
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2020 ISSN 1349-4198
Volume 16, Number 3, June 2020 pp. 1021–1033

DYNAMIC PROGRAMMING ALGORITHM AND BAT ALGORITHM
BASED STORM NODES SCHEDULING IN EDGE COMPUTING

Lingling Zhang

Department of Computer Science and Technology
Beihua University

No. 3999, Binjiang East Road, Jilin 132013, P. R. China
373752782@qq.com

Received October 2019; revised February 2020

Abstract. The high communication delay and uneven load among heterogeneous edge
nodes are affecting the performance of edge computing, and they are almost impossible
to be solved by the traditional cloud computing platforms. In this paper, we address these
problems by studying the scheduling optimization method for the storm nodes in edge
computing environments. At first, a storm scheduling model is established, where server
cluster structure and schedule workflow are formulated. Then, a heuristic dynamic pro-
gramming algorithm is proposed to address the general scheduling issue and a bat-based
scheduling strategy is proposed to address a special case faced by the heuristic dynamic
programming algorithm. Finally, the experimental results show that the proposed al-
gorithm can minimize the communication cost and guarantee the minimum scheduling
requirements.
Keywords: Edge computing, Storm nodes, Scheduling, Dynamic programming, Bat
algorithm

1. Introduction. A lot of edge devices are used to pre-process tremendous amount of
data in edge computing for the purpose of unloading computing tasks to multiple edge
nodes, reducing bandwidth consumption and data transmission difficulty, etc. Due to
such operations, Quality of Service (QoS) is greatly improved [1]. In addition, the role
of edge computing is particularly important for the network scenarios which have the
extremely high real-time requirements.

Generally, Internet of Things (IoT) intends to unload the heavy computing tasks to edge
servers in order to reduce the energy consumption caused by the centralized computing
[2,3]. However, it is aware that the operations of unloading tasks will also consume the
additional energy due to transmitting tasks to the edge servers [4], which in turn increases
the overall completion time of unloading tasks. In this way, the task scheduling problem
in edge nodes has become a hot topic [5-7]. In fact, the scheduling method is the key for
solving the task scheduling problem, because the appropriate method can i) minimize the
scheduling time among edge nodes, ii) minimize the communication cost and make the
most use of node resources, and iii) guarantee the network load balance in server clusters.
However, this kind of problem has already been proved as NP-hard, which means that it
cannot be addressed within the polynomial time [8].

There are two main kinds of cloud computing platforms, i.e., batch-processing ones
and streaming processing ones. Among them, it is noted that only the platforms (e.g.,
Apache Storm [9]) having high real-time streaming processing features can meet the ap-
plication requirements of edge computing. Despite this, the EvenScheduler adopts the

DOI: 10.24507/ijicic.16.03.1021

1021



1022 L. ZHANG

polling method to allocate tasks, which may cause high communication cost, unbalanced
network load condition, and even low edge node resource utilization. All these situations
would seriously affect the transmission performance of edge computing. The lastest Re-
sourceAwareScheduler adopts a new scheduling strategy, which optimizes communication
cost and resource utilization by using scheduler to sense the status of node resources,
such as performance, energy and thermal [10]. However, it is unnecessary to change the
allocation mode of the Storm’s topological task threads, since it only requires to make
the resource awareness, to optimize the node resource utilization and the edge node load
balance. Hence, the scheduling time is still long and network load may still be uneven in
the edge computing environment, that is to say, the currently existing Storm scheduling
mechanisms cannot meet the requirements of edge computing [11].
In order to address the above problems, this paper studies the global scheduling opti-

mization method of Storm nodes in edge computing. First of all, we establish a Storm
scheduling model for the edge computing, in which the server cluster structure and sched-
ule workflow are carefully explained and formulated. Targeting on this, a heuristic dy-
namic programming algorithm is proposed to address the general scheduling issue. Then,
a bat-based scheduling strategy is proposed to address a special case facing the heuristic
dynamic programming algorithm. Anyway, the two methods are designed and studied in
order to present a suitable scheduling optimization method for the Storm.
The rest of this paper is organized as follows. Section 2 introduces the related work.

Section 3 presents the scheduling and optimization model, while Section 4 gives the cor-
responding algorithm design. The experiments results are discussed in Section 5 and
Section 6 concludes this paper.

2. Related Work. Currently, there are already a lot of works studying the edge com-
puting. However, most of them are transformed from the study of IoT, which may cause
the unexpected issues, since the exact characteristics are different from those of edge com-
puting. In this section, we focus on exploring the works that deeply study into the areas
of edge computing.
First of all, an important challenge to the scheduling problem in edge computing op-

timization and the real-time streaming processing framework is how to optimize the de-
ployment of the so-called network task topologies [12]. With respect to this, the recent
researches have expanded their Storm scheduling work from the isomorphic environment
to the heterogeneous scenario. More specifically, some of them have set up the additional
inputs which include link information and resource utilization, and the additional mod-
ules which include system monitors and even complex schedulers [13,14]. By introducing
these additional elements, the Storm scheduling can be flexibly configured as needed. For
example, the achievements in [15-18] are based on an extension of the original Storm by
taking account of CPU and network load to establish a rebalanced task-to-node alloca-
tion. Besides, [19] relies on the Metis tool to divide the task topology into K layers, while
[20] presents a method which relies on suing GPU to improve the computing efficiency of
Storm.
However, these works still suffer from many challenges. For instance, although [15]

uses the additional resource-aware detection module to optimize communication cost and
resource utilization, it inevitably increases the operation complexity of scheduling process.
In addition, [17] relies on using the greedy algorithm to detect network delay, while it easily
falls into a local optimum which may cause the unexpected situations [21]. Overall, most
of the above works address the Storm scheduling issue by the additional auxiliary modules
without essentially changing the topology distribution model [18]. In this way, they still
suffer from the problems of long scheduling time and uneven network load. Hence, how



STORM SCHEDULING OPTIMIZATION 1023

to cut down scheduling time and communication cost, and how to improve load balance
and resource utilization are the urgent issues to be solved.

At present, there are also some related research works that use Dynamic Programming
Algorithm (DPA) [22] to optimize such scheduling issue in edge computing. For example,
[23] proposes a heuristic DPA to change the arrangement and allocation of tasks in the
Storm scheduling framework. In addition, [24] proposes to check such mapping relation-
ship periodically, and it calculates the optimal scheduling scheme based on the detected
information (i.e., configuration of edge nodes and global network topology information).
Such heuristic strategies can accurately calculate the global optimal scheduling within the
range of concurrency degree set by Jave Virtual Machine (JVM) [25]. In particular, these
references also have some disadvantages. For example, if the concurrency degree of the
topological task is higher than the default threshold, the stack overflow problem will be
caused and the unexpected trouble will appear [26].

With respect to the research topic of task scheduling, many intelligent algorithms are
adopted, such as particle swarm optimization, ant colony optimization, and genetic al-
gorithm [27-30]. Due to the complexity of task scheduling, it is an NP-hard problem,
and these intelligent algorithms can actually address such NP-hard problem within the
polynomial execution time and achieve a near-optimum result [31]. Despite the fact that
these intelligent algorithms have already been widely used in the field of network science
and engineering, their inner-robustness and their abilities to deal with the problems hav-
ing different characteristics and attributes are still not very satisfactory [32]. Compared
with the above intelligent algorithms, Bat Algorithm (BA) has appeared as one more
efficient method. Specifically, it can deal with some problems more effective than genetic
algorithm and particle swarm optimization method [33]. Based on the characteristic of
BA, we can easily find the scheduling timing. Therefore, in this paper, we propose a
task scheduling strategy based on BA that first initializes a random solution based on the
mapping relationship between task instance and slots for the Storm scheduling problem.
Then, we calculate the optimal results by continuously and iteratively executing BA.

3. Scheduling Model and Optimization Scheme.

3.1. Cluster architecture. The Storm cluster in edge computing is composed of one
master cell node in the Storm cloud computing center and many heterogeneous edge
servers in the edge cloud, as shown in Figure 1.

In particular, the Storm edge computing master unit is the communication master unit
node between cloud computing center and edge cloud. In other words, it manages the
processes of communication and scheduling when unloading the cloud center topology
flow tasks to the edge server nodes in the Storm cluster. Taking the case in Figure 1 as
the example, it loads the Nimbus as the core component of Storm, which is in charge of
collecting and managing the topological data stream uploaded from the cloud computing
center to the edge servers. Then, these data stream will be allocated to certain sub-nodes
of each edge server according to the corresponding scheduling algorithm.

Usually, the child node will load the Supervisor components and such Supervisor will
have one or more Worker processes. Each Supervisor is responsible for delegating tasks to
the Worker processes, such that the Worker processes will need to generate as many Ex-
ecutor threads as possible in order to run the large number of topological tasks. Moreover,
all sub-nodes that run in the edge servers will naturally form an edge cloud environment.

3.2. Scheduling model. For each node in the Storm cluster, its Supervisor will start
one or more worker processes. All the topologies have to run in the worker processes. In
particular, the maximum number of processes that can be started is determined by the



1024 L. ZHANG

Figure 1. Storm’s cluster architecture

Slot configured by the corresponding node. Here it is noted that the Slot actually refers to
the number of ports. Generally, the default Slot in the Apache Storm is bounded varying
from 6700 to 6703. One single worker process can run multiple Executor threads, while
each Executor thread can run only one single task instance or execute one component.
The existing Storm scheduling models usually rely on using the sort-slot algorithms to

periodically allocate the task instances of Executor threads to the available slots one by
one in the form of <node id+port id, (start-task-id, end-task-id)>. Such method follows
a very simple sorting and redistributing pattern, which may result in unbalanced load
among edge nodes, especially when the number of topological tasks becomes large. In
addition, it should also be noted that the configuration information of nodes has not yet
been taken into consideration.
In this paper, we intend to change the scheduling model. In particular, the updated

model consists of a set of task instances allocated to Executor threads by each slot, where
such set form can be expressed as a one-dimensional array. At the same time, we also add
an additional module to the proposed model for the purpose of obtaining the configuration
information of edge nodes. The corresponding scheduling model is shown in Figure 2.
Let N denote a Storm cluster, and the structure of the Storm cluster is defined as

follows. For any one Storm cluster having n work nodes, we have N = {ni|i ∈ [1, n]},
where each ni is configured with Sj slots. Furthermore, let R denote the computing



STORM SCHEDULING OPTIMIZATION 1025

Figure 2. Storm’s task scheduling model

resources set of cluster that can be allocated, and we have

R =
{
Si
j =< i, j > |i ∈ [1, n], j ∈ [1, Sj]

}
(1)

where Si
j is the j-th slot of ni.

For the topology T to be submitted to the cluster, the structure of a task’s T consists
of the Executor threads. Besides, the task instance (e.g., spout or bolt) in Executor is
a sequence of two-dimensional array consisting of begin task id and end task id, and the
corresponding unit format can be defined as follows.

Ei = [startid, endid], i ∈ (1, N) (2)

where startid and endid of a task instance are usually the same, that is, startid = endid.
The scheduler in Figure 2 allocates task instances of the topological data flow T1 to the
corresponding edge nodes in the form that a set of number of task instances allocated to
each slot in the Executor thread.

For each task instance in T , the Ne(T ) executors will be distributed in the set form of
[startid, endid] to the corresponding Slot set of nodes. On this basis, the Executor threads
are stored in each Slot collection, which corresponds to the number of Slots that have
been allocated. Then, the resource scheduling for T can be expressed as follows.

f(x) → S (3)

where the function f indicates the mapping from Executor to Slot and S indicates the
corresponding Slot. Meanwhile, the resource scheduling should satisfy the following two
requirements: (i) the number of workers occupied by T should be smaller than or equal
to the number of Slots in the cluster; (ii) two executors in different topologies are not
allowed to be allocated to the same worker.



1026 L. ZHANG

3.3. Optimization method. In this paper, we simplify the Storm scheduling problem as
how to allocate Ne(T ) Executor threads to NS(T ) Slot sets, while minimizing scheduling
time in Storm edge nodes, maximizing resource utilization and guaranteeing load balance
among nodes. In order to optimize the above scheduling process, we first regard the
allocation of Ne(T ) Executor to NS(T ) Slots as one solution for the cluster. Then, the
number of solutions is determined by the number of Executor threads and the number
of Worker processes. The structure of each solution is actually a one-dimensional array
which is composed of the Executors allocated to Sj Slot. In particular, the number of
Slots (i.e., NS(T )) and the number of Executors (i.e., Ne(T )) in T are the main objects
to be optimized.
Besides, the configuration information of edge nodes obtained by the additional config-

uration detection module is used as the input of scheduling. The total execution time of a
task scheduling and the standard deviation of load balance of each edge node are used as
the evaluation value of the solution. The optimal solution is calculated by using heuristic
DPA and BA based scheduling strategy.

4. The Proposed Algorithm Based on DPA and BA.

4.1. Heuristic DPA. In this paper, we consider the detection results of edge node con-
figuration (i.e., CPU utilization) as the fitness function to evaluate the obtained solution.
Let resi denote the solution generated by the i-th allocation scheme, Csys denote the
CPU resource allocated to the cluster, and rexe denote the percentage of allocating CPU
resource to the Executors, and we have the execution time of Slot as follows.

Ti =

NS(T )∑
i=1

res2i · rexe
Csys

(4)

where Ti is the execution time of the i-th Slot and the small Ti means the short overall
execution time of the task. When calculating the shortest execution time of each solution,
it is necessary to consider load balance of each node, that is, the time spent by each node
to perform tasks. Meanwhile, the small fluctuation range means good load balance. On
this basis, let LB denote the standard variance on load balance, and we have

LB =

√√√√ 1

NS(T )

NS(T )∑
i=1

(Ti − Tavg)2 (5)

where Tavg is the average with respect to NS(T ) execution times.
As the above mentioned, the purpose of this algorithm is to assign Ne(T ) Executors to

NS(T ) Slots, during which the overall execution time is guaranteed to be the minimum
and the load balance degree is the maximum. Given this, the proposed algorithm should
first initialize the solution set as res = {res1, res2, . . . , resn}. Let idi denote the index of
the i-th Slot, MaNe(T ) denote the maximal number of Executors that can be contained
by each Slot andMiNe(T ) denote the minimal number of Executors that can be contained
by each Slot, and the process of algorithm is described as follows.
Step 1. Initialize the input configurations of T , which include Ne(T ), NS(T ), MaNe(T )

and MiNe(T ).
Step 2. Initialize the currently allocated number of Executors as zero, i.e., Ne(T ) = 0;
Step 3. For the i-th Slot (i.e., the index is idi), if the allocated number of Executors is

smaller than Ne(T ), then the values within the boundary of MaNe(T ) and MiNe(T ) are
checked until the idi-th position of resi is satisfied.
Step 4. Recursively put the unallocated Executors into resi until idi reaches NS(T ).



STORM SCHEDULING OPTIMIZATION 1027

4.2. BA based scheduling strategy. For the scheduling strategy, it is designed based
on BA. Firstly, this strategy initializes a group solution randomly according to the work-
flow in Figure 2. Then, it iteratively calculates the global optimal solution according to
Equations (4) and (5). After that, the Executor will be allocated to the Storm cluster in
the form of < startid, endid > according to the number of optimal solutions. Finally, in
order to optimize high communication cost problem, the Executor threads belonging to
the same Slot will be grouped together. The corresponding process based BA is described
as follows.

Step 1. Traverse T to determine whether the topology needs to be scheduled: if yes,
the following steps are performed continuously; otherwise, the algorithm is finished.

Step 2. Get the map set that illustrates the mapping between the component ids to
the executor ids for T . The map set that hosts the component ids is stored in the new
set, and the executor ids will be sorted according to the order of the component ids and
finally stored in the connection set.

Step 3. Determine the number of Slots needed according to the number of workers
configured by T .

Step 4. Based on the solution by BA, allocate the Executors to the workers according
to the allocation scheme, and finally store such results in the list set.

Step 5. Obtain and sort the Slots available to the cluster and then store them into the
list collection. If the Slots are full, the release operation is performed.

Step 6. Invoke the proposed allocation method to allocate the Slots to the edge nodes
of cluster, and end the algorithm.

5. Performance Evaluation.

5.1. Setup. The experiments are carried out on a Dell R710 server with the ESXI 6.0
system, in which a virtual cluster is established and used to simulate the interaction
among the edge servers. Four different virtual nodes are also simulated with different
configurations. The basic configuration of the server is as follows. CPU: Intel (R) Xeon
(R) X5650, 2.66 GHz * 6 core * 2, RAM: 128GB, 1 Gbps * 4 network card and 2 * 1T
hard disks. The configurations of four virtual nodes are as follows: (i) 2.67 GHz * 1 CPU
core, 2GB RAM and the Ubuntu 16.04 X86-64 operating system, (ii) 2.67 GHz * 2 CPU
core, 4GB RAM and the Ubuntu 14.04 X86-64 operating system, (iii) 2.67 GHz * 4 CPU
core, 6GB RAM and the Ubuntu 14.10 X86-64 operating system, and (iv) 2.67 GHz * 6
CPU core, 8GB RAM and the Ubuntu 12.04 X86-64 operating system. In addition, the
cluster configuration is shown in Table 1.

Table 1. Storm nodes configuration

Host IP address Function
Storm-M 192.168.0.15 Nimbus, Zookeeper
Storm-S1 192.168.0.16 Supervisor, Zookeeper
Storm-S2 192.168.0.17 Supervisor, Zookeeper
Storm-S3 192.168.0.18 Supervisor, Zookeeper

In this paper, the lastest ResourceAwareScheduler is used to implement the proposed
algorithm. In addition, the Word Count topology is used to test the cluster performance.
In order to ensure the accuracy of time-related measurement data, the time in the cluster is
synchronized, that is, all nodes in the cluster are configured with the time synchronization
protocol.



1028 L. ZHANG

5.2. Metrics. High real-time processing requirement in edge environment is the key for
the Storm edge node scheduling optimization problem. Besides, the throughput of cluster
is another key indicator affecting the real-time processing performance of cluster, which
refers to the amount of data that can be processed per time unit. Particularly, the CPU
utilization and load balance are the main factors determining the cluster’s throughput. In
this way, the following indicators are used for performance evaluation: (i) the throughput
of Tuple per time unit time, which means the number of the Tuples that can be processed
per second, which reflects the throughput of the cluster; (ii) the average CPU utilization
among all edge nodes in the cluster within a specified time; and (iii) the standard deviation
of average CPU utilization for all edge nodes in the cluster within a specified time.

5.3. Benchmarks. The experimental data is obtained from (i) the Trident RAS API, (ii)
the Storm UI REST API, and (iii) the edge node configuration detection module imple-
mented by this algorithm. Based on these data, two benchmarks are used for comparison,
i.e., (i) Storm which is the default balanced scheduling model of Storm and (ii) R-Storm
which is the resource aware and real-time Storm model proposed in [10]. In particular, the
edge-oriented Storm model proposed and implemented in this paper is called E-Storm.

5.4. Results.

5.4.1. CPU utilization. Table 2 shows the average CPU usage rate of all edge nodes. The
corresponding results are measured every 5 seconds within 1 minute after the beginning
of the topological task in the scheduling scenario of the three scheduling models. The unit
of the value in Table 2 actually means the percentage of CPU usage in the topological
task processing. In order to show the optimization comparison results of these three
scheduling models in a more intuitive way, this paper presents the relationship between
CPU occupancy rate and elapsed time as shown in Figure 3. Apparently, we can discover
that the performance of E-Storm is always better than that of Storm, and partially better
than that of R-Storm. Despite the fact that the overall CPU occupancy rate of R-Storm
is slightly higher than that of E-Storm, we can tell that the gap between them is not very
obvious.

Table 2. The average CPU usage rate within 1 minute

Timestamp (s)/CPU usage rate (%) Storm R-Storm E-Storm
1 4.55 10.85 9.4
5 4.3 11.55 7.3
10 4.75 10.15 6.7
15 4.7 7.7 5.5
20 3.9 8.45 8.3
25 4.5 7.1 7
30 4.55 8.2 6.45
35 4.25 6.55 10.35
40 4.15 7.7 5.4
45 3.8 10.7 6.2
50 5.4 7.6 6.3
55 4.75 5.75 6.55
60 4.5 6.9 7.55



STORM SCHEDULING OPTIMIZATION 1029

Figure 3. Average CPU occupancy rate

Figure 4. The standard deviation on average CPU occupancy rate

5.4.2. Load balance. In order to explain the load balance among edge nodes, the standard
deviation is introduced. In particular, the standard deviation results of CPU usage for
each node in the scheduling scenarios are illustrated in Figure 4. The results are achieved
under three different scheduling models and different scenarios as explained in the previous
section. Generally, the smaller the standard deviation is, the more balance will be. As
can be discovered from Figure 4, the load balance of Storm is the best among them in
the current experimental environment. Meanwhile, the load balance condition of E-Storm
is obviously better than that of R-Storm, that is, R-Storm cannot effectively handle the
load balance among edge nodes when fulfilling the scheduling optimization.

5.4.3. Throughput. The cluster throughput is actually a comprehensive indicator affect-
ing the real-time data processing in edge computing. Generally, the larger the cluster



1030 L. ZHANG

throughput is, the stronger the data processing capability will be per time unit. In this
way, we summarize the corresponding results and show them in Table 3. For each sched-
uling model, we collect the throughput information of the cluster every 5 seconds within
1 minute from the beginning of the scheduling process. The unit for the values in Table
3 is in fact evaluated by the number of tuples processed per second. In order to show
the difference of the throughput achieved in different clusters by different methods more
intuitively, we compare the cluster throughput under each scheduler and obtain the cor-
responding results every 5 seconds within 1 minute after the beginning of the scheduling
process. All the collected corresponding results are shown in Table 3 and Figure 5.

Table 3. The cluster throughput under each scheduler within 1 minute

Timestamp (s)/Throughput (Tuple/s) Storm R-Storm E-Storm
5 220 600 420
10 1060 1420 1520
15 2200 2300 2420
20 3100 3480 3380
25 4040 4300 4540
30 5000 5380 5380
35 5980 6360 6380
40 6880 7240 7380
45 7880 8400 8240
50 8760 9260 9420
55 9700 10100 10180
60 10780 11240 12240
65 12780 12100 13120
70 13080 13800 14160

Figure 5. The tuple throughput per time unit



STORM SCHEDULING OPTIMIZATION 1031

As can be discovered from Figure 5, the Tuple processing capacity of E-Storm is almost
similar to that of R-Storm. However, we can discover that such situation only exists before
the elapsed time of around 55 seconds. Specifically, after the elapsed time of 55 seconds,
the throughput performance of E-Storm is obviously better than that of the R-Storm,
which can reflect the efficiency of the proposed method in a certain extent. On the other
hand, it is easy to note that the performance of Storm is significantly worse than that of
E-Storm during all the elapsed times. Overall, we divide the whole period into two parts
by the time of 55 seconds. For the first part, E-Storm does not show many benefits than
that of R-Storm, while in the second part E-Storm achieves higher throughput than that
of the other two models until the system finally stabilizes.

With respect to the comparison of the CPU usage and the load balance indicators, E-
Storm does not have a good load balance as Storm does, while it actually achieves a very
higher CPU utilization than that of Storm. This will eventually affect the throughput
performance of clusters. Jointly taking the two indicators into consideration, E-Storm
model proposed in this paper achieves better performance than the two methods with
respect to the overall optimization of resource utilization and load balance.

6. Conclusions. This paper studies the computational unloading strategy of Storm edge
nodes in the edge computing, and proposes a heuristic dynamic programming algorithm
which can calculate all the allocation schemes with the requirements satisfied and find the
global optimal solution accurately. To solve the problem that the concurrency of topolog-
ical tasks may exceed the maximum stack depth set by JVM, the BA-based scheduling
strategy is also proposed, which calculates the optimal solution iteratively through the
random initial solutions. The proposed method can be applied to the most common
scenarios without the need to configure parameters manually. The experiment results re-
veal that the proposed method can achieve better performance on the cluster throughput
optimization. It can also meet the high real-time processing requirements among edge n-
odes and effectively improve the data transmission ability when addressing the scheduling
optimization problems in the edge environment.

However, as a novel optimization strategy, there are also some limitations. For example,
on the one hand, the combination of DPA and BA increases the computation complexity
and the optimal solution is obtained by the multiple iterations, which affect the overall
network performance. On the other hand, the proposed algorithm is not suitable to the
large-scale edge computing environment. Given this, the future research will focus on
the above two points. In addition, the collaboration among different works can greatly
improve the performance of edge computing, which will be also studied.

Acknowledgements. This paper is supported by the Scientific and Technological Re-
search Project from Education Department of Jilin Province (Grant No. JLZX20562019072
4110543).

REFERENCES

[1] S. Moller, F. Koster and B. Weiss, Modelling speech service quality: From conversational phas-
es to communication quality and service quality, The 9th International Conference on Quality of
Multimedia Experience (QoMEX), Erfurt, pp.1-3, 2017.

[2] H. Guo, J. Liu, J. Zhang et al., Mobile-edge computation offloading for ultradense IoT networks,
IEEE Internet of Things Journal, vol.5, no.6, pp.4977-4988, 2018.

[3] Q. Pham, L. B. Le, S. Chung et al., Mobile edge computing with wireless backhaul: Joint task
offloading and resource allocation, IEEE Access, vol.7, pp.16444-16459, 2019.

[4] Y. Zhang, X. Chen, Y. Chen et al., Cost efficient scheduling for delay-sensitive tasks in edge com-
puting system, Proc. of 2018 IEEE International Conference, pp.73-80, 2018.



1032 L. ZHANG

[5] Y. Kim, J. Kwak and S. Chong, Dual-side optimization for cost-delay tradeoff in mobile edge com-
puting, IEEE Trans. Vehicular Technology, vol.67, no.2, pp.1765-1781, 2018.

[6] D. Zeng, L. Gu, S. Guo et al., Joint optimization of task scheduling and image placement in fog
computing supported software-defined embedded system, IEEE Trans. Computers, vol.65, no.12,
pp.3702-3712, 2016.

[7] L. Gu, D. Zeng, S. Guo et al., Cost efficient resource management in fog computing supported medical
cyber-physical system, IEEE Trans. Emerging Topics in Computing, vol.5, no.1, pp.108-119, 2017.

[8] C. Jian, J. Chen, J. Ping et al., An improved chaotic bat swarm scheduling learning model on edge
computing, IEEE Access, vol.7, no.1, pp.58602-58610, 2019.

[9] D. Xiang et al., RB-Storm: Resource balance scheduling in Apache Storm, The 6th IIAI International
Congress on Advanced Applied Informatics (IIAI-AAI), Hamamatsu, pp.419-423, 2017.

[10] S. Alsubaihi and J. Gaudiot, PETS: Performance, energy and thermal aware scheduler for job map-
ping with resource allocation in heterogeneous systems, IEEE the 35th International Performance
Computing and Communications Conference (IPCCC), Las Vegas, NV, pp.1-2, 2016.

[11] S. Liu et al., An adaptive online scheme for scheduling and resource enforcement in Storm,
IEEE/ACM Trans. Networking, vol.5, no.1, pp.1-10, 2019.

[12] B. Cheng, Edge-computing-aware deployment of stream processing tasks based on topology-external
information: Model, algorithms, and a Storm-based prototype, IEEE International Congress on Big
Data, 2016.

[13] Y. Liu, S. Zhao and B. Cheng, Multi-sensor data fusion system based on Apache Storm, IEEE
International Conference on Computer and Communications (ICCC), Chengdu, China, pp.1094-
1098, 2017.

[14] Z. Chen, N. Chen and J. Gong, Design and implementation of the real-time GIS data model and
sensor web service platform for environmental big data management with the Apache Storm, Inter-
national Conference on Agro-Geoinformatics, Istanbul, pp.32-35, 2015.

[15] B. Peng, M. Hosseini, Z. Hong et al., R-Storm: Resource-aware scheduling in Storm, ACM Middle-
ware Conference, 2015.

[16] L. Aniello, R. Baldoni and L. Querzoni, Adaptive online scheduling in Storm, Proc. of the 7th ACM
International Conference on Distributed Event-Based Systems, pp.207-218, 2013.

[17] V. Cardellini, V. Grassi, F. Presti et al., Distributed QoS-aware scheduling in Storm, Proc. of the
9th ACM International Conference on Distributed Event-Based Systems, pp.344-347, 2015.

[18] V. Gupta and R. Hewett, Unleashing the power of hashtags in tweet analytics with distributed frame-
work on Apache Storm, IEEE International Conference on Big Data, Seattle, WA, USA, pp.4554-
4558, 2018.

[19] L. Eskandari, Z. Huang and D. Eyers, P-scheduler: Adaptive hierarchical scheduling in Apache
Storm, Proc. of the Australasian Computer Science Week Multiconference, 2016.

[20] Z. H. Chen, J. L. Xu, J. Tang et al., G-Storm: GPU-enabled high-throughput online data processing
in Storm, IEEE International Conference on Big Data, pp.307-312, 2015.

[21] M. Naruse, K. Sekiguchi and K. Nonaka, Coverage control for multi-copter with avoidance of local
optimum and collision using change of the distribution density map, Annual Conference of the Society
of Instrument and Control Engineers of Japan (SICE), Nara, Japan, pp.1116-1121, 2018.

[22] Y. Wang, T. Li and W. Su, Research on the bi-level programming of underground logistics project
based on public-private partnership mode, ICIC Express Letters, vol.13, no.6, pp.505-511, 2019.

[23] W. Zhang, Y. Hu, H. He et al., Linear and dynamic programming algorithms for real-time task
scheduling with task duplication, The Journal of Supercomputing, vol.75, no.2, pp.494-509, 2017.

[24] Z. Lei, Y. Sun, Y. Song et al., The quantitative analysis of equipment operational test credibility
based on dynamic programming and 0-1 integer linear programming, International Conference on
Industrial Informatics, Wuhan, China, pp.107-110, 2015.

[25] Z. Zhuang, C. Tran, H. Ramachandra et al., Eliminating OS-caused large JVM pauses for latency-
sensitive java-based cloud platforms, IEEE the 9th International Conference on Cloud Computing
(CLOUD), San Francisco, CA, pp.694-701, 2016.

[26] C. Greco, T. Haden and K. Damevski, StackInTheFlow: Behavior-driven recommendation system
for stack overflow posts, IEEE/ACM the 40th International Conference on Software Engineering:
Companion (ICSE-Companion), Gothenburg, pp.5-8, 2018.

[27] Y. Xie, Y. Zhu, Y. Wang et al., A novel directional and non-local-convergent particle swarm optimiza-
tion based workflow scheduling in cloudCedge environment, Future Generation Computer Systems,
vol.97, pp.361-378, 2019.



STORM SCHEDULING OPTIMIZATION 1033

[28] Y. J. Moon, H. C. Yu, J. M. Gil et al., A slave ants based ant colony optimization algorithm for task
scheduling in cloud computing environments, Human-Centric Computing and Information Sciences,
vol.7, no.1, pp.2-8, 2017.

[29] Y. Li and S. Wang, An energy-aware edge server placement algorithm in mobile edge computing,
IEEE International Conference on Edge Computing (EDGE), San Francisco, CA, pp.66-73, 2018.

[30] X. Tong, L. Sun and T. Guan, Discussion on the optimization of assembly process for urban rail
vehicle based on the lean intelligent manufacturing model, Chinese Automation Congress (CAC),
Jinan, China, pp.1081-1084, 2017.

[31] T. Demir and T. E. Tuncer, Robust optimum and near-optimum beamformers for decode-and-
forward full-duplex multi-antenna relay with self-energy recycling, IEEE Trans. Wireless Commu-
nications, vol.18, no.3, pp.1566-1580, 2019.

[32] Y. Jiang, J. Li, X. Guo et al., Motion trajectory control of underground intelligent scraper based
on particle swarm optimization, Chinese Automation Congress (CAC), Jinan, China, pp.2287-2291,
2017.

[33] W. Kongkaew, Bat algorithm in discrete optimization: A review of recent applications, Songk-
lanakarin Journal of Science and Technology (SJST), vol.39, no.5, pp.641-650, 2017.


