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Abstract. Although system identification and model predictive control are two differ-
ent research fields separately, one gap exists between these two subjects. To alleviate this
gap between them, system identification and model predictive control are combined to be
one iterative identification and model predictive control strategy in this paper, where the
process of system identification and model predictive control will be carried out iteratively
many times until convergence. Based on some priori information about the asymptotic
analysis for predictor error identification, variance analysis corresponding to closed loop
output response is derived to show the tracking performance for this proposed iterative
strategy. From this derived variance analysis, some factors can be chosen to guarantee
the perfect tracking performance, such as input spectrum, and noise filter. Furthermore,
to extend this iterative strategy to more general cases in industry, one model predictive
control based reference governor is studied to provide proportional-integral-differential
(PID) controller. Finally, several simulation experiments about flight control for heli-
copter have been performed to demonstrate the effectiveness of our proposed theories.
Keywords: System identification, Model predictive control, Variance analysis, Refer-
ence governor

1. Introduction. Inferring a dynamic model based on first principle laws of physics,
biology, chemistry, economic, etc., requires detailed process knowledge from specialists,
which might be even impossible to obtain if the required knowledge of first principles is
missing. Such a modeling may also result in a highly complex mathematical description
of the considered system with the need to perform dedicated experiments to estimate
the model coefficients. An efficient alternative is to construct a mathematical model of
the dynamic system on the basis of experimentally measured data. Such an approach is
known as data driven modeling or so called system identification. Building models from
observations and studying their properties is really what science is about. The models
may be of more or less formal character, but they have the basic feature that they attempt
to link observations together into some pattern. System identification is a well developed
technology for estimating plant models from operational data, typically taken during
dedicated plant testing/excitation. Data driven estimation and maintenance of dynamic
models is considered as a key technology for realizing a higher level of autonomy of model
based controllers, when maintaining economic optimal operation of the considered plant.
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As the goal of system identification strategy is to build a mathematical model of a
dynamic system based on some initial information about the considered system and the
measured data, collected from the experiment. The detailed processes of the system
identification strategy consist of designing and conducting one identification experiment
in order to collect the measurement data, selecting the structure of the dynamic system
and specifying the unknown parameters to be identified and eventually fitting the model
parameters to the obtained data. As a consequence, the quality of the obtained model is
evaluated through the model validation procedure. Generally roughly speaking, system
identification strategy is an iterative process and if the quality of the obtained model is not
satisfactory, some or all of the listed phases can be repeated to yield one satisfied model.
As system identification theory is sometimes considered mature field, with a wide and solid
literature, then many tools or methods for system identification, as well as for control
theory, stability analysis, have emerged in recent years. So in this present paper, the
system identification strategy is combined or applied in model predictive control (MPC).
Model predictive control has developed considerably over the past two decades, both
within the research control community and in industry. This success can be attributed to
the fact that model predictive control is perhaps the most general way of posing control
problem in time domain. Model predictive control formulation integrates optimal control,
stochastic control, control of processes with dead time, multi-variable control and future
references when available. One important advantage of model predictive control is that
because of the finite control horizon used, constraints and, in general nonlinear processes
which are frequently found in industry, can be handled. The rationale behind model
predictive control is the following: at each time step, an L2 or other alternative variation
of the cost function is locally optimized over time to design the open loop controller as
a function of time, only a small portion of which is actually applied to the considered
system. Then the time horizon is shifted, and the process is repeated at a latter time step
based on state feedback. Although model predictive control has been found to be quite a
robust type of control in most reported applications, some new and very promising results
allow one to think that this control technique will experience greater expansion within
this community in near future. However, although lots of applications have been reported
in both industry and research institutions, model predictive control has not yet reached
in industry the popular.
However, the main problem on how to combine system identification strategy into model

predictive control must be explained in detail. As it is a fact that the most important
element in model predictive control is the prediction of the output value. After deriving
the prediction of the output value by classical prediction error method and substituting it
into the considered cost function, we take the derivative of the cost function with respect
to the input value to obtain one optimal input. However, the problem of yielding the
prediction of the output value is dependent of external noise, which is always assumed to
be independent and identically distributed white noise. Due to the fact that white noise
is an ideal case, it does not exist in engineering and in additional, deriving statistical
properties of noise is often very difficult in practice, as it is usually not possible to measure
the external noise directly. As linear system identification is a mature field, then the most
common classical approaches can be used to perform the prediction of the output value,
such as prediction error method, and maximum likelihood method, in case of the linear
dynamic system. Although there is always a separation between system identification
and model predictive control design, an alternative idea to obtain the output estimation
for model predictive control is to regard the system identification process as a procedure
to be designed by bearing the final control application. Such a rationale is known as
identification for control, and has been addressed as model based control. It means firstly
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system identification strategy is used to derive the output estimation, and then the output
estimation is substituted in the cost function for model predictive control. On the contrary
to the model based control, the data driven control is widely studied in recent years, for
example, in [1], the existing data driven control approaches are divided into on line and
off line ones. In on line schemes, the controller is adjusted with each new data in closed
loop environment. Examples of on line direct data driven control techniques are given for
nonlinear system in [2]. The main advantage of on line data driven control is the ability to
improve the control performance using the measured data; furthermore, machine learning
and reinforcement learning are applied in data driven control technique to obtain some
different optimal p-steps ahead prediction models [3]. However, lots of measured data
are needed in data driven control and in analyzing control performance the number of
measured data is always assumed to be infinity.

This assumption about the number of measured data is not realistic in engineering or
industry, as in reality the number of measured data is finite, so the model based control
approach is always used in engineering. Before designing the controllers in whatever open
loop or closed loop system, system identification strategy is needed to identify the math-
ematical model for the considered plant firstly, and it means the obtained mathematical
model about the considered plant is a basis for the next control step. A robust adap-
tive model predictive control approach for asymptotically stable, constrained linear time
varying systems with multiple inputs and outputs is studied in [4], where the unknown
but bounded noise is dealt with by set membership identification. For discrete time linear
invariant systems with constraints on inputs and states, an algorithm to determine explic-
itly the state feedback control law is developed in [5], where the control law is piecewise
linear and continuous for both the finite horizon problem. A method based on conceptual
tools of predictive control is described for solving set-point tracking problems wherein
point wise in time input and state inequality constraints are presented in [6]. A learning
model predictive control for iterative task is presented in [7], where the controller is ref-
erence force and is able to improve its performance by learning from previous iterations.
The concept of learning model predictive control means the machine learning strategy is
applied to obtaining the mathematical model for the next model predictive control. [9]
studies symmetry in linear model predictive control, and some properties of both model
predictive control symmetries are also studied by using a group theory formalism. Af-
ter a mathematical description of the considered plant is provided, a tube based model
predictive control approach is a powerful tool for control design in case of unknown sys-
tems, such as unknown noise and un-modeled terms [10], where the robustness against
unstructural uncertainty is also analyzed in detail. Recently the author studies model pre-
dictive control based on zonotope parameter identification, i.e., the unknown parameters
from the mathematical model for the considered plant are identified by set membership
identification [11], where the unknown and bounded noise is known to be in one priori
zonotope. Generally model based control approach is divided as two steps, one is system
identification for the considered plant, and the other step is control design for the optimal
input.

From our above descriptions, after modeling the considered plant by system identifi-
cation, then the process of system identification is finished and the process of control
design is started. And the control performance depends on the mathematical model for
the considered plant closely, i.e., the accuracy of the mathematical model will affect the
latter control performance. To relax this dependence, in this paper, we not only intro-
duce system identification theory into the popular model predictive control strategy, but
also propose iterative identification and model predictive control approach. The iteration
means during the whole model predictive control, the process of system identification
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will not run at only once, i.e., the processes of system identification and model predictive
control will be carried out iteratively many times. This presently popular iteration identi-
fication and control is proposed in [12], which considers the direct minimization of both a
one step and a multi step minimum variance regulation criterion. However, not any other
reference on iterative identification and control is referred except that reference. In our
studying model predictive control, we find that the most element of model predictive con-
trol is obtain the output estimation, used in the cost function. After system identification
strategy is used to identify the output estimation, the accuracy of this output estima-
tion will not achieve our desired goal, so this poor accuracy will affect the latter control
performance. Then idea of iterative identification and model predictive control is needed
to alleviate this dependence. It tells us the processes of system identification and model
predictive control exist simultaneously, and each of them will not be terminated until the
control performance is achieved to the priori given index, such as tracking performance,
unbiased, and minimum variance. After iterative identification and model predictive con-
trol approach is proposed in detail, the variance analysis of the output response is derived
to measure the quality of control performance. From our derived variance expression, we
can observe how the designed controller and input spectrum determine the control per-
formance. To extend this proposed iterative identification and model predictive control
strategy, a concept of reference governor based on model predictive control is formulated
to provide PID controllers [13], which is widely used in industry to modify the user given
reference, such that the quality and safety of a closed loop system is greatly improved.
Generally the contributions of this paper are formulated as follows. Due to the fact that
model predictive control is a special model based control approach, system identification
and model predictive control are combined in this paper to formulate this iterative identi-
fication and model predictive control, which is applied in identifying plant and designing
controller iteratively. To measure the control performance, variance analysis about the
output estimation is also derived. In order to apply this iterative identification and model
predictive control in industry, not only limited in theory, reference governor based on
model predictive control is formulated here to explain the commonly used PID controller.
The paper is organized as follows. In Section 2, the problem formulation is addressed,

and the structure of the considered closed loop system is introduced. Iterative identifica-
tion and model predictive control approach is applied to identifying the unknown plant
and design closed loop controller iteratively in Section 3. Variance analysis on the output
estimation is derived in Section 4, where the controller performance is affected by some
factors, such as input spectrum, estimated model, noise spectrum, and designed controller.
In Section 5, reference governor based on model predictive control is formulated to exe-
cute the PID controller. A simulation example on how to apply the iterative identification
and model predictive control into flight control for one helicopter is introduced in Section
6. Section 7 ends the paper with final conclusion and points out the next subject of our
ongoing research.

2. Problem Formulation. Linear time invariant process is very simple, and theory on it
is very mature. Moreover, after linearizing other nonlinear system, then nonlinear system
can be reduced to one linear time invariant process. So in this paper, we assume the
plant is a linear time invariant process, denoted by a rational transfer function form G(z),
and G(z) is unknown. Throughout the closed loop experimental process, a sequence of
input-output measured data for plant G(z) are collected. The input-output relation is
described as follows.

y(t) = G(z)u(t) + d(t) (1)
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where z is a time shift operator, i.e., zu(t) = u(t−1). G(z) is one transfer function of the
unknown plant, u(t) is the measured input, y(t) is the measured output corresponding to
the plant G(z), and d(t) is the external noise. When d(t) in Equation (1) is unknown but
has known bound, we regard it as the uncertainty associated with d(t) as additive noise
because of the way it enters the input-output relation in Equation (1).

Consider the following simple closed loop system in Figure 1, the input-output relations
in the whole closed loop system are written as follows.{

y(t) = G(z)u(t) + d(t)

u(t) = K(z)[r(t)− y(t)]
(2)

where r(t) is the excited signal, and K(z) is one unknown controller, which is designed
by model predictive control. External noise d(t) may be colored or white noise, without
loss of generality, here we consider d(t) as one colored noise. Then after introducing one
stable, minimum phase filter H(z), external noise d(t) can be obtained by filtering one
white noise e(t) with mean zero and variance λ through our introduced stable, minimum
phase filter H(z). In case of white noise, i.e., d(t) = e(t), then filter H(z) is equal to 1,
so it means that d(t) = H(z)e(t).

+

_

+
+
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Figure 1. Closed loop system

Continuing to do some computations on Equation (1), we get

y(t) = G(z)u(t) +H(z)e(t) =
G(z)K(z)

1 +G(z)K(z)
r(t) +

H(z)

1 +G(z)K(z)
e(t) (3)

Given one sequence of input-output measured data.

ZN = {u(1), y(1) . . . u(N), y(N)} = {u(t), y(t)}Nt=1

where N is the number of input-output measured data.
Introduce one unknown parameterized vector θ in closed loop system, its parameterized

form is given as

y(t) =
G(z, θ)K(z)

1 +G(z, θ)K(z)
r(t) +

H(z, θ)

1 +G(z, θ)K(z)
e(t) (4)

where θ denotes the unknown parameter vector, which includes some unknown parameters
from G(z) and H(z), i.e., it exists in the parameterized plant model G(z, θ) and noise
filter H(z, θ), respectively. The goals of this paper are to identify the unknown parameter
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vector θ̂N from one collected input-output data set ZN = {u(1), y(1) . . . u(N), y(N)} =

{u(t), y(t)}Nt=1, and then apply the identified model
{
G
(
z, θ̂
)
, H
(
z, θ̂
)}

to designing the

controller K(z) by using model predictive control approach.

3. Iterative Identification and Model Predictive Control. In this section, iterative
identification and model predictive control is proposed to identify the unknown parameter
vector and design predictive controller.

3.1. System identification. According to parameterized Equation (4), the prediction
for output or output prediction ŷ(t, θ) can be calculated as the following one step ahead
prediction, i.e.,

ŷ(t, θ) =
1 +G(z, θ)K(z)

H(z, θ)
× G(z, θ)K(z)

1 +G(z, θ)K(z)
r(t) +

[
1− 1 +G(z, θ)K(z)

H(z, θ)

]
y(t)

=
G(z, θ)K(z)

H(z, θ)
r(t) +

H(z, θ)− 1−G(z, θ)K(z)

H(z, θ)
y(t) (5)

Computing the one step ahead prediction error or residual ϵ(t, θ), it becomes

ϵ(t, θ) = y(t)− ŷ(t, θ) = y(t)− G(z, θ)K(z)

H(z, θ)
r(t)− H(z, θ)− 1−G(z, θ)K(z)

H(z, θ)
y(t)

=
1 +G(z, θ)K(z)

H(z, θ)

[
y(t)− G(z, θ)K(z)

1 +G(z, θ)K(z)
r(t)

]
(6)

Above two Equations (5) and (6) are called as one step ahead prediction and one step
ahead prediction error or residual respectively. Their detailed forms and physical meanings
are from the theory of system identification, and they are the basis for the classical least
squares identification method.
In the standard prediction error identification, when using the input-output data set

ZN = {u(t), y(t)}Nt=1, with the number of data N , then unknown parameter vector θ is
identified by

θ̂N = argminθV1

(
θ, ZN

)
= argminθ

1

N

N∑
t=1

ϵ2(t, θ) (7)

The above identification process is known as the standard prediction error identification.
After unknown parameter vector θ is identified as its parameter estimation θ̂N , then the

model for unknown plant and the noise filter are given as
{
Ĝ
(
z, θ̂N

)
, Ĥ
(
z, θ̂N

)}
. Then

our identified models are used for the next model predictive control approach.

3.2. Model predictive control. The goal of model predictive control is to control the
closed loop system in order to track a desired output reference and reject disturbances
from t = 0 up to some finite time step N , where this time step N can be arbitrary large.
In model predictive control framework, the control performance criterion could take the
following form.

V2(K(z)) =
1

N

N∑
t=1

[
(y(t)− ydes(t))

2 + γu(t)2
]

(8)

where ydes(t) is the desired output reference, y(t) and u(t) are the output signal and input
signal, respectively. γ is a positive weighting factor that reflects the respective importance
given to the tracking error and the control effort. Generally the above contents in Section
3 are incremental to the literature on system identification and model predictive control.
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These above parts are used to our later analysis on combining system identification and
model predictive control, i.e., iterative strategy is introduced in them.

The criterion function (8) cannot be minimized because the first one depends explicitly
on the unknown G(z) andH(z), while the second term depends on G(z) andH(z) through
the closed loop system that links r(t), u(t) and y(t). Instead controller K(z) can be

designed on the basis of estimations
{
Ĝ
(
z, θ̂N

)
, Ĥ
(
z, θ̂N

)}
, which are obtained from

measured data by system identification.
Replacing y(t) and u(t) by their parameterized forms to obtain that

V2(K(z), θ) =
1

N

N∑
t=1

[
(y(t, θ)− ydes(t))

2 + γu(t, θ)2
]

(9)

where parameterized models {y(t, θ), u(t, θ)} are given as follows.
y(t, θ) =

G(z, θ)K(z)

1 +G(z, θ)K(z)
r(t) +

H(z, θ)

1 +G(z, θ)K(z)
e(t)

u(t, θ) =
K(z)

1 +G(z, θ)K(z)
r(t)− K(z)H(z, θ)

1 +G(z, θ)K(z)
e(t)

(10)

Substituting Equation (10) into (9), we have

V2(K(z), θ) =
1

N

N∑
t=1

[(
G(z, θ)K(z)

1 +G(z, θ)K(z)
r(t) +

H(z, θ)

1 +G(z, θ)K(z)
e(t)− ydes(t)

)2

+ γ

[
K(z)

1 +G(z, θ)K(z)
r(t)− K(z)H(z, θ)

1 +G(z, θ)K(z)
e(t)

]2]
(11)

After simple but tedious calculations on the first term and using Parseval’s theorem, we
have

1

N

N∑
t=1

[(
G(z, θ)K(z)

1 +G(z, θ)K(z)
r(t) +

H(z, θ)

1 +G(z, θ)K(z)
e(t)− ydes(t)

)2
]

=
1

2π

∫ π

−π

{
|G(z, θ)|2|K(z)|2

|1 +G(z, θ)K(z)|2
ϕr(w) +

|H(z, θ)|2

|1 +G(z, θ)K(z)|2
λ

− 2G(z, θ)K(z)

1 +G(z, θ)K(z)
ϕydesr(w)

}
dw (12)

In this expression ϕr(w) and ϕydesr(w) are the spectrum and cross spectrum of the signals
r(t), and ydes(t). Also we use the following relations.{

Ed(t) = EH(z)e(t) = 0; Er(t)d(t) = H(z)Er(t)e(t) = 0

ϕd(w) = |H(z)|2ϕe(w) = λ|H(z)|2

Similarly doing some manipulations on the second term of Equation (11), it holds that

1

N

N∑
t=1

[
K(z)

1 +G(z, θ)K(z)
r(t)− K(z)H(z, θ)

1 +G(z, θ)K(z)
e(t)

]2
=

1

2π

∫ π

−π

|K(z)|2(ϕr(w) + λ|H(z)|2)
|1 +G(z, θ)K(z)|2

dw (13)

Add Equations (12) and (13) to get
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V2(K(z), θ) =
1

2π

∫ π

−π

{
|G(z, θ)|2|K(z)|2

|1 +G(z, θ)K(z)|2
ϕr(w) +

|H(z, θ)|2

|1 +G(z, θ)K(z)|2
λ

− 2G(z, θ)K(z)

1 +G(z, θ)K(z)
ϕydesr(w) +

|K(z)|2(ϕr(w) + λ|H(z)|2)
|1 +G(z, θ)K(z)|2

}
dw (14)

Due to the fact that unknown parameter vector θ and controller K(z) are all unknown,
and the processes of system identification and model predictive control correspond to two
minimization problems, we need to rewrite these two criterion functions as V1(K(z), θ)
and V2(K(z), θ).

3.3. Iterative identification and model predictive control. Ideally, the problem of
system identification could be reformulated as a parameter estimation problem as follows.

θ̂N = argminθV1(K(z), θ)

and the problem of predictive controller could be also reformulated as a minimization
problem as follows.

K̂(z) = argminK(z)V2(K(z), θ)

The direct minimizations of such two global identification and control performance crite-
rions over a set of restricted complexity models are typical intractable, but we can attack
these two problems by performing a succession of local identification steps and local pre-
dictive control design steps in an iterative way. The basic steps corresponding to our
iterative identification and model predictive control are formulated as follows.

Step 1: Identify an open loop model Ĝ0

(
z, θ̂0

)
and noise filter Ĥ0

(
z, θ̂0

)
, from input-

output data, and design a controller K̂0, that stabilizes both the true plant G and the
identified model Ĝ0. Apply this controller to the plant and collect new input-output data.
Step 2: Using the closed loop measured data on the plant while the initial controller

K̂0 operates, identify a new model Ĝ
(
z, θ̂1

)
and noise filter Ĥ

(
z, θ̂1

)
by minimizing a

local identification criterion, i.e., θ̂1 is identified by

θ̂1 = argminθV1

(
K̂0, θ, θ̂0

)
Step 3: Using these new model and noise filter

{
Ĝ
(
z, θ̂1

)
, Ĥ
(
z, θ̂1

)}
, design a new

predictive controller K̂1 that stabilizes both G(z) and
{
Ĝ
(
z, θ̂1

)}
, by minimizing a local

control design criterion, i.e., predictive controller K̂1 is designed by

K̂1 = argminKV2

(
K, K̂0, θ̂1

)
. . .
Step i: Using the new model and noise filter

{
Ĝ
(
z, θ̂i

)
, Ĥ
(
z, θ̂i

)}
, design a new

predictive controller K̂i that stabilizes both G(z) and
{
Ĝ
(
z, θ̂i

)}
, by minimizing a local

control design criterion. Apply this controller to the plant and collect new input-output
data.
. . .
Repeat: Repeat step 2 and step 3, replacing i by i+ 1.
Generally, here iterative identification and model predictive control approach is applied

to identifying the unknown plant and designing closed loop controller iteratively.
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4. Variance Analysis. From above steps in iterative identification and model predic-
tive control, the predictive controller K̂(z) is dependent of identified model and noise

filter
{
Ĝ
(
z, θ̂
)
, Ĥ
(
z, θ̂
)}

, i.e., predictive controller can be abbreviated as K̂(z) =

K
(
Ĝ, Ĥ

)
. Then the control performance depends on the accuracy of the identified model{

Ĝ
(
z, θ̂
)
, Ĥ
(
z, θ̂
)}

. To show the control performance about the predictive controller

K̂(z), one performance index must be chosen to analyze. As the goal of model predictive
control is to guarantee the closed loop system to tracking a desired output reference, here
for analysis purpose, the tracking performance is chosen as a performance index. For
convenience, firstly we introduce some priori information about the asymptotic analysis

about the identified model and noise filter
{
Ĝ
(
z, θ̂
)
, Ĥ
(
z, θ̂
)}

.

4.1. Asymptotic analysis. To simplify notation, we stack the model G(ejw) and noise
filter H(ejw) in frequency domain as follows.

T
(
ejw
)
=

[
G (ejw)

H (ejw)

]
and its parameterized form is

T̂
(
ejw, θ

)
=

[
Ĝ (ejw, θ)

Ĥ (ejw, θ)

]
Comment: When the power spectrums corresponding to the excitation signal are con-
tinuous in interval [0, π], and the number of measured input-output data approaches to
infinity, then the following asymptotical expression holds.

T̂
(
ejw, θ

)
→ T

(
ejw
)
, N → ∞

Furthermore, the variance about T̂ (ejw, θ) is one Gaussian distribution, and its variance
matrix is that

Cov
[
T̂
(
ejw, θ

)]
≈ n

N
ϕd(w)

[
ϕu(w) ϕue(w)

ϕeu(w) λ

]−1

(15)

where ϕu(w) is the input spectrum, and ϕue(w) is the cross spectrum between u(t) and
white noise e(t). ϕd(w) is the noise spectrum, n is the model order and N is the same as
the number of measured data.

In the framework of feedback effect, control input u(t) can be rewritten as

u(t) = K(z)[r(t)− y(t)] = K(z)S(z)[r(t)−H(z)e(t)] (16)

where S(z) is the sensitivity function, i.e.,

S(z) =
1

1 +G(z)K(z)

If excitation signal r(t) is independent of white noise e(t), then input spectrum ϕu(w) is
divided as two terms.

ϕu(w) = ϕr
u(w) + ϕe

u(w) = |K(z)|2|S(z)|2ϕr(w) + |K(z)|2|S(z)|2|H(z)|2λ (17)

where the first term is from excitation signal r(t), and the second term comes from white
noise e(t).

Use relation ϕd(w) = |H(z)|2λ to get

ϕue(w) = −K(z)S(z)H(z)λ (18)
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Substitute Equations (17) and (18) into variance matrix (15) to obtain

Cov
[
T̂
(
ejw, θ

)]
≈ n

N
ϕd(w)

[
ϕu(w) ϕue(w)

ϕeu(w) λ

]−1

=
n

N

ϕd(w)

λϕu(w)− |ϕue(w)|2

[
λ −ϕue(w)

−ϕeu(w) ϕu(w)

]
=

n

N

|H(z)|2

|K(z)|2|S(z)|2ϕr(w)

[
λ −ϕue(w)

−ϕeu(w) ϕu(w)

]
(19)

Expanding the above variance matrix to get the variance of the identified model Ĝ(ejw, θ),
i.e.,

Var
[
Ĝ
(
ejw, θ

)]
≈ n

N

|H(z)|2λ
|K(z)|2|S(z)|2ϕr(w)

=
n

N

ϕd(w)

|K(z)|2|S(z)|2ϕr(w)
(20)

similarly based on Equation (3), we have

y(t) =
G(z)K(z)

1 +G(z)K(z)
r(t) +

H(z)

1 +G(z)K(z)
e(t) = G(z)K(z)S(z)r(t) +H(z)S(z)e(t)

Then the output spectrum is that

ϕy(w) = |G(z)|2ϕr
u(w) + |S(z)|2ϕd(w) = |G(z)|2|K(z)|2|S(z)|2ϕr(w) + |S(z)|2ϕd(w) (21)

Variance matrix (19) is important for the next variance analysis about output response.

4.2. Variance analysis for predictive controller. Rewrite the output response of the
closed loop system here again.

y(t) =
G(z)K(z)

1 +G(z)K(z)
r(t) +

H(z)

1 +G(z)K(z)
e(t)

From the above iterative identification and model predictive control, predictive control
K(z) depends on the estimations Ĝ(z, θ) and Ĥ(z, θ), which correspond to their model
and noise filter. Using these estimations in output response, then

y(t) =
G(z)K̂(z)

1 +G(z)K̂(z)
r(t) +

H(z)

1 +G(z)K̂(z)
e(t) (22)

where predictive controller K̂(z) = K
(
Ĝ, Ĥ

)
.

Our variance analysis for predictive control is to measure the variance of the output
response, i.e., E {∥y(t)− y0(t)∥2}, where y0(t) is the true output response and y(t) is the

output response, obtained by predictive controller K̂(z). Suppose two estimations Ĝ(z, θ)

and Ĥ(z, θ) are close enough to their true values G(z, θ) and H(z, θ), but perturbations
still exist between estimations and true values, i.e.,

Ĝ = G+∆G; Ĥ = H +∆H; K̂ = K +∆K

For the sake of brevity, variable z is neglected in the following derivations.
Consider the following approximate formulas.(

1 +GK̂
)−1

= (1 +GK +G∆K)−1 =
(
1 + (1 +GK)−1G∆K

)−1
(1 +GK)−1

≈ (1− SG∆K)S = S − SG∆KS (23)(
1 +GK̂

)−1

GK̂ ≈ (1− SG∆K)SG(K +∆K)

≈ T − SG∆KT + SG∆K = T + SG∆KS (24)
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where we use some relations in deriving Equations (23) and (24)

(1−∆)−1 ≈ 1−∆; S = (1 +GK)−1; T = (1 +GK)−1GK = 1− S = 1− (1 +GK)−1

Based on Equations (23) and (24), then Equation (22) is rewritten as

y(t) = (T + SG∆KS)r(t) + (S − SG∆KS)He(t) ≈ y0(t) + SG∆KS(r(t)−He(t)) (25)

where true output response y0(t) is defined as

y0(t) = Tr(t) + SHe(t)

The true output response y0(t) is obtained by true model and noise filter {G(z), H(z)}.
From Equation (25), the control performance is given as follows

E
{
∥y(t)− y0(t)∥2

}
= E

{
∥SG∆KS(r(t)−He(t))∥2

}
(26)

Doing some manipulations from the practical perspective and using Parseval’s theorem
again, then it holds

E
{
∥y(t)− y0(t)∥2

}
= E

{
∥SG∆KS(r(t)−He(t))∥2

}
= E

{
E∥SG∆KS(r(t)−He(t))∥2|∆K

}
= E

{
1

2π

∫ π

−π

SG∆KS[ϕr(w) + ϕd(w)]S
T∆KTGTST

}
dw (27)

For ease of analysis, the middle term is decomposed as

ϕr(w) + ϕd(w) = RRT

Use vectorization operation to get

E

{
1

2π

∫ π

−π

SG∆KS[ϕr(w) + ϕd(w)]S
T∆KTGTST

}
dw

= E

{
1

2π

∫ π

−π

SG∆KSRRTST∆KTGTST

}
dw = E

{
1

2π

∫ π

−π

∥vec{SG∆KSR}∥22
}

(28)

Introducing Kronecker product ⊗ to compute Equation (28), then it holds that

E

{
1

2π

∫ π

−π

∥vec{SG∆KSR}∥22
}

= E

{
1

2π

∫ π

−π

∥∥[RT ⊗ STSG
]
vec{∆K}

∥∥2
2

}
= E

{
1

2π

∫ π

−π

tr
[(
SRRT ⊗GTSTSG

)
Pk

]}
=

1

2π

∫ π

−π

tr
[(
S[ϕr(w) + ϕd(w)]S

T ⊗GTSTSG
)
Pk

]
Pk = cov

{
vec
(
K̂
)}

(29)

When to compute Pk, due to K̂ = K
(
Ĝ, Ĥ

)
, then

∆K ≈ ∂vecK

∂vecG
∆G+

∂vecK

∂vecH
∆H =

[
∂vecK

∂vecG

∂vecK

∂vecH

] [
∆G

∆H

]
(30)

It means Pk is that

Pk =

[
∂vecK

∂vecG

∂vecK

∂vecH

]
P[Ĝ,Ĥ]


(
∂vecK

∂vecG

)T

(
∂vecK

∂vecH

)T

 (31)
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combining Equations (19) and (31) to give that

Pk =

[
∂vecK

∂vecG

∂vecK

∂vecH

]
n

N

|H(z)|2

|K(z)|2|S(z)|2ϕr(w)

[
λ −ϕue(w)

−ϕeu(w) ϕu(w)

]
(
∂vecK

∂vecG

)T

(
∂vecK

∂vecH

)T


=

n

N

|H(z)|2

|K(z)|2|S(z)|2ϕr(w)

[
λ
∂vecK

∂vecG

(
∂vecK

∂vecG

)T

+ ϕu(w)
∂vecK

∂vecH

(
∂vecK

∂vecH

)T
]

+M(ϕeu(w)) (32)

where the third term M(ϕeu(w)) includes something about cross-spectrum ϕeu(w).
Use the expression of input spectrum ϕu(w) (17) to give

E
{
∥y(t)− y0(t)∥2

}
≈ n

2πN

∫ π

−π

tr

{(
S[ϕr + ϕd]S

T ⊗GTSTSG
)
|H|2ϕd

ϕu

∂vecK

∂vecG

(
∂vecK

∂vecG

)T
}
dw

+
n

2πN

∫ π

−π

tr

{(
S[ϕr + ϕd]S

T ⊗GTSTSG
)
|H|2∂vecK

∂vecH

(
∂vecK

∂vecH

)T
}
dw (33)

From above variance analysis for the output response, we see which variables affect the
variance greatly. Furthermore, due to the fact that input spectrum ϕu(w) only exists in
the first term, we can choose one optimal input spectrum to guarantee the above variance
converges to its minimum value. This process of choosing optimal spectrum is known as
the optimal input signal design for closed loop system.

5. Model Predictive Control Based Reference Governor. The concept of model
predictive control based reference governor supplies setpoints for primary controller to
be an optimization based reference governor. In order to apply our proposed iterative
identification and model predictive control in industry, the reference governor is introduced
to give a supplement for above analysis. The reference governor is a control strategy whose
objective is to modify the user given reference r(t) in order to improve the quality and
safety of a closed loop system, which consists of a primary controller. Here consider a
situation where the plant is controlled primary by a set of PID controller, as PID controller
is very common in industry. This section is devoted to such closed loop systems with a
plant and an inner controller in a form of a PID controller. Such model predictive control
based reference governor is seen in Figure 2, where the transfer function of the plant is
described as

G(z) =
Y (z)

U(z)
(34)

where U(z) and Y (z) represent the Laplace transform of input variable and output vari-
able, respectively in z domain. For such a plant there exists a PID controller in the
following transfer function form.

R(z) =
U(z)

E(z)
(35)

Similarly E(z) is the Laplace transform of the error signal e(t) = w(t)− y(t).
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Reference governor

PID Plant

r t

w t
e t u t

y t

_
+

Figure 2. Model predictive control based reference governor

Applying the transfer function algebra, the transfer function corresponding to the closed
loop system is given by

Gcl(z) =
Y (z)

W (z)
=

G(z)R(z)

1 +G(z)R(z)

In model predictive control design, the numerator and the denominator of Gcl(z) can be
written as a polynomial of z, i.e.,

Gcl(z) =
G(z)R(z)

1 +G(z)R(z)
=

∑m
j=0 bjz

−j∑n+1
i=0 aiz−i

(36)

where m and n are the orders for the numerator and the denominator polynomials.
Rewrite above transfer function (36) into a recursive form as follows

y(t+ 1) =
1

a0

(
−

n∑
i=1

aiy(t− i+ 1) +
m∑
j=0

bjw(t− j + 1)

)
(37)

Then Equation (37) denotes exactly the output estimation in model predictive control,
i.e., model predictive control based reference governor has following form.

min
u1·uN

N∑
t=1

Lt(y(t), u(t), w(t))

subject to y(t+ 1) =
1

a0

(
−

n∑
i=1

aiy(t− i+ 1) +
m∑
j=0

bjw(t− j + 1)

)
ymin ≤ y(t) ≤ ymax; η0 = η(t) (38)

with the objective function

Lt(y(t), u(t), w(t)) = ∥Q1(r(t)− y(t))∥2 + ∥Q2(r(t)− w(t))∥2
+ ∥Q3(w(t)− y(t))∥2 + ∥Q4(w(t)− w(t− 1))∥2 (39)
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and

η =
[
y(t) · · · y(t− n) w(t− 1) · · · w(t− n) r(1) · · · r(N)

]T
(40)

where Q1, Q2, Q3, Q4 are four positive definite matrices.
Comment: The first term in objective function penalizes the difference between the

measured output and the user defined reference. The second term penalizes the enforce
convergence of the shaper reference. The third term provides that the output prediction
or output estimation converges to the shaped reference. The last term dampens the
fluctuations in the evolution of the shaped reference.
According to the problem of solving the optimization problem (38), many classical op-

timization algorithms can be applied here, for example, Newton method, gradient descent
method, exact primal dual first order algorithm, distributed subgradient method, and
Lagrange multiplier method.

6. Simulation Example. Here the example of helicopters hover is used to prove the
effectiveness of our proposed iterative identification and model predictive control strategy.
The structure of our considered helicopter is seen in Figure 3. In controlling the helicopter
system, one six degree of freedom motion is regarded as a high precision servo device. The
higher requirements for position following control are those. 1) The expected position
tracking cannot overshoot, and the dynamic response process would be fast or smooth. 2)
To ensure the tracking accuracy, the position tracking is required to show a small steady
state error.

 

 

Figure 3. The structure of helicopter
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In the servo control, we apply proportional and integral (PI) controller. Due to the
influence of external noise, differential controller is not often used here. To increase the
frequency response of the position loop, a series of advanced correction or compound
correction control strategies can be employed.

After designing the controller for the speed loop, many parts are combined to be the
plant in the position loop, such as the controller, the power amplifier, the DC torque
motor and the platform load. This part is equivalent to a link of the position loop. The
simplified structure diagram for the position loop is referred to Figure 4.

Figure 4. Simplified structure for position loop

In Figure 4, WAWR(s) is one regulator for the position loop, ϕn(s) is the equivalent
transfer function for velocity loop, and

ϕn(s) =
3.259s+ 135.9

0.0000113s3 + 0.01053s2 + 3.467s+ 136.9

In Figure 4, a physical integral link exists in the control loop. From the principle of
the control, the integral link of the position mode cannot be used in the position loop
to ensure the stability for the entire position loop. In fact, due to the nonlinear factors,
such as static friction in the servo loop, only the proportional controller will guarantee
the steady state accuracy for the position loop. To reduce the influence coming from
nonlinear factors, it is necessary to add a multi-integral controller in a small range for the
position loop, and it means one integral controller is added to consider the finite output
and limited angle, which is seen in Figure 5.

Figure 5. Multi-integral controller

The controller parameters are tuned around the stable boundary by Matlab, the tuned
parameters are given as KP = 100; KI = 2.57, and the closed loop transfer function of
the position following system is as follows after PID correction.

ϕ(s) =
3.846s3 + 486.3s2 + 13600s+ 349.3

0.0000113s4 + 0.01053s3 + 3.467s2 + 136.9s

In order to verify the performance index of the position following system with PID
controller under different input signals, here the step signal and sinusoidal signal with
different frequencies are chosen as the input signals for the entire closed loop system.
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1) Step signal
The input signal is chosen as step signal, i.e., r(t) = 1(t), and then the simulated system

output and error are obtained in Figure 6.
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Figure 6. Simulated system output and error with step signal

2) Sinusoidal signal
Sinusoidal signals with frequency 1HZ and 3HZ are selected as the input signals for the

position following system, then also the simulated system output and error are obtained
in Figure 7.
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Figure 7. Simulated system output and error with sinusoidal signal

According to the system response curves and error curves, when input signal is a unit
step signal, the adjustment time of the system is less, the output has no overshoot, and
the steady state error is less, which corresponds to the position system time domain index.
When the frequency of the sinusoidal signal is low, the closed loop system can accurately
track the input signal. As the frequency of the sinusoidal signal increases, the tracking
of the input signal by the closed loop system has a certain hysteresis, and the top of the
signal will appear flat. Therefore, the classical PID controller of the position following
system can realize accurate tracking of low frequency input signals, and there is a large
position tracking error for tracking high frequency signals. Furthermore, we see the fact
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that many nonlinear factors and coupling errors caused by the model are neglected when
building the motor model, and the effects of nonlinear factors such as multiple frictional
moments of the mechanism are neglected in the simulation experiment. These neglected
nonlinear factors must be considered in our further research.

7. Conclusion. In this paper, system identification strategy and model predictive control
are combined to form one iterative identification and model predictive control approach,
which can guarantee control performance not depending on the identified model greatly.
To show the tracking performance for model predictive control, variance analysis corre-
sponding to the closed loop output response is derived in detail by our own mathematical
derivation. When to extend this iterative identification and model predictive control to
more general case in industry, reference governor based on model predictive control is also
formulated to provide PID controller. Due to the fact that system identification is a basis
for next control design and input signal design is one first element during the whole system
identification, future research will focus on studying optimal signal for model predictive
control.
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