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Abstract. A novel sliding mode prediction fault-tolerant control method is designed for
a class of discrete uncertain quad-rotor systems with multi-delays and actuator faults
in this paper. Firstly, a quasi-integral sliding mode surface is designed as a prediction
model to eliminate the sliding mode approaching mode and ensure the global robustness.
Secondly, aiming at actuator faults and multiple time delays, a double-power function
reference trajectory with enhanced fault compensation is designed to reduce the impact
of time delays on the system, and improve fault-tolerant control accuracy. Thirdly, an
inverse time coyote optimization algorithm (ICOA) is designed for rolling optimization.
Based on gaining good convergence speed, the ICOA can avoid local extremes and balance
local development capabilities and global search capabilities. Finally, the comparison sim-
ulation study on the quad-rotor proves the superiority of the proposed control algorithm.
Keywords: Quad-rotor, Sliding mode prediction, Multi-delays, Actuator faults, ICOA

1. Introduction. Currently, the quad-rotor unmanned aerial vehicle (UAV) has received
extensive attention from researchers due to its lightweight, convenient operation, low cost,
and excellent environmental adaptability [1]. In real life, the quad-rotor helicopters have
been widely applying in many aspects such as tracking and tracking obstacle avoidance
[2,3], aerial photography [4,5], and formation flying [6,7]. However, there are plenty of
hidden dangers in the actual application of quad-rotor, such as frequent failures and
external disturbances [8]. Therefore, it becomes particularly critical to design excellent
fault-tolerant control strategies for the security and stability of their control systems [9].

In recent years, domestic and foreign scientific researchers have conducted extensive
research on the fault-tolerant control of quad-rotors with actuator failures and proposed a
series of fault-tolerant control methods. They combined algorithms such as sliding mode
control, predictive control, neural networks, and adaptive theory [10-13], to design more
superior algorithms such as sliding mode prediction, and adaptive sliding mode [14,15].
[16] proposes a robust fault-tolerant formation control method for a class of tail-sitter
unmanned aerial vehicle systems with actuator failures, coupling, and parameter uncer-
tainties. [17] proposes a fixed-time controller and a robust adaptive controller based on
integral sliding mode for the attitude stability of quad-rotor aircraft. However, this pa-
per has not considered time delays, and it is challenging to implement output feedback
control. In [18], for a class of uncertain discrete systems with actuator failures and state
time-varying delays, a discrete predictive sliding mode fault-tolerant control method based
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on multi-agent particle swarm optimization is proposed. Since this paper adopts the tra-
ditional linear sliding mode surface, the instability is natural to occur during the sliding
mode approach. Of course, scholars have made significant achievements not only in the
field of passive fault-tolerant control algorithms, but in the area of active fault-tolerant
control as well. [19] designs an active fault-tolerant control method based on adaptive
sliding mode and recurrent neural network for the quad-rotor system with actuator fail-
ure and uncertainty. However, this method does not consider the influence of external
interference and time lag. In [20], the authors propose an active fault-tolerant control
strategy based on model predictive control (MPC), which first designs a second-order dis-
crete sliding mode observer to observe the actuator fault information, and then uses it to
reconstruct the control law to stabilize the system. However, the optimization algorithm
adopts the method of directly seeking the extreme value, which makes the calculation
redundant.
Nevertheless, the problems considered in the above literature mainly focus on the fault-

tolerant control with actuator failure. In practical engineering applications, the state delay
and input delay of the control system usually make the system more complex and sensitive.
Therefore, its stability analysis and control have been widely concerned by scholars all over
the world. In [21], in allusion to a kind of aero-engine bivariate control system with both
input time delay and state time delay, the optimal sliding mode predictive control method
based on time-delay compensator is studied. This paper first uses a linear transformation
to transform the time-delay system into a system without distinct time-delay terms, and
then uses a time-delay compensator to realize the advance control of the system. [22]
proposes a global sliding mode control method based on LMI for a class of uncertain
discrete descriptor systems with multiple time-varying delays. In [23], for a type of discrete
memristive neural network system with multi-delays, a dynamic delay interval method
is used to deal with the input-to-state stability problem. [24] proposes a method for
the mean square stabilization of a discrete-time stochastic system with input time delay
and multiplicative noise based on a discrete fuzzy controller. However, this article only
considers the input time delay, and needs to ensure the stability of the general stochastic
time-delay system.
Compared with the algorithm in [25], the sliding mode prediction algorithm designed

in this paper further elaborates its superiority. This paper mainly studies the discrete un-
certain system with actuator failure, multi-delays, and external disturbances. The quasi-
integral sliding surface is designed as a prediction model to eliminate the system state’s
approaching process and ensure good robustness. A double power function reference tra-
jectory is designed to effectively reduce the impact of time delays on the system. In the
part of reference trajectory design, an improved fault compensation term is added to de-
crease the quasi-sliding mode bandwidth and improve the control accuracy. In the rolling
optimization process, an improved inverse time coyote optimization algorithm (ICOA)
is designed to accelerate algorithm convergence speed. Compared with the traditional
coyote optimization algorithm (COA), the inverse time decay weight factor is introduced
to maintain the balance of local development capabilities and global search capabilities.
The outline of the full text is as follows. The second part describes the system model

and explains the relevant basic knowledge and assumptions. The third part designs the
control algorithm of this paper. Firstly, based on an integral sliding mode surface, a sliding
mode prediction model is designed in this paper to ensure global robustness. Secondly, a
reference trajectory of the double power function is designed. Thirdly, an improved fault
compensation term is added to the reference trajectory. Finally, an improved inverse time
coyote optimization algorithm is developed. The fourth part is the stability proof. The
fifth part is a simulation comparison test. It further proves the feasibility and superiority
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of the innovative algorithm designed in the third part. Finally, the last part summarizes
the paper.

2. System Model Analysis. This article selects the Qball-X4 quad-rotor from Quanser
Company in Canada. In Qball-X4 quad-rotor, the system has six dimensions of variables,
that is (X, Y, Z, ψ, θ, ϕ), where X,Y, Z is the position variable, ψ is the yaw angle, θ is
the pitch angle and ϕ is the roll angle. This paper chooses the X-axis or Y -axis forward
direction channel signal as the research object. Since the movement of the X-axis and Y -
axis directions are symmetrical, only the X direction forward channel signal is considered
below. The mathematical model is shown in Table 1 below.

Table 1. The mathematical model of Qball-X4

Physical interpretation Mathematical expression

Dynamic equation of X axis MgẌ = 4F sin
(
θ̇
)

Lift generated by the rotor: F F = Kg
ω

s+ω
u

Actuator dynamics: ν ν = ω
s+ω

u

State expression form of the ν: ν̇ ν̇ = −ων + ωu

The model in the X-axis direction

 Ẋ

Ẍ

ν̇

 =


0 1 0

0 0 4Kg

Mg
θ

0 0 −ω


 X

Ẋ

ν

+

 0

0

ω

u
The above mathematical model assumes that the yaw angle is 0, and considers the

influence of lift and pitch angle. Among them, Mg is the mass of the quad-rotor, F is
the lift, Kg is the positive gain, ω is the actuator bandwidth, u is the actuator input, θ is
the pitch angle; let sin θ = θ. After processing, the model in the X-axis direction can be
obtained. Discretize the above model first, and then consider the actuator failure, input
time delay and state time delay, internal parameter perturbation and external disturbance,
and the following discrete uncertain fault system is obtained: x(k + 1) = (A+∆A)x(k) + (Ad +∆Ad)x(k − τ1) + (B +∆B)x

+(Bd +∆Bd)u(k − τ2) +Df(k) + υ(k)
y(k) = Cx(k)

(1)

x(k) ∈ Rn, u(k) ∈ Rp, y(k) ∈ Rq, are the state, input and output of the system. A, B, Ad,
Bd, C, D are the constant matrices. ∆A, ∆B, ∆Ad, ∆Bd are the internal perturbation
of the system. τ1, τ2 ∈ R+ are the state delay and input delay respectively, and they
both have upper bounds τ1up, τ2up, f(k) is an actuator fault, and υ(k) ∈ Rn is external
disturbance.

System (1) can be rewritten as follows:

x(k + 1) = Ax(k) + Adx(k − τ1) + Bu(k) + Bdu(k − τ2) + d(k) (2)

d(k) describes the faults and uncertainties of the system.

d(k) = ∆Ax(k) + ∆Adx(k − τ1) + ∆Bu(k) + ∆Bdu(k − τ2) + df (k) (3)

df (k) = Df(k) + υ(k) (4)

So d̂(k) can be obtained by one-step delay estimation method,

d̂(k) = d(k − 1)
= x(k)− Ax(k − 1)− Adx(k − 1− τ1)−Bu(k − 1)−Bdu(k − 1− τ2)

(5)
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We can get a simplified system as (6):{
x(k + 1) = Ax(k) + Adx(k − τ1) +Bu(k) +Bdu(k − τ2) + d(k)
y(k) = Cx(k)

(6)

Assumption 2.1. The rate of change of the system’s failure and uncertainty is bounded.

|d(k)− d(k − 1)| ≤ d0

Assumption 2.2. The failure and uncertainty of the system have an upper and lower
bound.

dL ≤ |d(k)| ≤ dU

Lemma 2.1. (Schur’s complement theorem) For a given symmetric matrix

[
Ω11 Ω12

Ω21 Ω22

]
<0,

where ΩT
11 = Ω11, Ω

T
22 = Ω22, Ω

T
12 = Ω21. Then the above equation is equivalent to (1)

Ω11 < 0, Ω12Ω
−1
11 Ω12 < 0; (2) Ω22 < 0, Ω12Ω

−1
22 Ω21 < 0.

3. Control Algorithm Design.

3.1. Sliding mode prediction model design. The quasi-integral sliding mode switch-
ing function is designed in this section, making the initial state of the system on the
sliding surface, which is different from the global sliding mode switching function in [25].
The quasi-integral sliding mode switching function makes the initial state of the system
on the sliding surface, which eliminates the sliding mode approaching mode, making the
system globally robust from the beginning.{

s(k) = Gx(k) + σ(k)−Gx(0)
σ(k + 1) = σ(k) +Gx(k)−GAx(k)−GAdx(k − τ1)

(7)

where σ(0) = 0, G ∈ Rp×n is a constant matrix that satisfies GB is nonsingular. We can
get the following predicted output at the moment (k + P ) of the sliding mode prediction
model according to (6):

s(k + P ) = G

[
APx(k) +

P∑
i=1

Ai−1Adx(k + P − i− τ1)

+
M−1∑
i=1

AP−iBu(k + i− 1) +
P−M∑
i=1

AiBu(k +M − 1)

+

M+τ2(k)−1∑
i=1

AP−iBdu(k + i− 1− τ2)

+

P−M−τ2(k)∑
i=1

AiBdu(k +M − 1)

]
+ σ(k + P )−Gx(0)

(8)

where P denotes the prediction time domain, and M denotes the control time domain.
The vector form of (8) is

SPM (k) = ΛX(k) + ΦXd(k) + ΠU(k) + EUd(k) + Σ(k) (9)

where

SPM (k) = [s(k + 1), s(k + 2), . . . , s(k + P )]T ;

Λ =
[
(GA)T ,

(
GA2

)T
, . . . ,

(
GAP

)T]T
;

X(k) = [x(k + 1), . . . , x(k + P )]T ;
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Xd(k) = [x(k − τ1(k)), x(k + 1− τ1(k + 1)), . . . , x(k + P − 1− τ1(k + P − 1))]T ;

U(k) = [u(k), u(k + 1), . . . , u(k +M − 1)]T ;

Ud(k) = [u(k − τ2(k)), u(k + 1− τ2(k + 1)), . . . , u(k +M − 1)]T ;

Σ(k) = [σ(k + 1)−Gx(0), σ(k + 2)−Gx(0), . . . , σ(k + P )−Gx(0)]T ;

E =



GBd 0 · · · · · · 0
GABd GBd 0 · · · 0

...
... · · · · · · ...

GAM−1Bd GAM−2Bd · · · GABd GBd

GAMBd GAM−1Bd · · · GA2Bd GABd +GBd
...

... · · · ...
...

GAP−1Bd GAP−2Bd · · · GAP−M+1Bd

P−M∑
i=0

GAiBd


;

Φ =


GAd 0 · · · · · · 0
GAAd GAd · · · · · · 0

...
...

. . .
...

...
...

. . .
...

GAP−1Ad GAP−2Ad · · · · · · GAd

 ;

Π =



GB 0 · · · · · · 0
GAB GB 0 · · · 0

...
... · · · · · · ...

GAM−1B GAM−2B · · · GAB GB
GAMB GAM−1B · · · GA2B GAB +GB

...
... · · · ...

...

GAP−1B GAP−2B · · · GAP−M+1B
P−M∑
i=0

GAiB


.

3.2. Prediction model stability analysis. After establishing the quasi-integral slid-
ing mode prediction model, its stability is crucial to the construction of subsequent algo-
rithms. The stability analysis of the prediction model is demonstrated below. We can get
equivalent control law according to s(k + 1) = s(k) = 0, and then we can get

ueq(k) = −(GB)−1Gd(k)

= −(GB)−1G [∆Ax(k) + ∆Adx(k − τ1) + ∆Bu(k)

+∆Bdu(k − τ2) +Df(k) + υ(k)]

(10)

Substituting (10) to the system (6), the ideal sliding mode equation can be obtained as

x(k + 1) = Ax(k) + Adx(k − τ1) +Bdu(k − τ2) +
[
I −B(GB)−1G

]
d(k) (11)

Theorem 3.1. For system (6), the quasi-integral sliding mode prediction model deter-
mined by (7), if there is a positive definite matrix Qi (i = 1, 2, 3), satisfying Inequality
(12), the ideal sliding mode Equation (11) is globally asymptotically stable.

Ψ1 0 0 0 0
∗ Ψ2 0 0 0
∗ ∗ Ψ3 0 0

∗ ∗ ∗ 4Q1

√
2Q1B

∗ ∗ ∗ ∗ −BTQ1B

 < 0 (12)
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where Ψ1 = 5ATQ1A − Q1 + Q2, Ψ2 = 4Ad
TQ1Ad + Ad

TQ2Ad − Q2, Ψ3 = 4Bd
TQ1Bd +

Ad
TQ2Ad −Q3.

Proof: Choose the following Lyapunov function for Equation (11):

V (k) = xT (k)Q1x(k) +
k−1∑

i=k−τ1(k)

xT (i)Q2x(i) +
k−1∑

j=k−τ2(k)

uT (j)Q3u(j) (13)

Choose G = BTQ1 to ensure GB is nonsingular, and make R =
(
BTQ1B

)−1
BTQ1.

The difference equation of the Lyapunov function along the state trajectory of the ideal
sliding mode (11) satisfies:

∆V (k) = V (k + 1)− V (k)

= xT (k + 1)Q1x(k + 1) +
k∑

i=k+1−τ1(k+1)

xT (i)Q2x(i) +
k∑

j=k+1−τ2(k+1)

uT (j)Q3u(j)

−xT (k)Q1x(k)−
k−1∑

i=k−τ1(k)

xT (i)Q2x(i)−
k−1∑

j=k−τ2(k)

uT (j)Q3u(j)

= xT (k)ATQ1Ax(k) + xT (k)(Q2 −Q1)x(k) + 2xT (k)ATQ1Adx(k − τ1)

+ 2xT (k)ATQ1Bdu(k − τ2) + xT (k − τ1)Ad
TQ1Adx(k − τ1)

−xT (k − τ1)Q2x(k − τ1) + 2xT (k − τ1)Ad
TQ2Bdu(k − τ2)

+uT (k − τ2)Bd
TQ1Bdu(k − τ2)− uT (k − τ2)Q3u(k − τ2)

+ 2xT (k)ATQ1d(k)− 2xT (k)ATQ1BRd(k) + 2xT (k − τ1)Ad
TQ1d(k)

− 2xT (k − τ1)Ad
TQ1BRd(k) + 2uT (k − τ2)Bd

TQ1d(k)

− 2uT (k − τ2)Bd
TQ1BRd(k) + dT (k)Q1d(k)− dT (k)Q1BRd(k)

≤ 5xT (k)ATQ1Ax(k) + xT (k)(Q2 −Q1)x(k) + 4xT (k − τ1)Ad
TQ1Adx(k − τ1)

+xT (k − τ1)Ad
TQ2Adx(k − τ1)− xT (k − τ2)Q2x(k − τ1)

+ 4uT (k − τ2)Bd
TQ1Bdu(k − τ2) + uT (k − τ2)Bd

TH2Bdū(k − τ2)

−uT (k − τ2)Q3u(k − τ2) + 4dT (k)Q1d(k) + 2dT (k)Q1BRd(k)

=
[
x(k) x(k − τ1) u(k − τ2) d(k)

]
Λ


x(k)

x(k − τ1)
u(k − τ2)
d(k)


T

(14)

where Λ =


Ψ1

Ψ2

Ψ3

Ψ4

, Ψ4 = 4Q1 +2Q1BR. We can get ∆V (k) < 0 according

to Λ < 0. According to Lemma 2.1, Λ < 0 is equivalent to (12). Therefore, when the
linear matrix inequality (12) is established, the ideal sliding mode (11) is asymptotically
stable. The proof is complete.

3.3. Reference trajectory design. This section adopts the following reference trajec-
tory based on the improved fault compensation double power function. The system still
has strong robustness outside the boundary layer through the traditional “boundary lay-
er” chattering suppression strategy. It also reduces the quasi-sliding mode bandwidth
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as far as possible in the boundary layer to decrease the steady-state error. Firstly, the
difference function 1 − z−1 (where z−1 is the unit delay operator) is introduced. The
equivalent change rate of faliure is defined as the second-order difference of the fault,
which can reduce the quasi-sliding mode bandwidth. Secondly, compared to [25], this
paper uses a double power function to replace the traditional power function, which can
weaken the chattering while ensuring its robustness. The dynamic convergence speed can
be accelerated, and the control precision of the system can be improved.

Reference trajectory in this paper:
sref (k + 1) = (1− qT )sref (k)− ε1T |sref (k)|α − ε2T |sref (k)|βsgn(sref (k))

+ (1− z−1)G[d(k)− d(k − 1)]

sref (k) = s(k)

(15)

where ε1 > 0, ε2 > 0, q > 0, 1− qT > 0, 0 < α < 1, β > 1, T is sampling time.
After simplification, the final form of the following reference trajectory can be obtained

as follows: 
sref (k + 1) = (1− qT )sref (k)− ε1T |sref (k)|α

− ε2T |sref (k)|βsgn(sref (k)) + λ(k)

sref (k) = s(k)

(16)

where
λ(k) = G[d(k)− 2d(k − 1) + d(k − 2)] (17)

Lemma 3.1. From [26], when the zero-order holder is used for discretization, the equiv-
alent failure in the system (6) d(k) has properties as follows:

d(k)− 2d(k − 1) + d(k − 2) = O
(
T 3

)
where O(T ) indicates that the magnitude of d(k) is on the order of magnitude O(T ).

Assumption 3.1. The change rate of equivalent failure λ(k) defined by (17) is bounded,
and |λ(k)| ≤ δ ≤ εT , δ is the upper bound of λ(k).

Remark 3.1. According to [27], the traditional change rate of equivalent failure λ1(k)
and its upper bound δ1 is defined as:{

λ1(k) = G[d(k)− d(k − 1)]
|λ1(k)| ≤ δ1

(18)

3.4. Feedback correction. Define s(k|k − P ) as the predicted output of time (k − P )
to time k, we can get the following:

s(k |k − P ) = G

[
APx(k − P ) +

P∑
i=1

Ai−1Adx(k − i− τ1)

+
M−1∑
i=1

AP−iBu(k − P + i− 1) +
P−M∑
i=1

AiBu(k − P +M − 1)

+

M+τ2(k)−1∑
i=1

AP−iBdu(k − P + i− 1− τ2) (19)

+

P−M−τ2(k)∑
i=1

AiBdu(k − P +M − 1)

]
+ σ(k)−Gx(0)

es(k) is the error of predicted output and actual output at the time k:

es(k) = s(k)− s(k|k − P ) (20)
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Then after error correction and P step prediction, the output machine vector form is as
follows:

s̃(k + P ) = s(k + P ) + fpes(k) (21)

S̃PM(k) = SPM(k) + FPES(k) (22)

where

S̃PM(k) = [s̃(k + 1), s̃(k + 2), . . . , s̃(k + P )]T ;

FP =


f1

f2
. . .

fP

 , 1 ≥ f1 ≥ f2 ≥ · · · ≥ fP > 0;

ES(k) = [s(k)− s(k|k − 1), s(k)− s(k|k − 2), . . . , s(k)− s(k|k − P )]T .

3.5. Optimization algorithm design. The optimized performance index and its vector
form at time k are as follows:

j(k) =
P∑
i=1

λi[sref (k + i)− s̃(k + 1)]2 +
M∑
l=1

ρl[u(k + l − 1)]2 (23)

J(k) =
[
Sref (k)− S̃PM(k)

]T
Q5

[
Sref (k)− S̃PM(k)

]
+ [U(k)]TQ4[U(k)] (24)

λi, ρl are non-negative weight, Q4 =


ρ1

ρ2
. . .

ρM

, Q5 =


λ1

λ2
. . .

λP

 .
COA is a unique intelligent bionic optimization algorithm with a short time to propose.

The COA simulates the birth, growth, death, and migration of the coyote population. It
has a better search model, framework, and has strong local and global search capabilities.
The COA makes the individuals group randomly after initialization, and the coyotes in
the group are randomly expelled and accepted, which enables the exchange of informa-
tion between groups. However, when solving some high-dimensional complex functions,
it is easy to fall into the local optimum, and is challenging to jump out of the local ex-
tremum. Besides, the algorithm has always maintained a constant update mechanism,
which weakens the algorithm’s global searchability.
In response to the above problems, this article adopts ICOA. The inverse time decay

weight factor is introduced into the updated formula of coyote individual to maintain
the balance between local development capabilities and global search capabilities, while
speeding up the algorithm convergence speed.
1) Set the parameters: the coyote group Np, the number of coyote individuals in each

group Nc, the dimension D, and the termination condition nfevalMAX, and so on. Ran-
domly initialize the coyote group. The i-th coyote individual in the p group at time t is
defined as:

yp,tw = lbw + rw(ubw − lbw) (25)

yp,ti =
(
yp,t1 , yp,t2 , yp,t3 , . . . , yp,tNc

)
(26)

where ubw, lbw respectively represent the upper and lower bounds of the w-th dimension,
and rw is a randomly generated real number in the range [0, 1].
2) Evaluate the adaptability of coyotes.

Adaptp,ti = A
(
yp,ti

)
(27)
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The probability of coyote population change is Pe:

Pe = 0.005N2
c (28)

3) The head wolf in the current group is Cbestp,t, the current cultural trend of coyotes
clutp,t:

Cbestp,t =
{
yp,ti

∥∥arg{i=1,2,...,Nc}minAdapt
(
yp,ti

)}
(29)

clutp,tj =

{
Op,t

Nc+1
2

,w
, Nc is odd

ONc
2
,w +Op,t

Nc+1
2

,w
, others

(30)

where Op,t
Nc+1

2
,w

indicates the median of the w-th dimension variable of all coyotes in p

group at time t, when Nc is odd.
4) Birth and death of coyotes: record the age of the coyote (in years) as yearp,ti . The

birth of a new coyote is defined as (pupp,t):

pupp,t
w =


yp,tn1,w

, rndw<Ps or, w = w1

yp,tn2,w
, rndw ≥ Ps + Pa or, w = w2

Rw, rndw, else

(31)

where n1, n2 are arbitray coyotes from the group p. w1, w2 are the two random dimensions
of the problem. Rw, rndw are random numbers generated in [0, 1] by uniform probability.
(Ps) is discrete probability, (Pa) is associated probability, and they influence the cultural
diversity of individuals in the coyote pack:

Ps =
1

D
, Pa =

(1− Ps)

2
(32)

ω represents that the adaptability of coyotes in the group is not as good as that of the
cubs, and ϕ represents the number of coyotes in the current group. If ϕ is 1 and ω is
established, it means that there is one coyote in the group, and the adaptability of young
wolves is better than that of the only coyote. Then the young wolf survives and the only
coyote in the group dies. If ϕ is greater than 1 and ω is established, then the young wolf
survives and the oldest coyotes in the group die. Otherwise, the young wolf dies.

5) Calculate the influence of head coyote and group cultural trends on the individual
update in the coyote group at the current moment, δ1, δ2:

δ1 = Cbestp,t − yp,tcr1
, δ2 = cultp,t − yp,tcr2

(33)

where cr1, cr2 respectively represent the random coyote in the current group.
6) Update all the coyote individuals in the coyote group in turn to obtain new coyote

individuals new yp,ti , choose the best adaptability between the new coyote and the original
coyote, and keep the best coyote yp,t+1

i :

new yp,ti = yp,ti + κ1δ1 + κ2δ2 (34)

yp,t+1
i =

{
new yp,ti , f

(
new yp,ti

)
< f

(
yp,ti

)
yp,ti , others

(35)

Introduce the inverse time decay inertia weighting factor ω to the coyote individual
update formula:

new yp,ti = ωyp,ti + κ1δ1 + κ2δ2 (36)

ω is the inertial weight of the coyote social state:

ω(k) = (1 + gamma · k)−p, gamma = 0.99 (37)

where k is the current iteration number. To prevent the loss of the optimal solution that
may be caused by the excessive decay rate, we define p = 0.25. κ1, κ2 are random real
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numbers in the range [0, 1], and they represent the weight of the individual coyote affected
by the alpha coyote and group cultural trends.
7) Simulate the growth of the individual over time, and update the age of the individual

coyote.
8) Judging the termination condition, if reached, output the social state of the coyote

with the best adaptability; otherwise, return to step 2) to continue.

4. Stability Analysis. Aiming at system (6), making k moment the current moment,
the predicted output at k + P moment is

s(k + P ) = G

[
APx(k) +

P∑
i=1

Ai−1Adx(k + P − i− τ1)

+
M−1∑
i=1

AP−iBu(k + i− 1) +
P−M∑
i=1

AiBu(k +M − 1)

+

M+τ2(k)−1∑
i=1

AP−iBdu(k + i− 1− τ2)

+

P−M−τ2(k)∑
i=1

AiBdu(k +M − 1) +
P∑
i=1

Ai−1d(k + P − 1)

]
+σ(k + P )−Gx(0)

(38)

The actual predicted output vector form is as follows:

SPM (k) = ΛX(k) + ΠU(k) + ΦXd(k) + EUd(k) + ΘΩ(k) + Σ(k) (39)

where Θ =


G 0 · · · 0
GA G · · · 0
...

...
. . .

...
GAP−1GAP−2 · · · G

, Ω(k) = [
d(k) d(k + 1) · · · d(k + P − 1)

]T
.

∂J(k)
∂U(k)

= 0 is a necessary condition for J(k) to take the extreme value, so the optimal

control law must satisfy ∂J(k)
∂U(k)

= 0:

U(k) =
(
Q4 +ΠTQ5Π

)−1
ΠTQ5[Sref (k)− ΛX(k)− ΦXd(k)

−EUd(k)− Σ(k) + FPES(k)]
(40)

Substitute (40) into (39):

SPM (k) = ΛX(k) + ΦXd(k) + EUd(k) + ΘΩ(k) + Σ(k)

+Π
[(
Q4 +ΠTQ5Π

)−1
ΠTQ5 [Sref (k)− ΛX(k)

−ΦXd(k)− EUd(k)− Σ(k) + FPES(k)]
] (41)

Considering robust stability, we usually take Q4 = 0.

SPM (k) = Sref (k) + ΘΩ(k) + FPES(k) (42)

In the process of solving the control law by rolling optimization, only the current control
input signal is implemented in the controlled object.

s(k + 1) =
[
1 0 · · · 0

]
SPM (k)

= sref (k + 1) + f1[s(k)− s(k | k − 1)] +Gd(k)

= sref (k + 1) +G[d(k)− f1d(k − 1)]

(43)
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Taking f1 = 1, then (43) is simplified as follows:

s(k + 1) = sref (k + 1) +G[d(k)− d(k − 1)] (44)

According to Assumption 2.1, |d(k)− d(k − 1)| ≤ d0, we can get

s(k + 1) = sref (k + 1) +G[d(k)− d(k − 1)] ≤ sref (k + 1) +Gd0 (45)

where

sref (k + 1) = (1− qT )sref (k)− ε1T |sref (k)|α − ε2T |sref (k)|βsgn (sref (k)) + λ(k) (46)

According to Assumption 3.1, |λ(k)| ≤ δ, therefore, we only need to discuss the bound-
edness of the double-power exponential reaching law, that is, to judge the following for-
mula:

sϖ = (1− qT )sref (k)− ε1T |sref (k)|α − ε2T |sref (k)|βsgn (sref (k)) (47)

Let ∆sϖ(k) = sϖ(k + 1)− sϖ(k), and then we get

∆sϖ(k) = −qTsϖ(k)− ε1T |sϖ(k)|αsgn(s(k))− ε2T |sϖ(k)|βsgn(s(k)) (48)

1) When sϖ(k) ≥ 0:
∂∆sϖ(k)
∂sϖ(k)

= −qT − ε1Tα[sϖ(k)]
α−1 − ε2Tβ[sϖ(k)]

β−1

Then according to ε1 > 0, ε2 > 0, q > 0, 1− qT > 0, 0 < α < 1, β > 1, we can obtain
∂∆sϖ(k)
∂sϖ(k)

< 0, and get ∆sϖ(k) is a decreasing function of sϖ(k).

When sϖ(k) ≥ 0, ∆sϖ(k) ≤ −qTsϖ(k)− ε1T [sϖ(k)]
α − ε2T [sϖ(k)]

β
∣∣∣
sϖ(k)=0

= 0. From

∆sϖ(k) ≤ 0, we can get, sϖ(k) decrease until approaching state sϖ(k) = 0. If and only if
sϖ(k) = 0, ∆sϖ(k) = 0, then sϖ(k + 1) ≤ σ.

2) When sϖ(k) < 0:
∂∆sϖ(k)
∂sϖ(k)

= −qT − ε1Tα[−sϖ(k)]α−1 − ε2Tβ[−sϖ(k)]β−1

And according to ε1 > 0, ε2 > 0, q > 0, 1 − qT > 0, 0 < α < 1, β > 1, we can obtain
∂∆sϖ(k)
∂sϖ(k)

< 0, that is, ∆sϖ(k) is a decreasing function of sϖ(k).

∆sϖ(k) > −qTsϖ(k)− ε1T [sϖ(k)]
α − ε2T [sϖ(k)]

β
∣∣∣
sϖ(k)=0

= 0.

According to ∆sϖ(k) > 0, we can get sϖ(k) increase until approaching state sϖ(k) = 0.
Then, sϖ(k + 1) ≤ σ.

3) When sϖ(k) = 0:
sϖ(k + 1) = sϖ(k) = 0, the system enters a stable state. Then, we can obtain

sϖ(k + 1) ≤ σ. In summary, we can get sϖ(k + 1) ≤ σ, and since s(k + 1) ≤ sϖ(k + 1)+
δ+Gd0, then, we can obtain |s(k + 1)| ≤ σ+ δ+Gd0. That is, the closed-loop system is
robust stable.

5. Simulation Experiments and Discussions.

5.1. Simulation model. The simulation object selected in this paper is the Qball-X4
quad-rotor. Then, the feasibility and effectiveness of the algorithm designed in this paper
are verified on this aircraft.

Considering external disturbance, internal parameter perturbation, time delays, and
actuator failure, each matrix’s values in the quad-rotor system are as follows: A = 0 1 0

0 0 12
0 0 −15

, Ad =

 0 0 0
0 0 4
0 0 −5

, B =

 0
0
15

, Bd =

 0
0
1

, C =
[
1 0 0

]
.

Constant matrix D =
[
0.2 0.4 0.1

]
sin(k). Uncertain parameters are ∆A = 0.1A,
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∆Ad = 0.1Ad, ∆B = 0.1B, ∆Bd = 0.1Bd, fault function f(k) =

 0.3 sin(6k)
0.2 sin(3k)
0.2 sin(2k)

, external
disturbance w(k) = randsin2(k).
The signal transmission of the quad-rotor system used in the simulation in this article

is not transmitted through the wired network, but through wireless communication, it is
prone to state time lag, so we set τ1 = 5. Since the control input may also bring time lag,
the input time lag needs to be considered, and we set τ2 = 3. Sliding mode parameter
matrix σ =

[
1 1 1

]
. We select the prediction time domain as P = 4, and take the

control time domain asM = 2, the sampling time is taken as k = 0.02, and the simulation
time domain is taken as k = 500. The above matrices in the numerical experiment are all
discretized.

5.2. Optimization algorithm implementation steps. Pseudo-code of the ICOA al-
gorithm is shown as follows:

START
Set parameters Nc, Np; initialize coyote population (Equation (25))
Calculate the fitness of each coyote (Equation (27))
WHILE termination conditions are not met
year = year + 1
FOR p = 1 : Np

Calculate head coyote and cultural trend (Equations (29)-(30))
Calculate the influence of the head coyote and groups (Equation (30))
FOR i = 1 : Nc

Update current coyote (Equations (36)-(38)), compare the adaptability of the coyotes
before and after the update, and keep the best coyotes (Equation (35))
END i
Record births and deaths
END p
Group changes
IF Meet the threshold
END IF
Age update
END WHILE
Choosing the best coyote
END

In order to further test the performance advantages of the ICOA, this paper uses whale
optimization algorithm (WOA), COA and ICOA to conduct comparative experiments on
the same set of benchmark functions. Benchmark functions are shown in Table 2, where
F1 and F2 are unimodal functions, F3 and F4 are multimodal functions.
In order to avoid the influence of randomness on the experimental results, and guar-

antee the absolute fairness of the test environment, in the simulation test, the common
parameter settings of all algorithms are the same. We set the dimension D to 100, the
maximum number of iterations to 50 in this paper, and Nc = Np = 10. The termination
condition of COA and ICOA is nfevalMAX = 10000 ∗ D. WOA’s parameter setting:
logarithmic spiral shape constant b = 1. The number of search individuals is set to 10.
Three algorithms were performed 30 times. The experimental results are shown in Table
3.
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Table 2. Information of benchmark functions

Function form Variable range

F1 =
N∑
i=1

ixi
2 [−100, 100]

F2 =
n∑

i=1

|xi|+Πn
i=1 |xi| [−10, 10]

F3 =
n∑

i=1

xi
2

4000
− Πn

i=1 cos
(

xi√
i

)
+ 1 [−600, 600]

F4 = −20 exp

(
−0.2

√
1
n

n∑
i=1

xi2
)
− exp

(
1
n

n∑
i=1

cos (2πxi)

)
+ 20 + e [−32, 32]

Table 3. Comparison on experimental results based on WOA, COA and ICOA

Function Evaluation index WOA COA ICOA
mean 6.79E + 05 1.90E + 03 4.38E + 02

F1 std 5.64E + 04 2.63E + 02 1.05E + 01
min 1.15E + 01 1.11E − 11 0.00E + 00
mean 6.11E + 03 6.88E + 00 1.49E + 00

F2 std 5.11E + 02 1.50E + 00 4.66E − 02
min 3.12E + 01 7.17E − 22 0.00E + 00
mean 1.54E + 02 1.34E + 02 3.02E + 01

F3 std 4.70E + 02 1.97E + 01 7.25E − 01
min 0.00E + 00 4.50E − 03 0.00E + 00
mean 4.35E + 02 5.87E + 00 5.63E − 01

F4 std 2.48E + 03 3.44E + 00 2.24E − 02
min 6.88E + 01 1.83E − 04 8.88E − 16

5.3. Comparison of two sliding mode prediction algorithms. In this section, we
respectively apply the method of [25], and traditional COA to the model of this paper,
and all other conditions remain the same. Compared with [25] and COA, when the state
delay and input delay are respectively set as τ1 = 5 and τ2 = 3, the experiment results
shown in Figure 1 to Figure 5 indicate that the algorithm designed in this paper is better
in control accuracy, convergence speed, and robust stability.

It can be seen in Figure 1, the position trajectories of X-axis, the performances of the
algorithm in this paper are superior to the method in [25] and traditional COA, and at
about k = 175, the quad-rotor helicopter tends to be smooth and steady in the event of
actuator failures.

The results of the comparison curves in Figure 2 and Figure 3 show that when actuator
faults occur, the algorithm designed in this paper is better than the algorithm in [25]
and COA, not only, for weakening chattering, but also, for accelerating the process of
stabilization. Especially, from Figure 3, the trajectories of control law, we can conclude
that the ICOA designed in this paper effectively speeds up convergence speed and reduces
local extremes in the early stage of control.

Besides, it can be seen in Figure 4 that, the application of the improved double-power
function with an improved fault compensation term significantly weakens system chatter-
ing and improves control accuracy.

In dealing with time delays, we need to further illustrate the effectiveness of the method
in this paper by separately discussing two cases. In the first experiment, we set state delay



62 Z. ZHANG, P. YANG, X. HU AND Z. WANG

0 50 100 150 200 250 300 350 400 450 500

k

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

P
o

s
it
io

n
 o

f 
X

 a
x
is

/m
Method of paper[25]

Method of COA

Method of this paper

Figure 1. The position trajectories of X-axis
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Figure 2. The actuator dynamics trajectories of X-axis

and input delay as τ1 = 0.8 and τ2 = 0.8, that means both delays are taken quite small.
In Figure 5, we can get that when both delays are small, the method in [25] and the
traditional COA can also have nice performance.
From the comparison curves above between the method designed in this paper, the

method in [25], and the traditional COA, we can prove the method’s superiority and
feasibility designed in this paper.

6. Conclusion. A sliding mode prediction fault-tolerant control method based on ICOA
is designed in this paper. To eliminate the approaching mode and ensure global robust-
ness, we design a quasi-integral sliding mode switching function as a prediction model.
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Figure 3. The trajectories of control law
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Figure 4. Enlarged view of control law trajectories

Aiming at actuator faults and multiple time delays, the improved double-power function
reference trajectory is designed to reduce the time lags’s impact on system, and an im-
proved fault compensation term is considered to improve control accuracy. Moreover, the
ICOA designed in this paper effectively accelerates convergence speed. Ultimately, the
feasibility of the proposed control algorithm is successfully proved by a simulation study
on the quad-rotor.
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Figure 5. The position trajectories of X-axis (2)
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