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Abstract. For the existing problem of determining the expert weights by calculating
the deviation between the individual decision matrix and the average decision matrix in
multi-attribute group decision-making, the definition of coordinated expert weights is in-
troduced, and an algorithm of coordinated expert weights based on fixed point iteration is
proposed. Firstly, by the random given initial weights of decision-makers, the Euclidean
distance measure is used to calculate the proximity between each expert decision matrix
and the overall decision matrix. And then, the weights of decision-makers are adjusted
by the proximity. Through adaptive adjustment repeatedly, the coordinated weights are
received. The coordinated weights are determined by the given decision matrices and are
not affected by the selection of the initial value of expert weights, which can objective-
ly reflect the scoring level of each expert. According to the coordinated expert weights,
an improved TOPSIS method based on information entropy measure is used to rank the
alternatives. Numerical experiments are used to demonstrate the effectiveness of the coor-
dinated expert weights algorithm based on fixed point iteration and the improved TOPSIS
method.
Keywords: Group decision-making, Coordinated weights of experts, Fixed point itera-
tion, Improved TOPSIS method

1. Introduction. Multi-attribute decision making, one of the well-known branches of
decision-making, aims at finding the most suitable solutions from a set of alternatives
under conflicting attribute. Due to the increasing complexity of the soci-economic envi-
ronments, a single decision maker (DM) or expert may be impossible to consider all rele-
vant aspects of a problem. Hence, many real world decision problems tend to be made by
groups of decision-makers (DM) rather than individuals. In this case, the multi-attribute
decision making problems require to be further extended to multi-attribute group decision
making (MAGDM) problems [1, 2]. In group decision making, the rationality of expert
weight has a direct influence on the accuracy of decision result. Therefore, in the research
of multi-attribute group decision problem, the research of expert weights determination
method plays an important role.

The existing literature on expert weights determination methods is mainly divided
into subjective weighting method and objective weighting method. Subjective weighting
methods mainly include the Delphi method [3], and the analytic hierarchy process method
[4, 5]. While objective weighting methods mainly include the grey relational coefficient
[6], the entropy value method [7], the maximizing deviation method [8], the Euclidean
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distance method based on average decision matrix [9] and the projection method based
on average decision matrix [10, 11, 12]. The other relevant methods can be referred to
[13, 14, 15, 16].
Due to the subjective determination method based on prior experiences with strong

subjectivity, in most cases, the objective determination methods are preferred. It is a
common objective weighting method to determine the weight of experts according to
their scoring level. Hence, how to evaluate the accuracy of the decision matrix given
by experts is a crucial problem. In [9, 10, 11, 12], the deviation between the individual
decision matrix and the ideal decision matrix is used to evaluate the accuracy of the
decision matrix given by the expert and then determine the weight of the expert. The
closer decision matrix given by the expert to the ideal decision matrix, the bigger weight
of the expert, which sounds undoubtedly reasonable.
However, the way of determining the ideal decision matrix in [9, 10, 11, 12] is worth

discussing. All of them regard the average decision matrix as the ideal decision matrix,
which is obtained based on an underlying assumption that the weights of experts are
the same. Paradoxically, the weights of experts are usually different by calculating the
deviation between the individual decision matrix and the average decision matrix. When
the weights of experts are obtained by the above method, the ideal decision matrix should
be renewed. And then the deviation between the individual decision matrix and the ideal
decision matrix would be updated. Hence, the weights of experts would be renewed again
and it would lead to another ideal decision matrix. To some extent, the definition of
the ideal decision matrix above is not reasonable. What is a reasonable definition of the
ideal decision matrix? And how to determine the weights of experts by the ideal decision
matrix?
To settle the above problem, for the given expert decision matrices, we give the defini-

tions of ideal decision matrix X∗ and coordinated expert weights λ∗ = (λ∗
1, . . . , λ

∗
k, . . . , λ

∗
t )

as follows.

Definition 1.1. Given t decision matrices X1, . . . , Xk, . . . , Xt, then the coordinated ex-
pert weights λ∗ = (λ∗

1, . . . , λ
∗
k, . . . , λ

∗
t ) and the ideal decision matrix X∗ should satisfy the

following conditions:

X∗ = λ∗
1X1 + · · ·+ λ∗

kXk + · · ·+ λ∗
tXt

λ∗
k =

m(Xk, X
∗)

m(X1, X∗) + · · ·+m(Xk, X∗) + · · ·+m(Xt, X∗)
, k = 1, 2, . . . , t,

(1)

where m(Xk, X
∗) denotes the degree of the decision matrix Xk approaching to the ideal de-

cision X∗. Under the measure m, the coordinated expert weights λ∗ = (λ∗
1, . . . , λ

∗
k, . . . , λ

∗
t )

satisfying the above conditions should be unique.

In fact, the coordinated expert weights λ∗ = (λ∗
1, . . . , λ

∗
k, . . . , λ

∗
t ) can be abstracted as

the solution to the nonlinear equations λ = G(λ), where the multivariate function G(λ)
represents the updated value of each expert’s weight under the measure m. Therefore, we
can try to use the fixed point iterative algorithm to find the coordinated expert weights.
As a classical multi-attribute decision making method, TOPSIS method [17, 18, 19, 20,

21, 22, 23, 24, 25] considers two benchmarks, one is the distance measure between each
alternative and positive ideal solution, and the other one is the distance measure between
each alternative and negative ideal solution, and then sorts each alternative according
to its relative proximity. In the TOPSIS method, the two distance measures are treated
equally. Sometimes it would lead to such case: A1 ≻ A2 by the first distance measure,
A2 ≻ A1 by the second distance measure, while A1 = A2 by the TOPSIS method. At
this time, we should consider the ability of the two distance measures to distinguish the



MULTI-ATTRIBUTE GROUP DECISION MAKING 17

alternatives to give a more scientific evaluation outcome. In fact, the abilities of the two
distance measures to distinguish the alternatives are usually different. In order to reflect
the abilities of the two distance measures to distinguish the alternatives, an improved
TOPSIS method based on information entropy is proposed to determine the weights of
the two distance measures, based on which a new evaluation criterion is given to rank the
alternatives.

As for the shortages mentioned above, this work intends to introduce the definitions of
ideal decision matrix and coordinated expert weights and then propose an algorithm based
on fixed point iteration to determine the coordinated weights of experts. Furthermore,
this paper intends to put forward an improved TOPSIS method to promote the ability of
ranking the alternatives.

The rest of this paper is organized as follows. Section 2 reviews some basic notions,
operations and aggregation operators related to interval-valued intuitionistic fuzzy num-
ber. Section 3 gives the description of the novel method based on fixed point iteration
and improved TOPSIS method. Section 4 presents a numerical example and comparison
analysis to illustrate the validity of the proposed method. The final section discusses the
conclusion and further research of this paper.

2. Preliminaries. Since interval-valued intuitionistic fuzzy set is more flexible and ap-
plicable in decision making field, this paper mainly presents a novel method for group
decision making with interval-valued intuitionistic fuzzy information.

In this section, we briefly review basic concepts related to interval-valued intuitionistic
fuzzy set, interval-valued intuitionistic fuzzy matrix, and the Euclidean distance measure
of them, respectively.

Atanassov and Gargov [26] introduced the notion of interval-valued intuitionistic fuzzy
set as follows.

Definition 2.1. [26] Let X = {x1, x2, . . . , xm} be a universe of discourse, and then an

interval-valued intuitionistic fuzzy set Ã on X is defined as:

Ã = {< xi, µÃ(xi), νÃ(xi) > |xi ∈ X}, (2)

where µÃ(xi) =
[
µl
Ã
(xi), µ

u
Ã
(xi)

]
⊆ [0, 1] and νÃ(xi) =

[
νl
Ã
(xi), ν

u
Ã
(xi)

]
⊆ [0, 1] are inter-

vals, µl
Ã
(xi) = infµÃ(xi), µ

u
Ã
(xi) = supµÃ(xi), ν

l
Ã
(xi) = infνÃ(xi), ν

u
Ã
(xi) = supνÃ(xi),

and µu
Ã
(xi) + νu

Ã
(xi) ≤ 1, for all xi ∈ X, and πÃ(xi) =

[
πl
Ã
(xi), π

u
Ã
(xi)

]
, where πl

Ã
(xi) =

1− µu
Ã
(xi)− νu

Ã
(xi), π

u
Ã
(xi) = 1− µl

Ã
(xi)− νl

Ã
(xi), for all xi ∈ X.

Especially, if µÃ(xi) = µl
Ã
(xi) = µu

Ã
(xi) and νÃ(xi) = νl

Ã
(xi) = νu

Ã
(xi), then an interval-

valued intuitionistic fuzzy set Ã is reduced to an intuitionistic fuzzy set.
Xu and Chen [27] called the pair α̃ = (µα̃, να̃) an interval-valued intuitionistic fuzzy

number (IVIFN), and denoted an IVIFN by
([
µl
α̃, µ

u
α̃

]
,
[
νl
α̃, ν

u
α̃

])
, where

[
µl
α̃, µ

u
α̃

]
,
[
νl
α̃, ν

u
α̃

]
,[

πl
α̃, π

u
α̃

]
⊆ [0, 1], µu

α̃ + νu
α̃ ≤ 1, πl

α̃ = 1 − µu
α̃ − νu

α̃, π
u
α̃ = 1 − µl

α̃ − νl
α̃, and

[
µl
α̃, µ

u
α̃

]
and[

νl
α̃, ν

u
α̃

]
represent the supported interval and the opposed interval about an evaluation

object, respectively.

Definition 2.2. [27] Given two IVIFNs α̃ =
([
µl
α̃, µ

u
α̃

]
,
[
νl
α̃, ν

u
α̃

])
and β̃ =

([
µl
β̃
, µu

β̃

]
,[

νl
β̃
, νu

β̃

])
, then

1) α̃ + β̃ =
([

µl
α̃ + µl

β̃
− µl

α̃µ
l
β̃
, µu

α̃ + µu
β̃
− µu

α̃µ
u
β̃

]
,
[
νl
α̃ν

l
β̃
, νu

α̃ν
u
β̃

])
,

2) λα̃ =
([

1−
(
1− µl

α̃

)λ
, 1− (1− µu

α̃)
λ
]
,
[(
νl
α̃

)λ
, (νu

α̃)
λ
])

, λ > 0.
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Then, Yue [9] gave the definition of the Euclidean distance measure between IVIFNs
as follows.

Definition 2.3. [9] Given two IVIFNs α̃ =
([
µl
α̃, µ

u
α̃

]
,
[
νl
α̃, ν

u
α̃

])
and β̃ =

([
µl
β̃
, µu

β̃

]
,[

νl
β̃
, νu

β̃

])
, then

D
(
α̃, β̃

)
=

√(
µl
α̃ − µl

β̃

)2

+
(
µu
α̃ − µu

β̃

)2

+
(
νlα̃ − νl

β̃

)2

+
(
νuα̃ − νu

β̃

)2

+
(
πl
α̃ − πl

β̃

)2

+
(
πu
α̃ − πu

β̃

)2

(3)

is called the Euclidean distance between α̃ and β̃, where πl
α̃ = 1−µu

α̃−νu
α̃, π

u
α̃ = 1−µl

α̃−νl
α̃,

πl
β̃
= 1 − µu

β̃
− νu

β̃
, πu

β̃
= 1 − µl

β̃
− νl

β̃
. In general, the smaller the value D

(
α̃, β̃

)
is, the

closer the α̃ is to β̃.

Later, Yue and Jia [28] introduced the interval-valued intuitionistic fuzzy matrix to
express the information of attributes in MAGDM problem where all elements in the
matrix are IVIFNs.

Definition 2.4. [28] Given two interval-valued intuitionistic fuzzy matrices X1 = (x1
ij)m×n

and X2 = (x2
ij)m×n, then the Euclidean distance between X1 and X2 is defined as:

D(X1, X2) = ||X1 −X2||2 (4)

where ||X1−X2||2 =
(∑m

i=1

(∑n
j=1

(
µ1l
ij − µ2l

ij

)2
+
(
µ1u
ij − µ2u

ij

)2
+
(
ν1l
ij − ν2l

ij

)2
+
(
ν1u
ij − ν2u

ij

)2
+
(
π1l
ij − π2l

ij

)2
+
(
π1u
ij − π2u

ij

)2))1/2

, π1l
ij = 1 − µ1u

ij − ν1u
ij , π1u

ij = 1 − µ1l
ij − ν1l

ij , π2l
ij =

1 − µ2u
ij − ν2u

ij , π
2u
ij = 1 − µ2l

ij − ν2l
ij . In general, the smaller the value D(X1, X2) is, the

closer the X1 is to X2.

3. Proposed Method. In this section, we proposed a novel method based on fixed point
iteration and improved TOPSIS method for multi-attribute group decision making. In our
model, we first use the fixed point iteration algorithm to derive the coordinated weights
of DMs. And then we use the improved TOPSIS method to rank the alternatives.
In the process of using the fixed point iteration algorithm to derive the weights of DMs,

the initial expert weights can be arbitrarily given. The Euclidean distance measure is used
to calculate the proximity between each expert decision matrix and the overall decision
matrix. The coordinated weights are determined by the given decision matrices and are
not affected by the selection of the initial value of expert weights, which can objectively
reflect the scoring level of each expert.
In the process of applying the improved TOPSIS method to rank the alternatives, the

information entropy measure is used to determine the weight of the two distance measures,
and then give a ranking according to the new evaluation criterion.
For an MAGDM problem, let i: index for alternatives, i ∈ M = {1, 2, . . . ,m}, j: index

for attributes, j ∈ N = {1, 2, . . . , n}, k: index for DMs, k ∈ T = {1, 2, . . . , t}, a set of m
feasible alternatives written as A = {A1, A2, . . . , Am} (m ≥ 2), a set of attributes written
as U = {u1, u2, . . . , un}, a set of DMs written as D = {d1, d2, . . . , dt}.

3.1. Determining the weights of decision makers based on fixed point iteration.
Firstly, each DM presents individual decision matrix (IDM) as follows:
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Xk =
(
xk
ij

)
m×n

=


u1 u2 · · · un

A1 xk
11 xk

12 · · · xk
1n

A2 xk
21 xk

22 · · · xk
2n

...
...

... · · · ...
Am xk

m1 xk
m2 · · · xk

mn

, k ∈ T, (5)

where xk
ij =

([
µkl
ij , µ

ku
ij

]
,
[
νkl
ij , ν

ku
ij

])
, i ∈ M , j ∈ N .

Secondly, construct the overall decision matrix. For random given initial expert weights
λ = (λ1, . . . , λk, . . . , λt), the overall decision matrix can be constructed as the weighted
average of all DMs Xk, (k ∈ T ) in Equation (6):

X∗ =
(
x∗
ij

)
m×n

=


u1 u2 · · · un

A1 x∗
11 x∗

12 · · · x∗
1n

A2 x∗
21 x∗

22 · · · x∗
2n

...
...

... · · · ...
Am x∗

m1 x∗
m2 · · · x∗

mn

, k ∈ T, (6)

where x∗
ij =

∑t
k=1 λkx

k
ij, i ∈ M , j ∈ N , which can be calculated by Definition 2.2.

Thirdly, calculate the weighted Euclidean distance WD(X∗, Xk). Suppose the weight
vector of attributes is ω = (ω1, ω2, . . . , ωn), according to Equation (4), the weighted
Euclidean distance WD(X∗, Xk) can be calculated as follows:

WD(X∗, Xk) =

√√√√ m∑
i=1

n∑
j=1

ωj

(
x∗
ij − xk

ij

)2
, (7)

where
(
x∗
ij − xk

ij

)2
=

[
D

(
x∗
ij, x

k
ij

)]2
, which can be calculated by Equation (3).

Obviously, the smaller distance between IDM Xk and the overall decision matrix X∗,
the better evaluation capacity of the decision maker. In other words, the smaller the
distance between IDM Xk and the overall decision matrix X∗, the greater the weight of
the decision maker. According to the calculation outcome of the distance measure, we
get the updated weight of the kth decision maker as follows:

λk =

1
WD(X∗,Xk)∑t
k=1

1
WD(X∗,Xk)

, k = 1, 2, . . . , t. (8)

Fourthly, calculate the deviation between previous expert weights and current expert
weights. The deviation between previous expert weights and current expert weights is
defined as follows:

L
(
λ, λ

)
=

√√√√ t∑
k=1

(
λk − λk

)2
. (9)

Fifthly, adjust the expert weights. Let us say the threshold is Th. If L
(
λ, λ

)
≤ Th, it is

considered that the expert weights tend to be stable and consistent. Thus the adjustment
process is over and let λ∗ = λ. Otherwise, let λ = λ, go back to the second step. Hence,
the expert weights adjustment can be expressed briefly as follows:{

λ∗ = λ, if L
(
λ, λ

)
≤ Th;

λ = λ, otherwise.
(10)

Each iteration is equivalent to the experts making a negotiation based on the given
decision matrices and the previous expert weights. As negotiation times are large enough,
the coordinated expert weights can be received. The initial value only affects the number
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of iterations. As the number of iterations increases, L
(
λ, λ

)
is monotonically decreasing,

and L
(
λ, λ

)
converges to zero as the iteration times are large enough. That is to say,

the above iterative sequence is a compressed mapping sequence and a closed sequence.
According to the compression mapping theorem [29], the iterative sequence converges to
the only fixed point, which is the vector of coordinated expert weights.

3.2. Ranking the preference of alternatives by improved TOPSIS method.
Firstly, we convert the individual decision matrix Xk, (k ∈ T ) into the alternative decision
matrix (ADM) Hi, (i ∈ M), which can be expressed as follows:

Hi =
(
hi
kj

)
t×n

=


u1 u2 · · · un

d1 hi
11 hi

12 · · · hi
1n

d2 hi
21 hi

22 · · · hi
2n

...
...

... · · · ...
dt hi

t1 hi
t2 · · · hi

tn

, (11)

where

hi
kj = xk

ij, k = 1, 2, . . . , t; j = 1, 2, . . . , n. (12)

Secondly, determine the positive and negative ideal alternative decision matrices ac-
cording to the alternative decision matrix Hi, (i ∈ M).

H+ =
(
h+
kj

)
t×n

=


u1 u2 · · · un

d1 h+
11 h+

12 · · · h+
1n

d2 h+
21 h+

22 · · · h+
2n

...
...

... · · · ...
dt h+

t1 h+
t2 · · · h+

tn

, (13)

where

h+
kj = max

i∈M

{
hi
kj

}
=

([
max
i∈M

{µil
kj},max

i∈M

{
µiu
kj

}]
,

[
min
i∈M

{
νil
kj

}
,min
i∈M

{
νiu
kj

}])
(14)

H− =
(
h−
kj

)
t×n

=


u1 u2 · · · un

d1 h−
11 h−

12 · · · h−
1n

d2 h−
21 h−

22 · · · h−
2n

...
...

... · · · ...
dt h−

t1 h−
t2 · · · h−

tn

, (15)

where

h−
kj = min

i∈M

{
hi
kj

}
=

([
min
i∈M

{
µil
kj

}
,min
i∈M

{
µiu
kj

}]
,

[
max
i∈M

{
νil
kj

}
,max
i∈M

{
νiu
kj

}])
. (16)

Thirdly, according to Equation (4), calculate the weighted Euclidean distance WD(Hi,
H+) and the weighted Euclidean distance WD(Hi, H

−), respectively.

WD
(
Hi, H

+
)
=

√√√√ t∑
k=1

λ∗
k

n∑
j=1

ωj

(
hi
kj − h+

kj

)2
, i = 1, 2, . . . ,m, (17)

where
(
hi
kj − h+

kj

)2
=

[
D

(
hi
kj, h

+
kj

)]2
, which can be calculated by Equation (3).

WD
(
Hi, H

−) =
√√√√ t∑

k=1

λ∗
k

n∑
j=1

ωj

(
hi
kj − h−

kj

)2
, i = 1, 2, . . . ,m, (18)
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where
(
hi
kj − h−

kj

)2
=

[
D

(
hi
kj, h

−
kj

)]2
, which can be calculated by Equation (3).

Fourthly, calculate the information entropy of the two distance measures, respectively.

E1 = − 1

lnm

m∑
i=1

NWD
(
Hi, H

+
)
lnNWD

(
Hi, H

+
)
, (19)

where NWD (Hi, H
+) =

WD(Hi,H
+)∑m

i=1 WD(Hi,H+)
.

E2 = − 1

lnm

m∑
i=1

NWD
(
Hi, H

−) lnNWD
(
Hi, H

−) , (20)

where NWD (Hi, H
−) =

WD(Hi,H
−)∑m

i=1 WD(Hi,H−)
.

Fifthly, determine the weight of the two distance measures.

wl =
1− El∑2

l=1(1− El)
, l = 1, 2. (21)

Inspired by the entropy-based method to determine the weights of attributes [7], we
use the entropy-based method to determine the weights of the single methods, which
can reflect the fluctuation of the evaluation outcomes given by the single methods. The
greater the fluctuation of the evaluation outcome given by a single method, the greater
the weight of the single method. The basic principle of the entropy-based method is that
the smaller the entropy value of the assessment outcome of alternatives under a single
decision method, the bigger the weight should be assigned to the single decision method.

Sixthly, after determining the weights of the single method, we can calculate the com-
bined score value. Obviously, the smaller the Euclidean distance WD (Hi, H

+), the better
the alternative, while the bigger the Euclidean distance WD (Hi, H

−), the better the al-
ternative. Hence, we should normalize the assessment outcomes, and give the combined
score value Si as follows:

Si = w1NWD
(
Hi, H

+
)
+ w2NWD

(
Hi, H

−) , i = 1, 2, . . . ,m, (22)

where

NWD
(
Hi, H

+
)
=

min
i∈M

WD (Hi, H
+)

WD (Hi, H+)
, (23)

NWD
(
Hi, H

−) = WD (Hi, H
−)

max
i∈M

WD (Hi, H−)
. (24)

Finally, rank the preference order of alternatives by the following evaluation criteria.
Evaluation criteria: (1) Rank the preference order of alternatives by the combined

score value Si, the bigger, the better. (2) If there exists Ai ≡ Aj by the combined score
value Si, the bigger weight of the distance measure is preferred to rank the alternatives.
(3) If Ai ≡ Aj by all of the measures, then Ai ≡ Aj.

3.3. Presented algorithm. In sum, an algorithm for MAGDM problems, when decision
information is expressed in interval-valued intuitionistic fuzzy, using a novel method based
on fixed point iteration and improved TOPSIS method, is described as follows.

Step 1. Provide individual decision information.
Each DM dk provides IDM Xk =

(
xk
ij

)
m×n

on alternatives with respect to attributes

with interval-valued intuitionistic fuzzy, which is given in Equation (5).
Step 2. Determine the coordinated weights of DMs by repeatedly using Equations

(6)-(10), which is a fixed point iteration process.
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Step 3. Convert the individual decision matrixXk, (k ∈ T ) into the alternative decision
matrix Hi, (i ∈ M) by Equations (11) and (12).
Step 4. Determine the ideal decisions of all alternative decision matrices.
For all alternative decision matrix Hi, (i ∈ M), the positive ideal alternative matrix

H+ and the negative ideal alternative matrix H− are determined by Equations (13)-(14)
and Equations (15)-(16), respectively.
Step 5. Calculate the weighted Euclidean distance WD (Hi, H

+) by Equation (17) and
the weighted Euclidean distance WD (Hi, H

−) by Equation (18), respectively.
Step 6. Determine the weight of the two distance measures by Equations (19)-(21).
Step 7. Calculate the combined score value Si by Equations (22)-(24).
Step 8. Rank the preference order of alternatives by the proposed evaluation criteria.

4. Numerical Illustration and Discussions. In this section, we give an illustrative
example with interval-valued intuitionistic fuzzy information for its flexibility and appli-
cability in decision making field. In fact, the proposed method can be applied in other
attribute information forms, such as real numbers, intervals, linguistic variables and in-
tuitionistic fuzzy sets and it can be applied to many MAGDM fields, such as the supplier
selection, the strategic alliance partner selection, the robot selection, green supplier de-
velopment program selection, and software reliability assessment. Furthermore, we give
comparison analysis to demonstrate the effectiveness of the proposed method.

4.1. An illustrative numerical example. A company is planning to recruit an appro-
priate supplier. After preliminary examination, four candidates are shortlisted for further
evaluation. A committee of four human resource experts has been formed to conduct the
interviews and to evaluate all four candidates as part of selection process. Three assess-
ment criteria are introduced for further evaluation process: on time delivery (u1), flexi-
bility (u2) and quality (u3) and the weight vector of attributes is that ω = (0.3, 0.4, 0.3).
The four decision matrixes X1, X2, X3, X4 evaluated by four human resource experts are
shown in Table 1, which is the Step 1 in our model.
By Step 2, for random given initial expert weights, determine the coordinated weights of

DMs by using the fixed point iteration algorithm. Without loss of generality, suppose the

Table 1. Four individual decision matrices

IDM Supplier u1 u2 u3

X1 A1 ([0.70, 0.86],[0.11, 0.13]) ([0.76, 0.82],[0.05, 0.09]) ([0.81, 0.83],[0.01, 0.02])
A2 ([0.71, 0.75],[0.06, 0.11]) ([0.81, 0.82],[0.03, 0.09]) ([0.72, 0.75],[0.09, 0.15])
A3 ([0.77, 0.81],[0.06, 0.08]) ([0.71, 0.73],[0.13, 0.19]) ([0.62, 0.72],[0.19, 0.21])
A4 ([0.65, 0.75],[0.15, 0.22]) ([0.82, 0.84],[0.06, 0.09]) ([0.71, 0.72],[0.11, 0.12])

X2 A1 ([0.71, 0.75],[0.16, 0.22]) ([0.78, 0.83],[0.12, 0.15]) ([0.79, 0.83],[0.05, 0.12])
A2 ([0.72, 0.75],[0.06, 0.11]) ([0.81, 0.83],[0.06, 0.09]) ([0.69, 0.75],[0.13, 0.18])
A3 ([0.77, 0.81],[0.05, 0.09]) ([0.73, 0.75],[0.15, 0.19]) ([0.67, 0.72],[0.17, 0.21])
A4 ([0.69, 0.75],[0.17, 0.22]) ([0.75, 0.77],[0.07, 0.09]) ([0.71, 0.75],[0.13, 0.15])

X3 A1 ([0.67, 0.73],[0.16, 0.23]) ([0.75, 0.83],[0.12, 0.14]) ([0.81, 0.84],[0.07, 0.12])
A2 ([0.72, 0.75],[0.11, 0.16]) ([0.70, 0.72],[0.06, 0.11]) ([0.71, 0.75],[0.14, 0.18])
A3 ([0.63, 0.75],[0.07, 0.09]) ([0.69, 0.75],[0.17, 0.19]) ([0.71, 0.73],[0.17, 0.21])
A4 ([0.61, 0.65],[0.17, 0.23]) ([0.79, 0.82],[0.07, 0.11]) ([0.71, 0.76],[0.13, 0.17])

X4 A1 ([0.66, 0.73],[0.12, 0.15]) ([0.81, 0.85],[0.05, 0.09]) ([0.79, 0.81],[0.05, 0.09])
A2 ([0.73, 0.76],[0.11, 0.13]) ([0.81, 0.82],[0.02, 0.05]) ([0.73, 0.75],[0.05, 0.11])
A3 ([0.67, 0.71],[0.05, 0.07]) ([0.65, 0.69],[0.12, 0.15]) ([0.75, 0.77],[0.11, 0.13])
A4 ([0.81, 0.83],[0.03, 0.05]) ([0.75, 0.77],[0.09, 0.11]) ([0.72, 0.76],[0.13, 0.15])
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initial weight vector of experts is that λ = (0.25, 0.25, 0.25, 0.25), then the iteration process
is shown in Table 2, where Th = 0.0001. In this case, after 10 iterations, L

(
λ, λ

)
< Th,

it is considered that the expert weights tend to be stable and consistent. Hence, let
λ∗ = λ = (0.3070, 0.2958, 0.2045, 0.1927), which is irrelevant to the initial assignment of
expert weights. For further demonstrations, suppose the initial weight vectors of experts
are λ = (0.10, 0.10, 0.15, 0.65), λ = (0.30, 0.10, 0.20, 0.40), and λ = (0.40, 0.15, 0.15, 0.30),
respectively. The iteration processes are shown in Tables 3-5, where Th = 0.0001.

Table 2. The iteration process of the initial expert weights λ = (0.25, 0.25, 0.25, 0.25)

Number of iterations 0 1 2 3 · · · 9 10
the weight of d1 0.2500 0.2777 0.2923 0.2997 · · · 0.3070 0.3070
the weight of d2 0.2500 0.2820 0.2916 0.2946 · · · 0.2958 0.2958
the weight of d3 0.2500 0.2202 0.2111 0.2075 · · · 0.2045 0.2045
the weight of d4 0.2500 0.2201 0.2051 0.1982 · · · 0.1927 0.1927

L
(
λ, λ

)
0.0598 0.0248 0.0112 · · · 1.1869e-04 5.5419e-05

Table 3. The iteration process of the initial expert weights λ = (0.10, 0.10, 0.15, 0.65)

Number of iterations 0 1 2 3 · · · 12 13
the weight of d1 0.1000 0.1718 0.2239 0.2594 · · · 0.3070 0.3070
the weight of d2 0.1000 0.1762 0.2272 0.2612 · · · 0.2958 0.2958
the weight of d3 0.1500 0.1623 0.1943 0.2091 · · · 0.2045 0.2045
the weight of d4 0.6500 0.4897 0.3546 0.2703 · · · 0.1927 0.1927

L
(
λ, λ

)
0.1918 0.1569 0.0987 · · · 1.2629e-04 5.9206e-05

Table 4. The iteration process of the initial expert weights λ = (0.30, 0.10, 0.20, 0.40)

Number of iterations 0 1 2 3 · · · 10 11
the weight of d1 0.3000 0.2657 0.2795 0.2915 · · · 0.3070 0.3070
the weight of d2 0.1000 0.2356 0.2716 0.2863 · · · 0.2958 0.2958
the weight of d3 0.2000 0.2046 0.2103 0.2096 · · · 0.2045 0.2045
the weight of d4 0.4000 0.2942 0.2386 0.2126 · · · 0.1927 0.1927

L
(
λ, λ

)
0.1755 0.0679 0.0322 · · · 1.5833e-04 7.4402e-05

Table 5. The iteration process of the initial expert weights λ = (0.40, 0.15, 0.15, 0.30)

Number of iterations 0 1 2 3 · · · 8 9
the weight of d1 0.4000 0.3213 0.3075 0.3054 · · · 0.3070 0.3070
the weight of d2 0.1500 0.2501 0.2793 0.2898 · · · 0.2958 0.2958
the weight of d3 0.1500 0.1944 0.2040 0.2054 · · · 0.2045 0.2045
the weight of d4 0.3000 0.2342 0.2093 0.1994 · · · 0.1927 0.1927

L
(
λ, λ

)
0.1501 0.0419 0.0147 · · · 1.9164e-04 8.9959e-05

As can be seen from the above four tables, even though the expert weights start with
different initial values, they eventually stabilize to the same weight, and as the number
of iterations increases, L

(
λ, λ

)
is monotonically decreasing.
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In order to rank alternatives, we should first convert the individual decision matrix
Xk, (k ∈ T ) into the alternative decision matrix Hi, (i ∈ M) by Step 3, which are given
in Table 6.

Table 6. Four alternative decision matrices

ADM
Decision
maker

u1 u2 u3

H1 d1 ([0.70, 0.86],[0.11, 0.13]) ([0.76, 0.82],[0.05, 0.09]) ([0.81, 0.83],[0.01, 0.02])
d2 ([0.71, 0.75],[0.16, 0.22]) ([0.78, 0.83],[0.12, 0.15]) ([0.79, 0.83],[0.05, 0.12])
d3 ([0.67, 0.73],[0.16, 0.23]) ([0.75, 0.83],[0.12, 0.14]) ([0.81, 0.84],[0.07, 0.12])
d4 ([0.66, 0.73],[0.12, 0.15]) ([0.81, 0.85],[0.05, 0.09]) ([0.79, 0.81],[0.05, 0.09])

H2 d1 ([0.71, 0.75],[0.06, 0.11]) ([0.81, 0.82],[0.03, 0.09]) ([0.72, 0.75],[0.09, 0.15])
d2 ([0.72, 0.75],[0.06, 0.11]) ([0.81, 0.83],[0.06, 0.09]) ([0.69, 0.75],[0.13, 0.18])
d3 ([0.72, 0.75],[0.11, 0.16]) ([0.70, 0.72],[0.06, 0.11]) ([0.71, 0.75],[0.14, 0.18])
d4 ([0.73, 0.76],[0.11, 0.13]) ([0.81, 0.82],[0.02, 0.05]) ([0.73, 0.75],[0.05, 0.11])

H3 d1 ([0.77, 0.81],[0.06, 0.08]) ([0.71, 0.73],[0.13, 0.19]) ([0.62, 0.72],[0.19, 0.21])
d2 ([0.77, 0.81],[0.05, 0.09]) ([0.73, 0.75],[0.15, 0.19]) ([0.67, 0.72],[0.17, 0.21])
d3 ([0.63, 0.75],[0.07, 0.09]) ([0.69, 0.75],[0.17, 0.19]) ([0.71, 0.73],[0.17, 0.21])
d4 ([0.67, 0.71],[0.05, 0.07]) ([0.65, 0.69],[0.12, 0.15]) ([0.75, 0.77],[0.11, 0.13])

H4 d1 ([0.65, 0.75],[0.15, 0.22]) ([0.82, 0.84],[0.06, 0.09]) ([0.71, 0.72],[0.11, 0.12])
d2 ([0.69, 0.75],[0.17, 0.22]) ([0.75, 0.77],[0.07, 0.09]) ([0.71, 0.75],[0.13, 0.15])
d3 ([0.61, 0.65],[0.17, 0.23]) ([0.79, 0.82],[0.07, 0.11]) ([0.71, 0.76],[0.13, 0.17])
d4 ([0.81, 0.83],[0.03, 0.05]) ([0.75, 0.77],[0.09, 0.11]) ([0.72, 0.76],[0.13, 0.15])

By Step 4, two ideal alternative decision matrixes, including the positive ideal alterna-
tive matrix H+ and the negative ideal alternative matrix H−, are calculated and shown
in Table 7.

Table 7. Ideal alternative decision matrices

IADM
Decision
maker

u1 u2 u3

H+ d1 ([0.77, 0.86],[0.06, 0.08]) ([0.82, 0.84],[0.03, 0.09]) ([0.81, 0.83],[0.01, 0.02])
d2 ([0.77, 0.81],[0.05, 0.09]) ([0.81, 0.83],[0.06, 0.09]) ([0.79, 0.83],[0.05, 0.12])
d3 ([0.72, 0.75],[0.07, 0.09]) ([0.79, 0.83],[0.06, 0.11]) ([0.81, 0.84],[0.07, 0.12])
d4 ([0.81, 0.83],[0.03, 0.05]) ([0.81, 0.85],[0.02, 0.05]) ([0.79, 0.81],[0.05, 0.09])

H− d1 ([0.65, 0.75],[0.15, 0.22]) ([0.71, 0.73],[0.13, 0.19]) ([0.62, 0.72],[0.19, 0.21])
d2 ([0.69, 0.75],[0.17, 0.22]) ([0.73, 0.75],[0.15, 0.19]) ([0.67, 0.72],[0.17, 0.21])
d3 ([0.61, 0.65],[0.17, 0.23]) ([0.69, 0.72],[0.17, 0.19]) ([0.71, 0.73],[0.17, 0.21])
d4 ([0.66, 0.71],[0.12, 0.15]) ([0.65, 0.69],[0.12, 0.15]) ([0.72, 0.75],[0.13, 0.15])

By Step 5, the weighted Euclidean distances WD (Hi, H
+) and WD (Hi, H

−) are cal-
culated and given in Table 8.
By Step 6, the weight vector of the two distance measures by information entropy is

determined as follows: w = (w1, w2) = (0.5627, 0.4373). Here, w1 is the bigger, which
indicates that the better capacity of the distance measure WD (Hi, H

+) to distinguish
the alternatives for the reason that the fluctuation of the alternatives measured by the
distance method WD (Hi, H

+) is the larger. It is worth noting that the distance measure
WD (Hi, H

+) might not the better measure to distinguish the alternatives in these two
distance measures for another numerical example. It means that the weights of the two
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Table 8. The evaluation outcomes of the two distance measures

Supplier WD (Hi, H
+) WD (Hi, H

−)
A1 0.1196 0.1894
A2 0.1330 0.1739
A3 0.2042 0.1165
A4 0.1563 0.1434

distance measures depend on actual information given in an MAGDM problem, which
makes the evaluation outcome more scientific and reliable.

By Step 7, the assessment outcomes of WD (Hi, H
+) and WD (Hi, H

−) would be nor-
malized, and get the combined score values Si (i ∈ M) as listed in Table 9. From Table 9,
we can see that if the biggest combined score Si of some alternative is equal to 1, which
means that no matter what the distance measure is used, the alternative is the best. Oth-
erwise, using different distance measures would lead to different best alternatives, and the
combined score is a comprehensive evaluation result by the two distance measures.

Table 9. The normalized evaluation outcomes and the combined score values

Supplier NWD (Hi, H
+) NWD (Hi, H

−) Si

A1 1.0000 1.0000 1.0000
A2 0.8991 0.9184 0.9075
A3 0.5859 0.6153 0.5988
A4 0.7654 0.7574 0.7619

By Step 8, the preference order of potential suppliers by the proposed evaluation criteria
is as follows: A1 ≻ A2 ≻ A4 ≻ A3.

4.2. Dynamic comparisons. It is worth noting that only one set of data is used in
the above experimental analysis. To give a more convinced result, this subsection shows
dynamic comparisons with other methods.

For the evaluation matrix X1 in Table 1, we set x1
11 = ([0.70, 0.86], [0.11, 0.13]) in the

above experiment. To show dynamic comparisons, x1
11 = ([α, 0.86], [0.11, 0.13]) would be

set in this experiment, where the α ∈ [0.4, 0.8] is a parameter. Other values are the same
as in Table 1. When the α increases from 0.4 to 0.8, the curves of weights of DMs based
on different methods are shown in Figure 1 and Figure 2, respectively.

From Figure 1 and Figure 2, we can see that the curves of expert weights based on
average decision matrix are different from the curves of coordinated weights based on
fixed point iteration algorithm. Especially, when 0.65 ≤ α ≤ 0.7, the weight of d2 is
larger than the weight of d1 by the Euclidean method based on average decision matrix,
while the coordinated weight of d2 is less than the coordinated weight of d1 by the fixed
point iteration algorithm. In fact, the Euclidean method based on average decision matrix
by Yue [9] adopts the way of one-time calculation in determining the weights of experts,
while the fixed point iteration algorithm adopts the way of repeated adjustment to receive
the coordinated weights of experts. Furthermore, the coordinated weights are determined
by the given decision matrices and are not affected by the selection of the initial value of
expert weights, which can objectively reflect the scoring level of each expert.

According to the coordinated weights of experts, the curves of rankings of A1, A2,
A3, A4 based on traditional TOPSIS method and improved TOPSIS method are shown
in Figure 3 and Figure 4, respectively. From Figure 3, we can see that there exists an
α ∈ (0.55, 0.60) resulting in A2 = A1 by the traditional TOPSIS method, which means
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Figure 1. Expert weights based on average decision matrix by Yue [9]
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Figure 2. Coordinated expert weights based on fixed point iteration algorithm

that the traditional TOPSIS method cannot give a best alternative in this case. However,
from Figure 4, we can see that the improved TOPSIS method can give a best alternative
all the time by the proposed evaluation criteria. Furthermore, the improved TOPSIS
method can reveal whether the optimal alternative based on positive ideal decision matrix
is consistent with that based on negative ideal decision matrix. From Figure 4, we can see
that when α ∈ (0.4, 0.45), the biggest combined score Si is equal to 1, which means that
the optimal alternative based on positive ideal decision matrix is consistent with that
based on negative ideal decision matrix. Similarly, when α ∈ (0.65, 0.80), the optimal
alternative based on positive ideal decision matrix is also consistent with that based on
negative ideal decision matrix.
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Figure 3. Rankings of four alternatives of traditional TOPSIS method
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Figure 4. Rankings of four alternatives of improved TOPSIS method

In sum, from the above analysis of dynamic comparisons, the improved TOPSIS method
is superior to the traditional TOPSIS method to some extent.

5. Conclusion. In order to settle the problem of determining the expert weights by cal-
culating the deviation between the individual decision matrix and the average decision
matrix in multi-attribute group decision-making, this paper introduces the definitions of
ideal decision matrix and coordinated weights of experts. Furthermore, a fixed point iter-
ation algorithm is proposed to derive the coordinated weights of experts. The coordinated
weights are determined by the given decision matrices and are not affected by the selec-
tion of the initial value of expert weights, which can objectively reflect the scoring level
of each expert. At last, the improved TOPSIS method is proposed to promote the ability
of ranking the alternatives. Experimental results and comparisons show the validity of
the proposed method.



28 Y. YANG AND J. HE

Our research can be further extended along the following lines: 1) to consider another
measure instead of the Euclidean distance measure to evaluate the degree of the decision
matrix Xk approaching to the ideal decision X∗; 2) to consider other attribute types, such
as real numbers, intervals, linguistic variables and intuitionistic fuzzy sets.
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