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ABSTRACT. A path planning method based on multi-population chaotic gray wolf op-
timization (GWO) is proposed to address the three-dimensional path planning problems
that occur in multi-UAV cooperative task execution. First, on the basis of three-dimensio-
nal planning space, the cost function model of multi-UAV cooperation is established in
accordance with the requirement of path planning. Moreover, an initial track set is con-
structed by combining with the multi-population concept. Second, given that the GWO
algorithm is easy to fall into a local optimum, a chaotic search strategy is adopted to
improve this algorithm. Finally, the proposed algorithm is used to solve the path plan-
ning problem of obtaining multiple cooperative paths. Simulation result shows that this
algorithm can satisfy the constraints related to path planning and realize multi-UAV co-
operative path planning. In comparison with GWO, EA, and PSO algorithms, stability
and search accuracy are improved through the proposed algorithm.

Keywords: Multi-UAV cooperation, Path planning, Gray wolf optimization, Multi-
population, Chaotic local search

1. Introduction. In modern warfare, single UAV cannot satisfy the requirements of
diversified operations given the limitation of operation scope and their functions. Multi-
UAYV cooperative operation has become a trend of future air battle because it can perform
various operational tasks and effectively improve battle effectiveness. Therefore, lots of
research have focused on the cooperative technologies of multiple UAV, such as mission
planning [1], wireless sensor network [2] and formation control [3]. Multi-UAV cooper-
ative path planning is one of key technologies of multi-UAV cooperative operation. At
present, the methods for multi-UAV cooperative path planning are divided into two cate-
gories. One category includes methods developed from single UAV path planning, such as
Voronoi diagram [4] and potential field [5]; another category refers to intelligent optimiza-
tion algorithms, such as genetic algorithm [6], particle swarm optimization [7, 8], and ant
colony algorithm [9, 10]. We can rapidly search many paths in a two-dimensional space
using the first category to realize multi-UAV path planning. However, when the planning
space is complex and the dimension increases, the computational and spatial complexities
of the abovementioned methods increase. In recent years, swarm intelligent optimization
algorithm has exhibited many advantages, such as strong search ability, favorable robust-
ness, and easy to combine with other algorithms; thus, this algorithm has been applied
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to 2 or 3 dimension path planning of UAV, and has shown good performance in solving
such complex optimization problems [11].

In 2014, Mirjalili et al. proposed a new simulated intelligent optimization algorithm
called gray wolf optimization (GWO) [12]. This algorithm has a simple structure and
a few adjusting parameters and is unrestricted by spatial structure. It has been proved
that it is better than other optimization algorithms such as differential evolution (DE),
particle swarm optimization (PSO) in terms of convergence speed and stability. Therefore,
GWO has been extensively used in optimization. In path planning field, [13] demonstrates
the application of this algorithm to path planning for UAV to achieve the optimal path
search under different threat environments. In terms of path planning in a complex terrain
environment, [14] conducts coefficient optimization through the GWO algorithm based on
improved perturbation fluid algorithm for path planning and obtains a flying path that
can avoid obstacles effectively and smoothly through a simulation experiment. In terms
of UAV path planning in uncertain environment, [15] searches the optimal path through
the GWO algorithm in Bayes framework model and confirms the effectiveness of this
algorithm. However, these works only solve the route planning and obstacle avoidance
problems of single UAV based on GWO, but have not use it for multi-UAV collaborative
route planning. [16] extends GWO for 3D path planning of multiple UAV, and compares
the performance with that of other meta-heuristic algorithms as well as deterministic
algorithms. The results show that GWO algorithm outperforms the other algorithms
in searching 3D path for multi-UAV. However, this approach did not solve the problem
that the original GWO algorithm is easy to fall into the local optimization, and the time
constraint problem in the actual task execution of UAV group is not been considered. In
[17], GWO algorithm and Gaussian distribution estimation are combined to overcome the
premature convergence of the original GWO algorithm, and the improved algorithm is
applied to the path tracking of multiple UAV in urban environment. The experimental
results demonstrated that the method performs well in accuracy and efficiency, but the
complexity of this methods needs more computational cost.

In the present work, a multi-population chaotic GWO (MP-CGWO) is proposed to
solve the problem on path planning when multi-UAV performs a cooperative strike on
the known target. First, a track set is constructed by combining the idea of multi-
population, and a chaotic local search is used to improve the problem in which the GWO
algorithm easily falls into local optimization. Second, the improved method in the present
work is adopted to solve the multi-UAV cooperative path planning problem, and a three-
dimensional cooperative path that satisfies the planning requirements is obtained. Finally,
a simulation experiment is conducted. The result is compared with DE, PSO, and GWO
algorithms to verify the effectiveness of the proposed method.

2. Modeling the UAV Cooperative Path Planning. In this section, an appropri-
ate planning space is established in accordance with the flight environment and mission
requirements. And on the basis of planning space, we established a path cost function in
accordance with the requirement of multi-UAV’s path planning as an index to evaluate
the quality of path.

2.1. Planning space representation. In path planning, an appropriate planning space
must be established in accordance with the flight environment and mission requirements.
In the present work, taking a mountain background as a task environment, a digital
elevation model is established using a random function to simulate peaks and other threat
obstacles. The mountain model function is proposed in [18]. This model consists of the
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original digital and threat equivalent terrain models. The former is expressed as
z1(z,y) = sin(y + a) + b - sin(x) + ¢ - cos (d a2+ y2> + e - cos(y)
+ f-sin (f-\/x2+y2>—|—g-cos(y), (1)

where x and y refer to the point coordinates on a horizontal projection plane; z; refers
to the height coordinate that corresponds to the coordinate points on a horizontal plane;
a, b, c, d, e, f and g are the coefficients. The topography of a different landform can be
obtained by changing parameters.

The threat equivalent terrain model is

e y) = gh@') exp (— (1) (%)) , ©)

where x and y refer to the point coordinates on a horizontal projection plane; 2z refers to
the height of the peak; h(i) refers to the height of the highest point of Peak i on a base
terrain; xg; and yo,; refer to the coordinates of the highest point of Peak 7; x,; and y,; refer
to the variables related to the slope of peak ¢ along the z, y axes. If x,; and y,; are large,
then the slope of the peak is flat and abrupt.

The final mountain threat model is obtained by integrating the original digital terrain
model into the threat equivalent terrain model.

2(x,y) = max[z(2,y), 22(z, y)] (3)

The topography of different landforms can be obtained by changing parameters in the
function. The three-dimensional planning space is illustrated in Figure 1. In the planning
space, the flying path of UAVs can be represented by many waypoint. Consequently, the
waypoints are connected to form multiple flight paths, which are linked with the starting
and target points to form a flying path. We set the starting point of a certain UAV as
S(x0, Yo, 20) and the target point as E(x., ye, z.). The number of waypoints is n, and the
waypoints searched can be represented by {S, P, Ps, ..., P,, E}; among these variables,
the coordinate of a track node is P; = (x;, y;, 2;)-

- 100
50

y/km 0 0 x/km

FIGURE 1. Three-dimensional planning space
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2.2. Path cost function. The purpose of multi-UAV cooperative path planning is that,
on the premise of satisfying the requirements of a safe flight and space-time cooperation,
every UAV can search the corresponding path, and the synthetic path cost of UAV fleet
must be the least. Therefore, path planning requires the establishment of a path cost
function as an index to evaluate the quality of a path. The satisfaction of the spatial and
temporal cooperative constraints of multi-UAV by considering the dynamics and threat
constraints of a single UAV in multi-UAV cooperative path planning is required. Thus,
given the planning objective, the following cost indexes are considered in the present work:
the performance indexes of a single UAV include fuel consumption, maximum climb/slide
angle, flying altitude, peak threat, and multi-UAV time cooperation. Spatial cooperation
is manifested in multi-UAV path collision avoidance. We set different flight altitudes that
must be avoided by each UAV. The synthetic cost function is established as

J = wlkl quel + w2k2Jangle + w3k3Jheight + w4k4']threat + w5k5Jcoop7 (4)

where wy, wsy, w3, wy and ws refer to the weights of different cost indexes, and the sum of
weights is 1. The paths that satisfy different requirements can be obtained by adjusting
the weights. To ensure that all cost indexes are involved in path planning, the functions
are normalized in accordance with the range of their values, and then weighted summation
is performed.

Fuel consumption cost is related to the length of flight path and flying speed. Assuming
that UAVs consistently fly at a certain speed, fuel costs can be replaced by the length of
the path.

n—1
J fuel = Z \/($i+1 - ﬂfi)2 + (Yir1 — yi)2 + (2ip1 — Zi)Q, (5)
i=1

where (z;11, Y1, 2zi11) and (24, y;, 2;) correspond to the coordinates of the adjacent path
points.
Jangle Tefers to the cost of the maximum climb/slide angle and is expressed as

" Z; — Z;
Jungte = Y _0; 60; = arctan 21 — 4 7 (6)
, 2 2
=1 \/(l’z‘+1 = i)+ (Yir1 — ¥i)
where 6; refers to the climb/slide angle of the adjacent points of a certain path.
To satisfy the requirements of flight safety and concealment, the flight altitude cannot
be overly low or high. Height cost can be expressed as
Jheight = Z |h; — safth,], (7)
i=1
where h; refers to the height of path point ¢ on a certain path, and safth,; refers to the
minimum safety height for each UAV.

Collision with the mountain in the flying course of the UAV must be avoided. In [19],
the peak model is represented by a cone approximate representation. To ensure that the
path between two waypoints can avoid the mountain, the path segment is divided into
m equal sections, and m — 1 sampling points are obtained in the center. Since there is
a certain error in approximating the mountain terrain as a cone, the flying height of the
UAV is set higher than the current terrain height to ensure safe flight. The threat cost of
the whole path is expressed as

n m

Jihreat = Z Z Z threat;;(k), (8)

i=1 j=1 k=1
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where n refers to the number of path points, K represents the number of peaks, and
threat;;(k) is the threat cost of the sampling point (x;,y;, ;) in the current section and a
certain peak and is expressed as:

0 h>H(l€) OI'dT>RT+dTmin
threat;;(k) = ! 9
rea ]( ) { RT(h) + dTmin — dT h] < H(]C) and dT < RT + dTmin , ( )
Ry(h) = (H(k) — h)/ tan®), (10)

H(k) refers to the height of Peak k, and Ry refers to the maximum extension radius.
Moreover, h; is the flying altitude of the current UAV, dp refers to the distance from the
UAV to the symmetrical axis of the peak, dr i, denotes the minimum distance allowed
on the terrain, and 6 refers to the slope of the terrain. The terrain threat is depicted in
Figure 2.

FI1GURE 2. Terrain threat map

Cooperative cost function implies time cooperation. All UAVs are required to reach
the target point simultaneously as far as possible. If the course of a certain path cannot
satisfy the time cooperative constraints, then the path must be corrected. Assuming that
the flying speed of the UAV is in the range of [Unin, Umax] and the course of the UAV i is
L;, its flight time period is T; € [T, T¢,.]. Similarly, assuming that the flying time of

~ min’ © max
UAV j is in the range of T} € [T J T ], if the flight time of the two UAVs intersects,

min’ - max

then temporal cooperation is feasible, that is,
T%nter - T'z N T} 7é @ (11)

We set the length ratio of the intersection interval of two UAVs flight time periods to
the smaller time period of the two time periods is not less than 6, that is Tj,er > 0 - Tyin,
where 0 < 6 < 1. According to the range of flight time intersection, the time synergy
evaluation function between the routes is determined as follows:

1 71im&er = @
Enter

JcopT = T 0< Crz‘nter < 0 - Thin (12)
0 71inter > 0 : Trnin

where T, refers to a time period with a small range of two path in the flight time period,
and T;,s., represents the intersection of the flight time for two paths.
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3. Solution of the Cooperative Path Planning Model Based on MP-CGWO.
In this section, a path planning method based on multi-population chaotic gray wolf
optimization (GWO) is proposed to address the path planning problems of multi-UAV
cooperative task execution.

3.1. Introduction of the GWO algorithm. The GWO algorithm is a new meta-
heuristic algorithm based on the life habits of the gray wolf population. GWO has many
advantages, such as simple structure, few parameters, and rapid convergence speed. In
the algorithm, the ranking system of the gray wolf population in nature is simulated. The
first three optimal individuals in the population are denoted as «, (3, §, and the remaining
individuals are regarded as w to determine the optimal solution that corresponds to the lo-
cation of the prey. In searching for preys, each gray wolf obeys the instructions of the first
three wolves, constantly updates their position, gradually approaches the most promising
area (the optimal position), and catches the food. In the algorithm, the distance from
the individuals to the prey must be determined.
D =|C-X,(t) = X(@)], (13)
c=2- T, (14)
where t refers to the number of current iterations, r; denotes a random value in the range
of [0,1] and X represents the position vector of the gray wolf in Iteration t.
The gray wolf gradually approaches its prey and updates its position. The update is
expressed as
X(t+1)=X(t)—A-D, (15)
A=2a-ry—a, (16)
where a reduces from 2 to 0 gradually; ro refers to a random value in the range of [0, 1].
The first three wolves represent historically optimal locations, while the remaining
individuals update their locations in accordance with their present locations. Based on

the abovementioned two formulas, the distance between the remaining individuals and
the first three wolves, as well as the direction to the prey, can be obtained.

D, =|C; X, — X
Ds=1[Cy- X5 = X]| (17)
Ds = |C5- X5 — X|

X1:Xa_A1'Da

Xy =Xz—Ay-Dy | (18)
X3:X5—A3'D5
X+ X, + X

X(t+1)= 1+32+ 2 (19)

where X, X3, X; represent the positions of a, 3, § wolves, respectively. X denotes the
location of the current solution.

3.2. Algorithm improvement.

3.2.1. Multi-population track coding. The original GWO algorithm is relatively small and
has poor development ability in multi-UAV path planning. Therefore, on the basis of
the original algorithm, the idea of multi-population is combined in this work to construct
the multi-UAV track set. When the algorithm is adopted to perform a search, the num-
ber of gray wolf populations is determined in accordance with the number of UAVs, and
the process of UAV searching path is mapped to the preying process of the gray wolf
population. The position of the gray wolf in each sub-population corresponds to a flying
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path of the mapped UAV. The optimal solution in the sub-population corresponds to the
optimal path of this UAV. The optimal solution of all sub-populations corresponds to the
cooperative path of UAVs.

If all UAVs on a mission are set as U = {U;,7 = 1,2,..., N,}, then the corresponding
number of gray wolf population is N,. The number of gray wolf individuals in each
sub-population is set as m, and the gray wolf individuals in the sub-population can be
represented as X = {X;,7=1,2,...,m}. The position of gray wolf ¢ in the search space is
X; = (Xi1, X2, - - -, Xin ), which represents the midway point of a path in addition to the
starting and the target points. The coordinate of each path point is X, = (Zin, Yin, Zin)-
The fitness value of the gray wolf individual corresponds to the cost function value of
a certain path. If the fitness is favorable, then the path is optimal. In the process of
searching and comparing the fitness values of individuals in the population, the gray wolf
individuals at the favorable position are obtained as the a, £,  wolves. The algorithm is
guided to search continuously in the direction with small fitness values, thereby resulting
in many cooperative paths.

When the GWO algorithm is initialized, a group of gray wolves is randomly generated
in the region of search. When an individual’s three-dimensional position coordinates are
randomly generated, the computational load is large, and the search efficiency is low.
Therefore, in this work, an equal division is performed for the coordinates of individuals
in the direction of the z-axis based on the number of the waypoints set at initialization. In
the searching process, the positions in the y- and z-axes are updated. Boundary control
is performed when the position is updated. The planning problem is transformed into a
search optimization problem in a two-dimensional space.

3.2.2. CGWO algorithm. The GWO algorithm has few parameters, simple structure, and
fast convergence speed. However, similar to other intelligent optimization algorithms, the
GWO algorithm can easily fall into the local optimum problem, whereby the path searched
is not necessarily optimal in path planning. To improve the quality of the search path,
we consider adding a chaotic local search (CLS) strategy based on the GWO algorithm.
Therefore, the randomness and ergodicity of a chaotic motion can be utilized to prevent
the GWO algorithm from falling into the local optimum and thus improve convergence
accuracy.

Chaotic motion is a common phenomenon in nonlinear dynamic systems with ran-
domness, ergodicity, boundedness, and other characteristics. These characteristics help
the optimization algorithm jump out of local extremum. The dynamic characteristics of
the chaotic motion can optimize the algorithm to explore additional search space and im-
prove the ability of global optimization. At present, many kinds of chaotic maps have been
applied to optimization algorithms [20]. Logistic mapping is a typical one-dimensional
chaotic mapping, and its analytic expression is

Tpi1 = py (1 —xy), (20)

where p refers to a control parameter, and the initial value zo € [0, 1]. Different chaotic
sequence diagrams can be obtained by different xq and u. When p is 4, the chaotic motion
is in a completely chaotic state. The chaotic sequence searches all states in the interval
of [0, 1] without any repetition. Thus, a local search can be performed near the search
point using the characteristics of the chaotic motion. This process can effectively make
the original algorithm jump out of the local optimum. The process for improving the
GWO algorithm using the chaotic local search is presented as follows.
1) Chaotic initialization population
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Determine the search boundary [lb, ub] in accordance with the planning space. Given
the number of path points set as m-dimension, 2N m-dimension in the chaotic sequence
in the interval of [0,1] is generated using a logistic equation. In accordance with the
searching boundary, the equation is mapped on the planning space.

Calculate the fitness values of the 2N individuals. The first N individuals with favorable
fitness are selected as the initial gray wolf population for a path search.

2) Local chaotic search

Obtain a new gray wolf individual X, by generating the n-dimensional chaotic random
sequence z: xg,T1,...,T, in the interval of [0, 1] through K iterations using a logistic
equation and mapping the equation on the area near the path search point using Formula
(21).

z— X : Xe=X,+ R-(z—0.5), (21)

where R refers to the search radius, which can be used in controlling a local search range,
and X, refers to the position of o wolf.

Calculate the fitness value of X.. Compare the new individual with the optimal indi-
vidual X, under the current iteration times through the GWO algorithm. If the fitness
value is less than that of the original individual, then the new individual is used to replace
the original individual; otherwise, the original individual will remain unchanged.

When the improved chaotic GWO algorithm is used for path planning, the fitness value
of individuals in the population corresponds to the path cost value of UAV. The chaotic
strategy is for individual initialization and updating the position of the optimal individual
in the iteration process. The improved GWO algorithm is as follows.

Algorithm 1
CGWO algorithm
Begin

Initialize chaotic grey wolf population;

Initialize parameters a, A, C by (14) and (16);

For all X; wolfs do
Calculate fitness by (4);

End for

Get the first three individuals as X, Xz, Xs;

While ¢t < Maximal number of iterations do
For Each search wolf do

Update the position of the wolf by (19)
End for
Update a, A, C;
Calculate fitness of all search wolves and identify the best individual X,;
Implement chaotic local search around X, and update X;
=t41;
End while
Return X,;
End

3.3. Flow of the multi-UAV cooperative path planning. Each UAV has a corre-
sponding starting point and target point, and the flight time to perform mission depends
on path length and flight speed. Defining the flight speed of the drone as v; € [v;min, Vi max),
Vimin and V; max correspond to the minimum flight speed and the maximum flight speed
respectively. By adjusting the speed of UAV, the UAV group can meet the time coordi-
nation requirement. When planning with this algorithm, the number of sub-populations
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is determined according to the number of UAV, the position of gray wolf in each sub-
population corresponds to a flying path of the mapped UAV. And each sub-group searches
the flight path of the corresponding UAV| the optimal solution X, in the sub-population
corresponds to the optimal path of this UAV.

During the search process, the fitness value of the individual in the population is deter-
mined by the route cost which can be calculated by (4). The smaller the cost of the route,
the smaller the fitness value of the gray wolf in the position X;, which means the route
is better. As the number of iterations increases, individuals in the population continually
converge toward the position of the optimal track according to the social hierarchy and
the position update rule, i.e., (19), and finally we can obtain the optimal search results
of all sub-populations corresponding to the cooperative path of UAVs, and then output
the search results, that is, the cooperative route.

Based on the improved algorithm in this work, the specific step of the multi-UAV co-
operative path planning is represented in Algorithm 2. And the flow of the path planning
of multiple UAV is shown in Figure 3.

Algorithm 2
MP-CGWO algorithm for multi-UAV cooperative path planning
Begin
Initialize parameters: number of populations, max iterations, dimension (nu-
mber of waypoints);
For all UAV; do
Initialize subpopulation position of multi-UAV;
Initialize parameters a, A, C' by (14) and (16);
For all X; do
Calculate the weighted sum of path cost J by (4);
End for
Get the first three paths as X,, Xp, Xj;
While ¢ < Maximal number of iterations do
For Each search path do
Update the position of UAV by (19);
End for
Update a, A, C;
Calculate the weighted sum of path cost J by (4) and identify the best
path X,;
Implement chaotic local search around X,, and update X,;
t=t+1;
End while
End for
Output the paths;

End

4. Simulation Validation. In this section, we perform two simulation cases to verify the
effectiveness and performance of the proposed algorithm. Moreover, in order to determine
whether the results of the method differ from the best results of other algorithms, a
comparative validation is conducted.

4.1. Simulation environment setting and simulation analysis. The planning space
is set as 100 km x 100 km x 500 m, including six peaks, and the mountain threat model
can be established according to Formula (3). At the same time, we can get different
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UAV1 J, UAV2 | UAVw l
Initialize Initialize Initialize
subpopulation1 subpopulation2 |°°° subpopulation V|
) Calculate the | <+---= | Calculate the | <+----- ™ | Calculate the
fitness fitness N fitness ]
l y Y
Algorithm Algorithm Algorithm
searching searching searching

Output the paths

End

F1GURE 3. Flowchart of path planning of multiple UAV

TABLE 1. Peak model parameters

Number Height (m) Center location (z,y)/(km) Slope

1 130 (56, 82) (10, 10)
2 150 (75, 20) (10, 10)
3 300 (50, 45) (12,12)
4 100 (22, 20) (8,8)
5 150 (20, 70) (8,8)
6 150 (75, 75) (10, 10)

topography by setting different parameters. Referring to [21], the parameters of the
original digital terrain model are set to a = 0.1, b = 0.01, ¢ = 1, d = 0.1, e = 0.2,
f =04, and g = 0.02. The height of the peak, horizontal coordinates of the highest
point, and slope parameters are listed in Table 1. Multi-UAV cooperative path planning
is conducted under a known mission assignment scheme. In the simulation experiment,
the path sub-population is initialized in accordance with the number of UAVs. The
numbers of individuals in the sub-population, iterations, and path points are 20, 150, and
10, respectively. The weight coefficients of all cost functions correspond to 0.3, 0.2, 0.1,
0.2, and 0.2. The flight speed range of the UAV is 40-60 m/s.

Case 1: 3 UAVs begin from the starting point and arrive at the designated target point
to perform tasks. The coordinates of the starting and target points are presented in Table
2. To verify the effectiveness of this method and avoid the influence of randomness, 50
simulation operations are established. The three-dimensional path planning and contour
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TABLE 2. Coordinates of the starting and target points of all UAVs

Number Start point Target point
UAV1 (3,3,0) (95,10, 70)
UAV2 (15,1,0) (98,92,70)
UAV3 (1,15,0) (92,98, 70)

100 F
90

80
500

400
300
200
100

701
60 1
50

z/m
yikm

40 1
301
100 20+

100

10
40

20 . ‘ . .
yikm 0 o x/km 20 40 60 80 100
x/km

(a) Three-dimensional cooperative path map (b) Contour map

F1GURE 4. Three-dimensional cooperative path planning and contour map
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FIGURE 5. Path cost convergence curve based on MP-CGWO (Case 1)

map of each UAV are displayed in Figures 4(a) and 4(b). The cost and synthetic path
cost convergence curves of each UAV are plotted in Figures 5(a) and 5(b).

Figure 4 illustrates that all UAVs can effectively avoid the threat and reach the target
points from their starting points, and the curves are smooth enough for UAV to fly. Figure
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5(a) shows the path cost convergence curve of each UAV, as we can see, all curves can
converge rapidly, in which the minimum route cost values of UAV1, UAV2 and UAV3
are respectively 6.25, 5.66, 5.54. Figure 5(b) shows the comprehensive route cost of UAV
group, and it can be seen that this curve also rapidly converges to the optimal value.
The cost function values of each UAV gradually converge with the increase in iteration
times, thereby verifying the effectiveness of the algorithm. Through a simulation, the
flight time intervals (unit: s) of each UAV are [2315, 3473], [2131, 3196], and [2315, 3373].
The time intersection is [2315,3196]. The time synergy requirement can be satisfied by
setting different flight speeds for all UAVs.

Case 2: Six UAVs fly to two target points. The coordinates of the starting and the
target points are listed in Table 3.

TABLE 3. Coordinates of the starting and target points for all UAVs

Number Start point Target point

UAVI  (1,1,0)  (95,10,70)
UAV2  (1,20,0)  (95,10,70)
UAV3  (1,40,0) (95,10, 70)
UAV4  (1,60,0)  (99,75,70)
UAV5  (1,75,0) (99,75, 70)
UAV6  (1,95,0) (99,75, 70)

The planned path diagrams of UAVs are obtained after 50 simulations, as depicted in
Figure 6. The path cost convergence and synthetic cost curves of each UAV are plotted in
Figure 7. The planned paths and voyages are close and can effectively avoid obstacles. If
the UAV is close to one another, then collisions can be avoided by setting different flight
altitudes.

400

yikm

100

s
AT

20 40 60 80 100
y/km 0 o x/km x/km

(a) Three-dimensional cooperative path map (b) Contour map

FIGURE 6. Three-dimensional cooperative path planning and contour map
(Case 2)

From the 3D path map and contour map of Figure 6, it can be seen that all UAVs
can reach the specified target point under the premise of ensuring their own safe flight.
Meanwhile, the flight paths meet the requirements of obstacle avoidance, terrain avoidance
and flight altitude. Figure 7(a) shows the convergence curve of the route cost for each
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FIGURE 7. Path cost convergence curve based on MP-CGWO (Case 2)

UAV, and it can be seen that each curve can converge quickly. Because of the difference
between the starting point and the target point of each UAV, the searched flight paths
and path cost value are also somewhat different. Each UAV’s minimum route value is
respectively 4.02, 4.53, 4.90, 4.80, 6.16, 4.48. As seen from Figure 7(b), the integrated
route cost also quickly converges to the optimal value. After simulation, we get the time
intersection is [2315,3196] which satisfies time synergy requirement. From all simulation
results we could conclude that the proposed algorithm can solve path planning problem of
multiple UAV and obtain optimal paths for each UAV in the environment with obstacles.

4.2. Comparative validation. Based on Case 1, the PSO, DE, and GWO algorithms
are used for multi-UAV cooperative path planning. The simulation results are compared
with the proposed algorithm to verify the effectiveness of the improved strategy. Among
these factors, the PSO algorithm parameters [22] include the number of particles as 20,
learning factor ¢l = ¢2 = 1, and inertia factor that decreases linearly from 0.96 to 0;
the DE algorithm parameters [23] include the number of chromosomes as 20, the upper
(0.6) and lower (0.2) bounds of scaling factor, and mutation rate (0.5) and crossover
probability (0.85). The GWO algorithm is consistent with the improved algorithm. The
algorithm is performed 50 times each. The average convergence curve after 150 iterations
of each algorithm and the distribution of the minimum cost results after each iteration
are obtained, as exhibited in Figures 8 and 9. The minimum, maximum, average, and
standard deviation of the global optimum are summarized in Table 4.

Figure 8 displays that the cost function of each algorithm can converge to a certain
value. By comparison, the convergence speed is faster in this method than that in other
algorithms, and the convergence accuracy is better in this method than in the PSO
algorithm and the original GWO algorithm. Figure 9 displays the distribution of the
minimum path cost value in 50 simulations and the stability of these methods can be
observed from the minimum cost distribution map. The minimum cost value obtained by
this method is concentrated in the interval [13.01,13.47]. Obviously, the interval range
is significantly smaller than the other three algorithms. Simultaneously, Table 4 displays
that the minimum path cost values of all algorithms in 50 simulations are basically the
same. However, the average and variance are smaller in the MP-CGWO algorithm than
in other algorithms. Compared with GWO algorithm, the stability (standard deviation)
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of the MP-CGWO algorithm is improved by 56%, which means the effectiveness of the
improved algorithm. Given that the chaotic mechanism is added to the algorithm, the
algorithm can effectively jump out of the local optimum, and the ability of planning path is
improved. The planning time of these approaches is close except for that of DE. Although
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TABLE 4. Comparison of statistical results of algorithms (50 times)

Algorithm  Best cost Worst cost Mean Std Time/s

GWO 13.00 14.28 13.33 0.30  3.58
PSO 13.05 14.73 14.00 0.40  3.80
DE 13.00 14.08 13.29 024  5.99

MP-CGWO  13.01 13.47 13.10 0.13  3.88

the complexity of algorithm increases, the planning time does not change much compared
to the original GWO and PSO, and remains less than the simulation time of the DE
algorithm. Thus, the actual requirements for planning are satisfied. Overall, the capacity
of path planning for multi-UAV of MP-CGWO is better than or at least competitive with
the other algorithms, verifying the stability and effectiveness of MP-CGWO in the path
search process.

5. Conclusions. Based on the three-dimensional planning space, this work combines
the idea of multi-population to perform multi-UAV cooperative path planning coding.
Through chaotic local search, the disadvantage that the GWO algorithm can easily fall
into the local optimum is addressed. The algorithm is adopted in studying the three-
dimensional multi-UAV cooperative path planning. The simulation results show that
the method can be used to obtain the cooperative path that satisfies the constraints.
The comparison with three other algorithms verifies the effectiveness of the algorithm in
solving cooperative path planning. In addition, search accuracy and stability are improved
significantly. This work simplifies the multi-UAV collision avoidance constraints regardless
of the change in the battlefield environment. In the next stage, we will explore the problem
of multi-UAV cooperative path planning in a changing environment.
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