Journal of Retailing and Consumer Services, vol.17, pp.181-188, 2010.

[2] Z. Waheed, M. Usman Akram, A. Waheed, M. A. Khan, A. Shaukat and M. Ishaq, Person identifi-
cation using vascular and non-vascular retinal features, Computers & Electrical Engineering, vol.53,
pp.359-371, 2016.

[3] R. H. Abiyev and K. I. Kilic, Robust feature extraction and iris recognition for biometric personal
identification, Biometric Systems, 2011.

[4] K. A. Toh and A. B. J. Teoh, Vascular patterns, Encyclopedia of Cryptography and Security, pp.1353-
1356, 2011.

[5] A. Arathi, J. S. Culpepper, J. Jeffers, A. Turpin, S. Boztas, K. J. Horadam and A. M. Mckendrick,
Entropy of the retina template, in Lecture Notes in Computer Science, M. Tistarelli and M. S. Nixon
(eds.), Springer, 2009.

[6] S. Fahreddin and U. Selin, Biometric retina identification based on neural network, Procedia Com-

puter Science, vol.102, pp.26-33, 2016.
[7] A. Can, C. V. Stewart, B. Roysam and H. L. Tanenbaum, A feature-based, robust, hierarchical

algorithm for registering pairs of images of the curved human retina, IEEE Trans. Pattern Analysis

and Machine Intelligence, vol.24, pp.347-364, 2002.
[8] A. Zahedi, H. Sadjedi and A. Behrad, A new retinal image processing method for human identification

using Radon transform, Iranian Conference on Machine Vision and Image Processing, pp.1-4, 2010.
[9] T. Chihaoui, R. Kachouri, H. Jlassi, M. Akil and K. Hamrouni, Human identification system based

on the detection of optical disc ring in retinal images, International Conference on Image Processing

Theory, pp.263-267, 2015.
[10] A. Dehghani, Z. Ghassabi, H. A. Moghddam and M. S. Moin, Human recognition based on retinal

images and using new similarity function, EURASIP Journal on Image and Video Processing, vol.58,
2013.
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