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Abstract. Skolemization is a well-known method for removing existential quantifiers
from a logical formula. Although it always yields a satisfiability-preserving transforma-
tion step, conventional Skolemization in general does not preserve the logical meaning
of a source formula. We develop in this paper a theory for extending the space of first-
order formulas by incorporation of function variables and show how meaning-preserving
Skolemization can be achieved in an obtained extended space. A procedure for converting
a logical formula into an equivalent one in an extended conjunctive normal form on the
extended space is described. This work lays a theoretical foundation for solving logical
problems involving existential quantifications based on meaning-preserving formula trans-
formation.
Keywords: Skolemization, First-order logic, Equivalent transformation, Conjunctive
normal form, Query-answering problems

1. Introduction. Conversion of a given formula into a conjunction of clauses, called
a conjunctive normal form (CNF) or a clausal normal form, is referred to as formula
decomposition or, for short, decomposition in this paper. The conventional Skolemization-
based decomposition (CSD) is commonly used in automated reasoning [1, 2, 3, 4, 5, 6, 7].
It involves removal of existential quantifications by Skolemization [2, 8] (named after
Thoralf Albert Skolem), i.e., by replacement of an existentially quantified variable with a
Skolem term, which is determined by a relevant part of a formula prenex.

Recently, query-answering problems (QA problems) have gained wide attention [7, 9,
10, 11, 12, 13]. A problem in this class is concerned with finding the set of all ground
instances of a given query atom that are logical consequences of a given formula. Equi-
valent transformation (ET) of formulas is essential and very useful for solving many
kinds of logical problems [14, 15], including QA problems. In ET-based problem solving,
a logical formula representing a given problem is successively transformed into a simpler
but logically equivalent formula. Correctness of computation is readily guaranteed by any
combinations of equivalent transformations, which yield many kinds of correct algorithms
for solving logical problems.

Since conventional Skolemization does not generally preserve the logical meaning of a
given formula, it cannot be used in an ET-based problem-solving process. The formula
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resulting from Skolemization is not necessarily equivalent to the original one. Only the
satisfiability property of a formula is preserved. The resulting formula is equisatisfiable
with the original formula [16], i.e., the satisfiability of the resulting formula and that of
the original formula are equivalent. For instance, the first-order formula ∃x : p(x) and its
corresponding Skolemized form p(c), where c is a Skolem constant, are both satisfiable,
but they are not logically equivalent, e.g., the latter formula logically entails p(c) while
the former one does not.
Decomposition that preserves the set of all models of a formula is called meaning-

preserving decomposition (MPD). It can be used in an ET-based problem-solving process
safely. Our objective here is to develop MPD. However, as long as we consider first-order
logic, there is no formula decomposition that preserves logical meanings in general. Our
idea is (i) to develop a theory for extending a space of logical formulas by introduction
of function variables and (ii) to achieve MPD by introducing meaning-preserving Skolem-
ization in the obtained extended space.
The conventional first-order logic cannot solve many logical problems correctly what-

ever procedures are taken, which is a representational and transformational limitation.
Introduction of function variables means extension of first-order logic, which overcomes
the limitation of representation and transformation. The theory of MPD leads us to a new
logic, where more logical problems can be solved with guarantee of correctness, compared
to the conventional logic based on first-order formulas [17, 18, 19]. Extension of first-order
logic along with MPD in this paper overcomes the limitation of the conventional logic.
The paper is organized as follows. Section 2 formalizes a class of QA problems and

explains the necessity of meaning-preserving decomposition and logical-space extension.
Section 3 takes a Tax-cut problem as an example, and compares conventional Skolem-
ization and meaning-preserving Skolemization, showing the change of the meaning of the
problem. After introducing function variables, Section 4 formulates an extended logical
space, and presents an extended conjunctive normal form, called existentially quantified
conjunctive normal form (ECNF). Section 5 proposes an algorithm for meaning-preserving
conversion of a formula into a formula in an ECNF on the extended logical space, which
gives a general solution method for all QA problems on first-order formulas. Section 6
concludes the paper.
The notation that follows holds thereafter. Given a partial mapping f , dom(f) denotes

the domain of f (i.e., dom(f) = {x | ⟨x, y⟩ ∈ f}). Given a set A, pow(A) denotes the
power set of A.

2. Need for Meaning-Preserving Skolemization. Conventional Skolemization and
meaning-preserving Skolemization are compared. The conventional Skolemization-based
decomposition does not preserve logical meanings. In order to solve QA problems, space-
extension of first-order formulas and introduction of meaning-preserving decomposition
are necessary.

2.1. Query-answering problems. A query-answering problem (QA problem) is a pair
⟨K, q⟩, where K is a logical formula and q is an atomic formula (atom). The answer to a
QA problem ⟨K, q⟩, denoted by answer(K, q), is defined by

answer(K, q) = {g | (g is a ground instance of q) & (K |= g)},

i.e., the set of all ground instances of q that follow logically from K. When K consists
of only definite clauses, problems in this class are problems that have been discussed in
logic programming [10]. When K is a conjunction of axioms and assertions in Description
Logics [11], QA problems are usually called question-answering problems [12]. Our target
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in this paper is the class of QA problems on full first-order formulas, which is a superset
of the two problem classes stated above.

2.2. Formalization of QA problems. Let q be an atom with a predicate p. The answer
to a QA problem ⟨K, q⟩ can be equivalently represented as

answer(K, q) = φ
(∩

Models(K ′)
)
,

where

• q′ is an atom obtained from q by replacing the predicate p in q with a new predicate
p′,
• Q = (∀x1, . . . , xn : (q → q′)), where x1, . . . , xn are the variables occurring in q, i.e.,
Q is the universal closure of (q → q′),
• K ′ = K ∧Q,
• Models(K ′) is the set of all models of K ′,
•
∩

Models(K ′) is the intersection of all models of K ′,
• φ is a mapping that associates with any arbitrarily given set G of ground atoms
the set φ(G) of ground atoms obtained from G by replacing every occurrence of the
predicate p′ with p.

2.3. Conventional Skolemization. It is well-known that, in the traditional conversion
of first-order formulas into CNFs, the conventional Skolemization results in a conversion
step that does not preserve the logical meaning of a given formula. For example, the
formula

∀x, ∃y : p(x, y) (1)

is Skolemized to ∀x : p(x, f(x)), where f is a new function constant, called a Skolem
function. It is obvious that ∀x, ∃y : p(x, y) and ∀x : p(x, f(x)) have different meanings.
Given any arbitrary ground term tx, the former formula states the existence of a ground
term ty such that p(tx, ty) is true, while the latter formula states not only the existence of
such a ground term ty but also that one such ty is f(tx). The set {p(t, 3) | t is a ground
term}, for example, is a model of the former formula but is not a model of the second one.
Except for a Skolemization step, all transformation steps in formula conversion into a
CNF are basically equivalent transformation. They include, for example, the implication
law (p→ q ≡ ¬p ∨ q) and the De Morgan’s laws.

2.4. Introduction of meaning-preserving Skolemization. The basic idea of mean-
ing-preserving Skolemization is to use existentially quantified function variables instead
of function symbols. For example, Formula (1) is transformed into

∃h, ∀x : p(x, h(x)), (2)

where h is a function variable. Intuitively, h is an unknown function that associates with
any arbitrarily given ground term tx a ground term h(tx) such that p(tx, h(tx)) is true.
An alternative form of (2) is

∃h,∀x, y : (p(x, y) ∨ (h(x) ̸= y)), (3)

which is intuitively equivalent to (2).

2.5. Need for an extended space. Let L1 be the set of all conventional first-order
formulas. The conventional Skolemization-based decomposition (CSD) does not preserve
the set of all models of some first-order formula, i.e.,

∃E ∈ L1 : Models(CSD(E)) ̸= Models(E),
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where for any first-order formula E, CSD(E) denotes the formula obtained by applying
CSD to E. We want to develop new decomposition, called meaning-preserving decompo-
sition (MPD), that preserves the set of all models of any first-order formula, i.e.,

∀E ∈ L1 : Models(MPD(E)) = Models(E),

where for any first-order formula E, MPD(E) is the formula obtained by applying MPD
to E. Let CSD(L1) = {CSD(E) | E ∈ L1} and MPD(L1) = {MPD(E) | E ∈ L1}. We
know that CSD(L1) ⊆ L1. However, we cannot realize MPD that satisfies the following
conditions:

• Model-preservation, i.e., ∀E ∈ L1 : Models(MPD(E)) = Models(E).
• Closedness in L1, i.e., MPD(L1) ⊆ L1.

We need an extended space L2 that includes not only usual terms, atoms, and formulas
in L1, but also function variables, quantifications on function variables, and formulas
containing them. This paper constructs L2 and proposes MPD that satisfies the following
conditions:

• Model-preservation, i.e., ∀E ∈ L1 : Models(MPD(E)) = Models(E).
• Space extension to L2, i.e., MPD(L1) ⊆ L2.

2.6. Limitations of conventional logic and logical computation. Proof problems
historically constitute the most important problem class in logical problem solving [1, 2, 8,
16]. Resolution provides us a refutation proof procedure for logical formulas. Based on the
resolution proof method, automated theorem proving has been extensively investigated
[3, 4, 5, 6, 20].
Resolution is sound and complete, i.e., for any clause set Cs, Models(Cs) = ∅ if and

only if Cs ⊢ �, where Cs ⊢ � means that there is a deduction of Cs that results in an
empty clause. CSD maps a first-order formula to a set of clauses preserving satisfiability.
Let F be a first-order formula and CSD(F ) = Cs. Then Models(F ) = ∅ if and only if
Models(Cs) = ∅, and hence Models(F ) = ∅ if and only if Cs ⊢ �. This proof method can
be looked at as a satisfiability-based method.
Being inspired by the resolution proof method, Prolog and a theory of SLD-resolution

were invented for solving QA problems [7, 9, 10, 13]. Soundness and completeness theo-
rems were established [21, 22]. Skolemization was still assumed in formula decomposition,
and QA problems on clauses were considered. However, CSD does not necessarily preserve
the answers to QA problems. A general theory for solving QA problem on full first-order
formulas cannot be constructed if we stay in the current first-order formula space, i.e.,
L1.
The ET-based approach, on the other hand, is ideal for guarantee of correctness of com-

putation. The most general ET is answer-preserving transformation. Model preservation
and model-intersection preservation are sufficient conditions for answer-preservation. As
will be proposed in Section 5, MPD is realized as a model-preserving mapping in the space
L2. So far, many problems that cannot be solved in the space L1 with resolution have
been discovered and solved with the correctness of computation being guaranteed strictly
[14, 15, 17, 19, 23].

3. Conventional and New Decomposition by Example. CSD and MPD are com-
pared by using an example problem, called a “Tax-cut” problem, which is simplified from
the original problem in [24]. MPD preserves the answer to this example problem, while
CSD does not. The precise definition of MPD will be determined by the algorithm given
in Section 5.
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3.1. A simplified Tax-cut problem. The “Tax-cut” problem is to find all persons who
can have discounted tax, with the knowledge that:

1) Any person who has two children or more can get discounted tax.
2) Peter has a child.
3) Peter has a child named Paul.

This problem can be represented in first-order logic using the formulas F1-F3 below, where
neq stands for “not equal”.

F1: ∀x, y, z : ((hasChild(x, y) ∧ hasChild(x, z) ∧ neq(y, z)) → TaxCut(x))

F2: ∃x : (hasChild(Peter, x))

F3: hasChild(Peter,Paul)

In this section, we show that

• the correct answer to the “Tax-cut” problem is the empty set, which is obtained
from the model-based definition of the answer (Section 3.2),
• the answer obtained by the conventional Skolemization-based decomposition (CSD)
is not the empty set (Section 3.3), and
• the answer obtained by meaning-preserving decomposition (MPD) is the empty set
(Section 3.4).

It is concluded that revision of formula decomposition from the conventional decomposi-
tion to meaning-preserving decomposition is necessary.

3.2. The correct answer to the problem. The “Tax-cut” problem is a query-answering
(QA) problem ⟨K, q⟩, where K = F1 ∧ F2 ∧ F3 and q = TaxCut(x).

Let GU be the set of all ground user-defined atoms. A model of a first-order formula
is a set of ground user-defined atoms with respect to which the formula is true. Let
Q = (∀x : TaxCut(x) → TaxCut′(x)). Note that F3 implies F2. Hence Models(K ∧ Q) =
Models(F1 ∧ F3 ∧Q). Then there exist infinitely many models of K ∧Q and

{S0} ⊆ Models(K ∧Q) ⊆ {S0} ∪M1,

where

• S0 = {hasChild(Peter,Paul)}, and
• M1 = {S0 ∪ G | G ⊆ GU}.
We use the following proposition for minimal models.

Proposition 3.1. Let G be a set. Assume that S ⊆ G, Md ⊆ pow(G), and Ms ⊆ pow(G).
If {S} ⊆ Md ⊆ {S} ∪ Ms and

∩
Ms ⊇ S, then

∩
Md = S.

Proof: Since
∩
({S} ∪ Ms) = S ∩ (

∩
Ms) = S, we have S ⊇

∩
Md ⊇ S. Hence∩

Md = S. �
It follows, from Proposition 3.1, that

∩
Models(K ∧Q) = S0. Hence

answer(K, q) = φ
(∩

Models(K ∧Q)
)
= φ(S0) = {},

where φ is a mapping that associates with any arbitrarily given set G of ground atoms
the set φ(G) defined by {TaxCut(x) | TaxCut′(x) ∈ G}.

3.3. Conventional decomposition. From the first-order formulas F1, F2, F3, andQ, we
obtain the following clauses C1, C2, C3, and C4 by using the conventional Skolemization-
based decomposition (CSD), where f1 is a Skolem function:
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C1: TaxCut(x)← hasChild(x, y), hasChild(x, z), neq(y, z)

C2: hasChild(Peter, f1)←
C3: hasChild(Peter,Paul)←
C4: TaxCut′(x)← TaxCut(x)

The transformations F1 ⇒ C1, F3 ⇒ C3, and Q ⇒ C4 are equivalent transformations.
However, the transformation of F2 into C2 is not an equivalent transformation. The atom
hasChild(Peter, f1) is true in every model of C2, while it is false in some model of F2. By
using a set of clauses, the conjunction of the clauses is represented. There exist many
models of {C1, C2, C3, C4}, and

{S0 ∪ S1 ∪ S2} ⊆ Models({C1, C2, C3, C4}) ⊆ {S0 ∪ S1 ∪ S2} ∪M2,

where

• S0 = {hasChild(Peter,Paul)},
• S1 = {TaxCut(Peter),TaxCut′(Peter)},
• S2 = {hasChild(Peter, f1)}, and
• M2 = {S0 ∪ S1 ∪ S2 ∪ G | G ⊆ GU}.

It follows, from Proposition 3.1, that
∩
Models({C1, C2, C3, C4}) = S0 ∪ S1 ∪ S2. Hence∩

Models(K ∧Q) ̸=
∩

Models({C1, C2, C3, C4}).

Non-preservation of the model intersection above comes from the Skolemization step in-
cluded in the conversion of F2 into C2. It follows that

φ
(∩

Models({C1, C2, C3, C4})
)
= φ(S0 ∪ S1 ∪ S2) = {TaxCut(Peter)} ̸= answer(K, q).

The answer to the simplified “Tax-cut” problem is not preserved by CSD.

3.4. Meaning-preserving decomposition. From the first-order formulas F1, F2, F3,
and Q, we obtain the following clauses C1, C

′
2, C3, and C4 by meaning-preserving decom-

position (MPD), where h1 is a function variable:

C1: TaxCut(x)← hasChild(x, y), hasChild(x, z), neq(y, z)

C ′
2: hasChild(Peter, x)← func(h1, x)

C3: hasChild(Peter,Paul)←
C4: TaxCut′(x)← TaxCut(x)

The transformations F1 ⇒ C1, F2 ⇒ C ′
2, F3 ⇒ C3, and Q ⇒ C4 are all equivalent

transformations. Let s be a term the existence of which is guaranteed by h1 in C ′
2, i.e.,

s = h1(). There are two cases:

• s = Paul. Then C ′
2 and C3 are equivalent. Peter’s child is only Paul. Both

TaxCut(Peter) and TaxCut′(Peter) are false.
• s ̸= Paul. Peter has two children. Both TaxCut(Peter) and TaxCut′(Peter) are true.

Let GT be the set of all ground terms. There exist infinitely many models of {C1, C
′
2, C3, C4}

and
{S0} ⊆ Models({C1, C

′
2, C3, C4}) ⊆ {S0} ∪M3 ∪M ′

3,

where

• S0 = {hasChild(Peter,Paul)},
• S1 = {TaxCut(Peter),TaxCut′(Peter)},
• for any s ∈ GT , S3(s) = {hasChild(Peter, s)},
• M3 = {S0 ∪ S1 ∪ S3(s) ∪ G | (Paul ̸= s ∈ GT ) & (G ⊆ GU)}, and
• M ′

3 = {S0 ∪ S3(s) ∪ G | (Paul = s ∈ GT ) & (G ⊆ GU)}.
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It follows, from Proposition 3.1, that
∩
Models({C1, C

′
2, C3, C4}) = S0. Hence

φ
(∩

Models({C1, C
′
2, C3, C4})

)
= φ(S0) = {} = answer(K, q).

The answer to the simplified “Tax-cut” problem is preserved by MPD.

4. An Extended Space for Formula Decomposition. A new space L2 is constructed
based on L1. The notions of function variables and formula trees are introduced. An
extended conjunctive normal form, called an existentially quantified conjunctive normal
form (ECNF), is defined.

4.1. Function variables. By meaning-preserving decomposition, a subformula

∀x1, . . . , ∀xn,∃y : β,

where n ≥ 0, is transformed into

∃h, ∀x1, . . . , ∀xn, ∀y : (β ∨ ¬func(h, x1, . . . , xn, y)),

where h is a function variable and func is a built-in predicate. The expression

func(h, x1, . . . , xn, y)

is called a func-atom, the meaning of which is h(x1, . . . , xn) = y. If h is instantiated
into a function constant hc, and x1, . . . , xn and y become ground terms t1, . . . , tn and
s, respectively, then the meaning of this func-atom becomes hc(t1, . . . , tn) = s and its
truth value is determined. Let Var denote the set of all usual variables, FVar the set
of all function variables, and FCon the set of all function constants. Formulas in L2 are
constructed using logical connectives (i.e., ¬, ∧, ∨, →, and ↔), quantifications on usual
variables, and quantifications on function variables.

4.2. Formula trees. We regard a formula in L2 as a tree, called a formula tree. Given
a formula α in L2, the formula tree of α, denoted by FT(α), is a binary tree defined
inductively as follows: If α is an atomic formula (atom), then FT(α) is a one-vertex
binary tree whose root is α. If α = ¬β, then FT(α) is a binary tree that has ¬ as its root
and FT(β) as its only immediate subtree. If α = β∧γ (respectively, β∨γ, β → γ, β ↔ γ),
then FT(α) is a binary tree that has ∧ (respectively, ∨,→,↔) as its root, FT(β) as its left
immediate subtree, and FT(γ) as its right immediate subtree. If α = ∀v : β (respectively,
∃v : β), where v ∈ Var, then FT(α) is a binary tree that has ∀v (respectively, ∃v) as
its root and FT(β) as its only immediate subtree. If α = ∀vh : β (respectively, ∃vh : β),
where vh ∈ FVar, then FT(α) is a binary tree that has ∀vh (respectively, ∃vh) as its root
and FT(β) as its only immediate subtree.

Each vertex of a formula tree is either an atom or an element of LCon∪QVar∪QFVar,
where

• LCon = {¬,∧,∨,→,↔},
• QVar = {∀v | v ∈ Var} ∪ {∃v | v ∈ Var}, and
• QFVar = {∀vh | vh ∈ FVar} ∪ {∃vh | vh ∈ FVar}.

A ∀v-vertex and an ∃v-vertex in QVar are also called a ∀Var-vertex and an ∃Var-vertex,
respectively. A ∀vh-vertex and an ∃vh-vertex in QFVar are also called a ∀FVar-vertex
and an ∃FVar-vertex, respectively.

4.3. Existentially quantified conjunctive normal form (ECNF). A formula α in
L2 is said to be in an existentially quantified conjunctive normal form (ECNF) if and only
if α is a closed formula and every path from the root to a leaf of the formula tree of α
consists of
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1) zero or more ∃FVar-vertices, followed by
2) zero or more ∧-vertices, followed by
3) zero or more ∀Var-vertices, followed by
4) zero or more ∨-vertices, followed by
5) either (i) a leaf vertex representing a usual atom or (ii) a ¬-vertex followed by a leaf

vertex representing a usual atom or a func-atom.

A formula in an ECNF, also called an ECNF itself, is similar to a usual CNF in that
it contains a conjunction of clauses, each of which is a disjunction of literals. There are,
however, two main differences:

1) A formula in an ECNF contains existential quantifications on function variables; it
has the form

∃vh1, . . . , ∃vhn : β,

where the vhi are function variables and β has the same form as a usual CNF
except that the negations of func-atoms may appear in β, i.e., β is a conjunction
of disjunctions of (i) usual atoms, (ii) negated usual atoms, and (iii) negated func-
atoms.

2) While usual Skolem functions may appear in usual atoms, function variables can
appear only in func-atoms.

4.4. An extended clause space. Given usual atoms a1, . . . , am, b1, . . . , bn and func-
atoms f1, . . . , fp, a disjunction

a1 ∨ · · · ∨ am ∨ ¬b1 ∨ · · · ∨ ¬bn ∨ ¬f1 ∨ · · · ∨ ¬fp
contained in an ECNF is often written as

a1, . . . , am ← b1, . . . , bn, f1, . . . , fp.

Formulas in this class are similar to usual clauses, and are called extended clauses. The set
of all extended clauses is denoted by ECLSF. A conjunction of a finite or infinite number
of extended clauses is used for knowledge representation and also for computation. As
usual, such a conjunction is usually dealt with by regarding it as a set of (extended)
clauses. The extended clause space in this paper is the power set of ECLSF.
Let Cs be a set of extended clauses. Implicit existential quantifications of function

variables and implicit clause conjunction are assumed in Cs. Function variables in Cs are
all existentially quantified and their scope covers all clauses in Cs. With occurrences of
function variables, clauses in Cs are connected through shared function variables. After
instantiating all function variables in Cs into function constants, clauses in the instantiated
set are totally separated.

5. An Algorithm for Meaning-Preserving Decomposition. An algorithm for trans-
forming a formula in L1 into an equivalent ECNF in L2 is proposed. Based on the algo-
rithm, a transformation scheme for solving a QA problem is given and its correctness is
proved.

5.1. The proposed conversion algorithm. Assume that

• the initial set Ini = L1, which is a subset of L2, and
• the target set Fin is the set of all ECNFs in L2.

Let a formula α in Ini be given as input. Regard α as a formula in the space L2 and
let T = FT(α). To transform α into a formula in Fin, T is changed in the space L2

successively by the steps described below. Figure 1 depicts an outline of the procedure.
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Figure 1. An overview of the decomposition procedure

1. Preparation:
(a) Convert → and ↔ equivalently into ¬, ∧, and ∨, using the following logical

equivalences:

β → γ ≡ ¬β ∨ γ
β ↔ γ ≡ (¬β ∨ γ) ∧ (¬γ ∨ β)

(b) Rename quantified variables so that for any two occurrences of quantifications
Qv and Q′w, where v, w ∈ Var, v ̸= w.

2. Move ¬ inwards: Move ¬ inwards equivalently until each occurrence of ¬ immedi-
ately precedes an atom, using the following logical equivalences:

¬(¬β) ≡ β
¬(β ∧ γ) ≡ ¬β ∨ ¬γ
¬(β ∨ γ) ≡ ¬β ∧ ¬γ
¬∀x : α ≡ ∃x : ¬α
¬∃x : α ≡ ∀x : ¬α

3. Move down ∨-vertices: Repeatedly move down ∨-vertices in the current state of
T through ∃Var-vertices, ∀Var-vertices, and ∧-vertices as far as possible using the
following logical equivalences:

(∃x : β) ∨ γ ≡ ∃x : (β ∨ γ)
(∀x : β) ∨ γ ≡ ∀x : (β ∨ γ)
(β ∧ γ) ∨ δ ≡ (β ∨ δ) ∧ (γ ∨ δ)

4. Move up ∧-vertices: Repeatedly move up ∧-vertices in the current state of T through
∀Var-vertices as far as possible using the following logical equivalence:

∀x : (β ∧ γ) ≡ (∀x : β) ∧ (∀x : γ)

5. If T includes an ∃Var-vertex, then:
(a) Skolemization: In T, select a subformula

∀x1, . . . , ∀xn,∃y : β,
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where n ≥ 0, such that there is no further universal quantification over this
subformula in T. Transform this subformula into

∃h, ∀x1, . . . , ∀xn, ∀y : (β ∨ ¬func(h, x1, . . . , xn, y)),

where h ∈ FVar such that h has not been used so far.
(b) Move up an ∃FVar-vertex: Repeatedly move up the new ∃FVar-vertex (intro-

duced at Step 5(a)) through ∧-vertices as far as possible using the following
logical equivalence:

(∃FVar : β) ∧ γ ≡ ∃FVar : (β ∧ γ)

(c) Go to Step 3.
6. Stop with the formula represented by the current state of T as the output formula.

5.2. Model preservation of the decomposition algorithm. Each step of the algo-
rithm is an ET step in the space of L2:

• Except for the Skolemization step (Step 5(a)), a formula with α as a subformula is
transformed based on a logical equivalence of the form α ≡ β into a new formula
that is obtained by replacing α with β.
• Subformula replacement by the Skolemization step (Step 5(a)) is also meaning-
preserving.

Since all steps are ET steps, it is obvious that the algorithm preserves the logical meaning
of the input formula.

Theorem 5.1. Given a formula α in Ini as input, if the algorithm in Section 5.1 yields an
output formula β in Fin, then α and β have the same logical meaning, i.e., Models(α) =
Models(β).

5.3. Tax-cut example. The background knowledge of the original “Tax-cut” problem
in [24] contains the statement “Peter has a child, who is someone’s mother”, which is
represented by the first-order formula

∃x : (hasChild(Peter, x) ∧ (∃y : motherOf(x, y))).

This formula is transformed by the proposed conversion algorithm as shown in Table 1.
From the last formula in the table, we obtain the following two clauses:

• hasChild(Peter, x)← func(h1, x), and
• motherOf(x, y)← func(h1, x), func(h2, x, y),

where h1 and h2 are function variables that are introduced in the conversion process.

5.4. Solving QA problems by equivalent transformation. Using MPD on L2 and
ECLSF, a transformation scheme for solving a QA problem ⟨K, q⟩ is obtained.
1) ⟨K, q⟩ is transformed into a first-order formula K ∧Q as described in Section 2.2.
2) The first-order formula K ∧Q is converted by MPD into a formula Q′ in L2.
3) The formula Q′ is converted into a set Cs1 of extended clauses in ECLSF.
4) The clause set Cs1 is successively transformed into a simpler but logically equivalent

set Csn of extended clauses in ECLSF.
5) The answer to the problem is determined by ans(Csn, φ), where ans is a partial

mapping, called an answer mapping, that gives the correct answer to a problem in
its domain at a small computation cost.

By the above transformation scheme, the QA problem ⟨K, q⟩ is transformed into a problem
⟨Cs1, φ⟩, which is further transformed into a problem ⟨Csn, φ⟩, the answer to which is
φ (

∩
Models(Csn)). We give a sufficient condition for correctness of the transformation

scheme by the following theorem.
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Table 1. Application of the conversion algorithm

Step Transformation Formula
∃x : (hasChild(Peter, x) ∧ (∃y : motherOf(x, y)))

5(a) Skolemization ∃h1 : (∀x : ((hasChild(Peter, x) ∧ (∃y : motherOf(x, y)))
∨ ¬func(h1, x)))

3 Move ∨ down ∃h1 : (∀x : ((hasChild(Peter, x) ∨ ¬func(h1, x)) ∧
((∃y : motherOf(x, y)) ∨ ¬func(h1, x))))

3 Move ∨ down ∃h1 : (∀x : ((hasChild(Peter, x) ∨ ¬func(h1, x)) ∧
(∃y : (motherOf(x, y) ∨ ¬func(h1, x)))))

4 Move ∧ up ∃h1 : ((∀x : (hasChild(Peter, x) ∨ ¬func(h1, x))) ∧
(∀x : (∃y : (motherOf(x, y) ∨ ¬func(h1, x)))))

5(a) Skolemization ∃h1 : ((∀x : (hasChild(Peter, x) ∨ ¬func(h1, x))) ∧
(∃h2 : (∀x : (∀y : ((motherOf(x, y) ∨ ¬func(h1, x))

∨ ¬func(h2, x, y))))))

5(b) Move ∃h2 upward ∃h1 : (∃h2 : (∀x : (hasChild(Peter, x) ∨ ¬func(h1, x))) ∧
(∀x : (∀y : ((motherOf(x, y) ∨ ¬func(h1, x))

∨ ¬func(h2, x, y)))))

Theorem 5.2. If there is a sequence of problems ⟨Cs1, φ⟩, ⟨Cs2, φ⟩, . . . , ⟨Csn, φ⟩ such that

• Cond1 : φ(
∩

Models(K ∧Q)) = φ(
∩
Models(Cs1)),

• Cond2 : φ(
∩

Models(Csi)) = φ(
∩

Models(Csi+1)) for any i ∈ {1, 2, . . . , n− 1}, and
• Cond3 : ⟨Csn, φ⟩ ∈ dom(ans),

then φ(
∩

Models(K ∧Q)) = ans(Csn, φ).

Proof: By the first and the second conditions,

φ
(∩

Models(K ∧Q)
)
= φ

(∩
Models(Cs1)

)
= · · · = φ

(∩
Models(Csn)

)
.

Since ans is an answer mapping and ⟨Csn, φ⟩ ∈ dom(ans), it holds that

φ
(∩

Models(Csn)
)
= ans(Csn, φ).

It follows that φ (
∩
Models(K ∧Q)) = ans(Csn, φ). �

The transformation scheme is called the ET-based problem-solving method , or simply
the ET-based method , since it takes the meaning-preserving strategy in the sense that it
satisfies Cond1 and Cond2 in Theorem 5.2. We use MPD since applying MPD to K ∧Q
to obtain Cs1 is a sufficient condition for Cond1. MPD is necessary for the guarantee of
correctness of computation in solutions of logical problems including proof problems and
QA problems. As shown in Section 3, the “Tax-cut” problem can be converted correctly
by MPD satisfying Cond1 into a formula Q′, to which further transformation satisfying
Cond2 can be applied in the space of the power set of ECLSF in order to obtain the correct
answer. On the other hand, CSD fails to satisfy Cond1 and no further transformation
satisfying Cond2 is useful to reach the correct answer.

6. Conclusions. L1 is the set of all first-order formulas, while L2 is a new formula
space obtained by extending first-order logic with function variables. An algorithm for
transforming a formula in L1 into an equivalent ECNF in L2 is proposed. For traditional
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transformation of first-order formulas into CNFs, it is well-known that the conventional
Skolemization-based decomposition (CSD) is not meaning-preserving, i.e., ∃E ∈ L1 :
Models(CSD(E)) ̸= Models(E). Meaning-preserving decomposition (MPD) is proposed
in this paper such that

• MPD(L1) ⊆ L2, and
• ∀E ∈ L1 : Models(MPD(E)) = Models(E).

For solving many kinds of logical problems, including QA problems, MPD can be used
to transform a first-order formula into a set of extended clauses in ECLSF, which is
further transformed equivalently in the space of the power set of ECLSF. MPD, which is
based on meaning-preserving Skolemization, is of fundamental importance to guarantee
the correctness of logical problem solving. A general method of logical problem solving
will be established on the basis of MPD together with the ET-method, avoiding the
representational and computational limitation on first-order logic. By the research of
control to search for solution paths in the extended space ECLSF, more logical problems
will be solved practically, compared to the logical computation on first-order logic.
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