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Abstract. For steer-by-wire (SbW) systems, the most traditional model-based control
methods have been conducted in the practical application under the assumptions that the
friction torque and self-aligning torque are known in advance. However, it is difficult to
measure and model the friction torque and self-aligning torque. In this paper, a compos-
ite control scheme including proportion integration differentiation (PID) controller and
fuzzy logic system (FLS) is proposed so that the above assumptions are relaxed. Firstly,
an adaptive FLS is adopted to approximate the unknown dynamics of SbW system so that
the friction torque and self-aligning torque are no longer needed in the control design.
Secondly, the classic PID controller combined with the intelligent compensation is pro-
posed to achieve the stable steering tracking control. To support the theoretical analysis,
the system tracking error is proved to be uniformly ultimately bounded by Lyapunov sta-
bility technique. Finally, numerical simulations and hardware-in-loop (HiL) experiments
show the rationality and superiority of the proposed method.
Keywords: Steer-by-wire system, Adaptive fuzzy modeling, Control compensation,
Hardware-in-loop

1. Introduction. As one of the most advanced automobile technologies, the unmanned
ground vehicle technique has attracted increasing attention from the industrial commu-
nities over the past two decades. The steer-by-wire (SbW) technique is an essential com-
ponent in the development of automatic drive. Compared with the conventional steer-
ing system, the SbW system has two distinct characteristics: 1) the mechanical linkage
between the steering wheel and the front-wheels is no longer required; 2) an additional
steering motor is applied to regulating the front-wheels steering angle. SbW system is
closely related to the traffic safety of unmanned vehicles, so the researches on controlling
the steering angle of front-wheels have been attracted great attention [1-5].

The researches on the modeling and control of the SbW system have become a popu-
lar topic and many successes have been obtained in recent years. Specifically, based on
several assumptions, the two-degree-of-freedom nonlinear model of the SbW system has
been established in [1-4]. In subsequent studies, a variety of model-based control methods
have been proposed for SbW to achieve the trajectory tracking control of the front-wheels
steering angle, such as proportional-derivative (PD) control [2,3], model predictive control
[4], H∞ control [5], and sliding mode control [6-10]. It should be noted that when there
exists a large modeling error, the above model-based control methods are not available.
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Moreover, the robust control methods [5-10] have complex structures and excessive pa-
rameters, which make it difficult to tune the control parameters, and thus, they are not
suitable to be applied in the practical application.
The general proportional-integral-derivative (PID) controller has been widely used in

the process control technology for many decades [11-15]. Meanwhile, the PID controller
is a key part of control loop and it has the significantly untapped capability, which offers
the simplest and efficient solution to many practical control problems. Hence, in many
real industrial applications, the PID controller is still widely used even though lots of new
control methods have been proposed. Motivated by the above fact, we concentrate on the
exploitation of PID control. However, it is hard for PID control to achieve satisfied track-
ing performance when larger uncertainties and strong nonlinearities exist in the system.
Therefore, for the desired result, it is necessary to combine with the feedforward/feedback
methods and adaptive technologies in the design of PID controller.
Adaptive control techniques include the system identification and controller design.

Over the past few decades, there are significant researches on adaptive control schemes
for linear and nonlinear systems [16-19]. Many practical results have shown the advantage
of adaptive control techniques. However, the conventional adaptive control theory was de-
veloped based on mathematical models and parameter estimation algorithms. Therefore,
it is hard to perform tracking control tasks when the large uncertainties and strong nonlin-
earities exist. A remarkable characteristic of the existing adaptive control technique is that
system design does not take advantage of the domain knowledge from operators or work-
ers. Recently, in many practical industrial tasks, traditional approaches of mathematical
modeling are not easy to offer satisfactory performance because the nonlinear dynamics,
unmodeled dynamics, parameter uncertainties and varying external disturbances make
the real systems more complex. Fuzzy logic system (FLS) has attracted a lot of attention
in the engineering community due to its universal approximation performance. In partic-
ular, an adaptive fuzzy system has received considerable attention because it can be used
to deal with the problems of complex industrial process modeling and control [20-23]. To
this end, fuzzy modeling and adaptive control techniques have been successfully applied
to complex systems, where traditional approaches rarely achieve satisfactory results due
to the nonlinearity, uncertainty and lack of domain knowledge.
As for this, this paper proposes a novel fuzzy compensation-based PID for an uncertain

SbW system, which combines the on-line approximation ability of the FLS. It is worth
noting that this controller does not need the known parameters of the SbW system model
and nonlinear dynamics. The unknown dynamics can be online approximated by the
designed adaptive mechanism, so as to achieve the fuzzy modeling and adaptive control of
the SbW system. The main contributions of this paper can be concluded as the following.

• The nonlinearities including friction torque and self-aligning torque of SbW system
are approximated by the adaptive FLS. Compared with the existing researches on S-
bW systems, a priori knowledge of the system dynamics can be avoid in the controller
design.

• Different from recent complex adaptive control methods, a PID control combined
with fuzzy compensation is proposed in this paper. Because the controller has a
simple structure and fewer designed parameters, it is convenient to realize the pa-
rameter tuning and steering control in the practical application.

The structure of this paper is organized as follows. The dynamics model of the SbW
system and the FLS are briefly described in Section 2. In Section 3, a novel FLS-based
PID control and the corresponding stability analysis are given. The numerical simulations
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results of the hardware-in-loop test (HiL) and its corresponding analysis are given in
Section 4. Section 5 is the concluding remarks.

Notations : Throughout this paper, Rn represents the n-dimensional Euclidean space.
Rm×n is the set of m× n matrices. | · | refers to the absolute value and ∥ · ∥ denotes the
standard Euclidean vector norm.

2. Dynamics Model and Preliminaries. The SbW system is mainly composed of the
steering motor and motor driver, reducer, gearbox, etc. Figure 1 shows the mechanical

Figure 1. Schematic diagram of the SbW system

Table 1. Variables of the SbW system

Symbol Model variable Unit

Jm Moments of inertia of the front wheels [kg·m2]

Bm Viscous friction of the front wheels [Nms/rad]

Jf Moments of inertia of the front wheels [kg·m2]

Bf Viscous friction of the front wheels [Nms/rad]

Je Moments of inertia of the front wheels [kg·m2]

τm Steering motor torque [Nm]

τ12 Motor lumped torque perturbation [Nm]

τe Self-aligning torque [Nm]

δf Front-wheels steering angle [Rad]

δm Motor assembly steering angle [Nm]

µ Steering motor assembly angle/front-wheels angle []

φ Yaw rate [rad/s]

Y Lateral displacement [m]

M Vehicle Mass [kg]

I Polar moment of inertia [kg·m2]

vX Longitudinal velocity [m/s]

Cf Front-wheels cornering stiffness [N/rad]

Cr Rear-wheels cornering stiffness [N/rad]

lf Distance from mass center to front axle [m]

lr Distance from mass center to rear axle [m]

tm Front-wheels mechanical trail [m]

tp Front-wheels pneumatic trail [m]
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architecture of the SbW system and Table 1 is given to clarify each of the components in
Figure 1.

2.1. Dynamic model of the SbW system. According to [1-6], the dynamic model of
the steering motor can be established as

Jmδ̈m +Bmδ̇m + τ12 = τm. (1)

The rotation of the front-wheels around their vertical axes can be modeled as in [2,5],
that is

Jf δ̈f + τf + τe = τs (2)

in which τf represents the damping and friction effects, which can be expressed as

τf = Fcsign
(
δ̇f

)
+Bf δ̇f . (3)

The self-aligning torque τe is given by

τe = Cf (tm + tp)

(
Ẏ + lf φ̇

vX
− δf

)
(4)

where lateral motion Y and the yaw angle φ can be obtained from the two-degree-of-
freedom model established based on the following assumptions [3,6]:

1) the longitudinal vehicle speed vX is assumed to be constant.
2) cos δf = 1.

The two-degree-of-freedom model can be simplified as

Ÿ =

(
Cf + Cr

MvX

)
Ẏ +

(
lfCf − lrCr

MvX
− vX

)
φ̇− Cf

M
δf

φ̈ =

(
lfCf − lrCr

IvX

)
Ẏ +

(
l2fCf + l2rCr

IvX

)
φ̇− lfCf

I
δf .

(5)

Remark 2.1. Please note that the yaw motion of the vehicle in (5) is derived under
the assumption that the tire slip angle is less than 4o. Based on this assumption, the
nonlinear self-aligning torque τe can be approximated as (4) in the linear region. Thereby,
the simplified dynamics model (4) is limited to describe the actual self-aligning torque well
under a wide range of vehicle conditions.

Moreover, the transmission ratio between the steering motor and the front-wheels is

δf
δm

=
δ̇f

δ̇m
=

δ̈f

δ̈m
=

τ12
τs

=
1

µ
(6)

which together with (1)-(5) yields

Jeδ̈f +N
(
δf , δ̇f

)
= µτm (7)

where N
(
δf , δ̇f

)
:= µ2Bmδ̇f + τf + τe and Je := Jf + µ2Jm. Note that δf , δ̇f , and

δ̈f represent the angular position, the velocity and the acceleration of the front-wheels,
respectively.
For brevity, the dynamics of the SbW system (7) can be rewritten as

ẋ1 = x2

ẋ2 = f0(x) + gu
(8)
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where x = [x1, x2]
T :=

[
δf , δ̇f

]T
∈ R2, u is the control input which is represented as τm

in (7), f0(x) := −N (x)/Je : R2 → R is an uncertain nonlinear function, and g := κ/Je is
the parameter which is positive but unknown.

Control Objective: As shown in Figure 2, the main purpose of this paper is to design
the PID control with fuzzy compensation for uncertain SbW system, such that the front-
wheels steering angle x1 can follow its reference signal yd.

Figure 2. Control objective

2.2. Fuzzy logic system. Normally, the FLS mainly contains four parts: fuzzifier, fuzzy
rule base, fuzzy inference engine and defuzzifier. The fuzzifier is considered as a mapping
from the state space to the fuzzy sets. The fuzzy rule base consists of several linguistic
rules based on the expert experience, such that

Rj: If x1 is F j
1 and x2 is F j

2 · · · and xr is F
j
r , then yj is Gj

where x = (x1, x2, . . . , xr)
T ∈ Rr is the input vector of FLS, and y(x) ∈ R is the output

result of FLS. F j
i (i = 1, 2, . . . , r; j = 1, 2, . . . ,m) and Gj represent fuzzy sets. The

estimated output of FLS can be described as

y(x) =

∑m
j=1 ȳ

j
∏r

i=1 µF j
i
(xi)∑m

j=1

∏r
i=1 µF j

i
(xi)

(9)

where ȳj is the center point at µGj achieving its maximum value µGj(ȳj) = 1.
Define the basis function vector as θ = [ȳ1, . . . , ȳm]T and the regressive vector is defined

as ξ(x) = [ξ1(x), . . . , ξm(x)]T with

ξj(x) =

∏r
i=1 µF j

i
(xi)∑m

j=1

∏r
i=1 µF j

i
(xi)

. (10)

Thus, the output y can be rewritten as

y(x) = θT ξ(x). (11)

The following lemma is indispensable in the design of PID control and stability analysis
of the control system.

Lemma 2.1. [16]: For any continuous function f(x): Ω → R such that Ω ⊆ R is a
compact set and an arbitrary small constant ϖ, there exists an FLS such that

sup
x∈Ω

∣∣∣f̂ ∗(x)− θT ξ(x)
∣∣∣ ≤ ϖ (12)
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in which f̂ ∗(x) = θ∗Tξ(x) and θ∗ is the optimal estimated parameter vector, which is
defined as

θ∗ = argmin

(
sup
x∈Ω

∣∣∣f̂ ∗(x)− θT ξ(x)
∣∣∣) . (13)

3. Main Results.

3.1. FLS-based PID control design. For convenience, we first define the tracking
error and error vector of the system (8), that is

ed = yd − x1 (14)

e = [e1, e2, e3]
T =

[∫
eddt, ed, ėd

]T
(15)

in which yd is the reference steering angle of the front-wheels. Note that yd has always
been considered a known smooth function in the study of SbW system [8-11]. Combining
with (8), (14) and (15), one gets

ė = Ae−B (f(x) + u− ÿd) (16)

with A = [0, 1, 0; 0, 0, 1; 0, 0, 0] ∈ R3×3, B = [0, 0, g]T ∈ R3×1 and f(x) = f0(x)/g. Then,
based on the aforementioned dynamics, our control objective can be equivalent to making
∥e∥ converge to the neighborhood of the origin when there exists unknown nonlinear
function f(x) in dynamics (16).
Considering the dynimics (16) with model uncertainties, as shown in Figure 3, the

following FlS-based PID control is constructed in this paper, that is

u = kped + ki

∫
eddt+ kdėd + ÿd − f̂(x) (17)

where kp, ki and kd are designed as positive parameters and satisfy that s3+kds
2+kps+ki

is Hurwitz. Moreover, f̂(x) is the approximation result of FLS to the uncertain nonlinear
function f(x), i.e.,

f̂(x) = θT ξ(x). (18)

The updated laws of θ is designed as

θ̇ = −eTPBcξ(x)

∥e∥+ γ
− σθ (19)

in which Bc = [0, 0, 1]T ∈ R3×1, P ∈ R3×3 is a positive-definite solution of the Lyapunov
equation PAc+AT

c P = −Q with A = [0, 1, 0; 0, 0, 1;−ki,−kp,−kd] ∈ R3×3 and Q = QT >
0. γ and σ are positive design parameters.

Figure 3. Controller structure diagram
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3.2. Main conclusions and analysis. The following lemma gives the modeling perfor-
mance of adaptive FLS for the uncertain nonlinearity.

Lemma 3.1. Considering the updating laws (19), the estimation error of θ has an un-

known upper bound, i.e., there exists unknown constant c̄ such that
∥∥∥θ − θ̂

∥∥∥ ≤ c̄ for t ≥ 0,

with

c̄ := ∥θ∗∥+max

(
λmax(P )

σ
, ∥θ(0)∥

)
(20)

in which λmax(P ) is the maximum eigenvalue of matrix P , and θ(0) is the initial value of
vector θ.

Proof: Consider the Lyapunov function as

Vθ̃ =
1

2
θ̃T θ̃ (21)

with θ̃ = θ − θ∗. Combining the fact that ˙̃θ = θ̇, the time derivative of (21) along with
(19) can be obtained

V̇θ̃ = θ̃T
(
−eTPBcξ(x)

∥e∥+ γ
− σθ

)
= −σθ̃T

(
θ̃ + θ∗

)
− eTPBcθ̃

T ξ(x)

∥e∥+ γ

≤ −σ
∥∥∥θ̃∥∥∥2 + σ

∥∥∥θ̃∥∥∥ ∥θ∗∥+ ∥e∥∥PBc∥∥ξ(x)∥
∥e∥+ γ

∥∥∥θ̃∥∥∥ . (22)

Using ∥ξ(x)∥ ≤ 1 and ∥e∥/(∥e∥+ γ) ≤ 1, one can get

V̇θ̃ ≤ −σ
∥∥∥θ̃∥∥∥2 + (σ ∥θ∗∥+ λmax(P ))

∥∥∥θ̃∥∥∥
= −σ

∥∥∥θ̃∥∥∥ [∥∥∥θ̃∥∥∥− (∥θ∗∥+ λmax(P )

σ

)]
(23)

where λmax(P ) is the maximum eigenvalue of matrix P . It can be seen from (23) that Vθ̃ is

monotonically decreasing outside the set
{∣∣∣θ̃∣∣∣ : ∣∣∣θ̃∣∣∣ ≤ ∥θ∗∥+ λmax(P )/σ

}
. This together

with
∥∥∥θ̃(0)∥∥∥ ≤ ∥θ∗∥+ ∥θ(0)∥ yields∥∥∥θ̃∥∥∥ ≤ ∥θ∗∥+max

(
λmax(P )

σ
, ∥θ(0)∥

)
, ∀t ≥ 0. (24)

From (24), we can see that
∥∥∥θ̃∥∥∥ is always bounded. The proof is complete. �

The following theorem is given the tracking performance of the PID control combined
with fuzzy compensation.

Theorem 3.1. Considering the uncertain system (8), the proposed FLS-based PID control
(17) can ensure tracking error of x1 ultimately converge to an adjustable neighborhood of
origin.

Proof: Consider the Lyapunov function as

Ve =
1

2
eTPe. (25)

Substituting (17) into (16), one can get

ė = Ace+B
(
f̂(x)− f(x)

)
= Ace+B

(
θT ξ(x)− θ∗T ξ(x)− ω

)
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= Ace+B
(
θ̃T ξ(x)− ω

)
(26)

with θ̃ = θ − θ∗ and ω = f(x) − θ∗T ξ(x). Thus, the time derivative of (25) along with
(26) can be obtained

V̇e =
1

2
eTP

[
Ace+B

(
θ̃T ξ(x)− ω

)]
+

1

2

[
Ace+B

(
θ̃T ξ(x)− ω

)]T
Pe

=
1

2
eT (PAc + AcP )e+ eTPB

(
θ̃T ξ(x)− ω

)
. (27)

Using Lyapunov function PAc + AcP = −Q, one can get

V̇e = −1

2
λmin(Q)∥e∥2 + λmax(P )

(∥∥∥θ̃∥∥∥+ ω
)

(28)

where the λmax(P ) and λmin(Q) are the maximum eigenvalue of matrix P and the min-
imum eigenvalue of matrix Q, respectively. Combining with (28) and the conclusion of
Lemma 2.1 and Lemma 3.1, one gets

V̇e ≤ −1

2
λmin(Q)∥e∥2 + λmax(P ) (c̄+ϖ)

≤ −1

2
∥e∥

[
∥e∥ − λmin(Q)

λmax(P )
(c̄+ϖ)

]
. (29)

It can be seen from (29) that Ve is monotonically decreasing outside the set {∥e∥ : ∥e∥ ≤
λmin(Q) (c̄+ϖ) /λmax(P )}. Thus, one can find that ∥e∥ ultimately converges to the ad-
justable set {∥e∥ : ∥e∥ ≤ λmin(Q) (c̄+ϖ) /λmax(P )}. The proof is complete. �
Remark 3.1. To make the process of proof more clear, the overall boundedness proof is
divided into the approximation error and the tracking error. Lemma 3.1 gives the model-
ing performance of adaptive FLS for the uncertain nonlinearity. It can be noted that the
approximation error of uncertain nonlinearity is bounded and adjustable. Meanwhile, the
corresponding conclusion proved in Lemma 3.1 can be utilized in the proof of Theorem 3.1.
Theorem 3.1 gives the tracking performance of the PID control combined fuzzy compen-
sation, from which we can find that the tracking error of SbW system can asymptotically
converge to the neighborhood of the origin despite of the uncertain nonlinearity existing.

4. Simulation and Experiment.

4.1. Numerical simulation.
Step 1. Parameter choice for simulation model.
The parameters of (8) are chosen as µ = 18, Jeq = 4.934 kg·m2. Bm = 0.018 Nms/rad,

Fs = 2.68 Nm. I = 1300 kg·m2, tp = 0.023 m, tm = 0.016 m, M = 2000 kg, lf = 1.2 m,
lr = 1.05 m, Cf = Cr = −12000 N/rad, vX = 10 m/s. For convenience of simulation, the
reference signal selected here is yd(t) = 0.4 sin(0.4t).
Step 2. Parameter choice for FLS-based PID controller.
After normalization of xi (i = 1, 2), the following membership functions are given as

µF 1
i
(xi) = exp (−|xi|2/2)

µF 2
i
(xi) = exp (−|xi − 0.5|2/2)

µF 3
i
(xi) = exp (−|xi − 1|2/2) .

(30)

Select the parameters of controller (17) as

kp = 240, ki = 400, and kd = 5 (31)
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which make the matrix Ac stable. Selecting Q = diag (107, 103, 10) and combined with
the Lyapunov equation PAc + AT

c P = −Q, we get

P = 104 ×

 315.8471 9.4600 1.2500

9.4600 0.8741 0.0396

1.2500 0.0396 0.0080

 .

Moreover, the initial conditions of the integrators are specified as x1(0) = x2(0) = 0 and
θ = [0, 0, 0]T . The MATLAB command “ode23” is used to simulate the overall control
system with step size 0.01.

Step 3. Comparison of control algorithms.
In order to verify the superiority of FLS-based PID controller designed in this paper,

the desigend FLS-based PID controller is compared with traditional PID controller. To
be fair, the same parameters (31) are used in traditional PID controller.
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Figure 4. Comparison results of FLS-PID controller and PID controller in simulation

Step 4. Simulation results.
The simulation comparison results of the SbW system between the classic PID controller

and the FLS-based PID controller are shown in Figure 4. Specifically, it can be seen from
Figures 4(a) and 4(b) that the classical PID control can realize the steering control of SbW
system after simple parameter tuning; however, the FLS-based PID controller significantly
improves the control performance. Figure 4(c) shows the control input of SbW system
under different control methods, from which we can find that the FLS can compensate
the uncertainties for PID controller to some extent when the steering angle is larger at
12 seconds, 20 seconds, 28 seconds, 35 seconds, etc. Figure 4(d) shows the compensation
effect of the FLS on PID control at the time points of 12 seconds, 20 seconds, 28 seconds,
35 seconds, etc. The above results show the obvious robustness of FLS under a varying
reference angle.

4.2. HiL test.
Step 1. Establish the HiL test bench.
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The HiL test platform of the SbW system is shown in Figure 5. In this platform, the
controller (dSPACE-ds1202) is used as the control unit of the SbW system and the servo
motor driver (XiNJE DS2-20P7) is used for driving the steering motor (XiNJE MS80ST-
M02430B-20P7). The linear sensor (KTR11-10) fixed on the steering arm measures the
steering angle of the front-wheels. A computer is applied to displaying the experimental
results of the HiL test on-line and storing the experimental data of the HiL test.

(a) Schematic diagram of the test platform (b) Physical diagram of the test platform

Figure 5. The HiL test platform of SbW system

Step 2. Parameter choice for FLS-based PID control.
After normalization of xi (i = 1, 2), the following membership functions are given as

(30). Select the parameter of controller (17) as

kp = 160, ki = 220, and kd = 5 (32)

which make the matrix Ac stable. Select Q = diag (105, 102, 10) and combine with the
Lyapunov equation PAc + AT

c P = −Q. Thus, we can get

P = 102 ×

 390.3088 18.8981 2.2727

18.8981 3.8131 0.1212

2.2727 0.1212 0.0342

 .

Moreover, the initial conditions of the integrators are specified as θ = [0, 0, 0]T and the
reference signal is selected as yd(t) = 0.4 sin(0.4t).
Step 3. Comparison of control algorithms.
In order to verify the superiority of FLS-based PID controller designed in this paper,

the desigend FLS-based PID controller is compared with traditional PID controller. To
be fair, the same parameters (32) are used in traditional PID controller.
Step 4. Experimental results.
The HiL experimental results of two controllers are shown in Figure 6. Figure 6(a) is the

tracking performance. Figure 6(b) is the tracking error. Figure 6(c) is the control input
and Figure 6(d) is the estimated result of the unknown function f(x). The experimental
results show that the proposed FLS-based PID controller is superior to the traditional
PID controller in SbW system control and we can find that the FLS controller has a good
practicability.
In the existing researches on SbW systems, the design of the controller requires that

the friction torque and self-aligning torque model are known in advance, which is limited
in practical application. In this study, the friction torque model and self-aligning torque
model are regarded as lumped uncertainty and it is approximated by an FLS. Therefore,
the corresponding assumption of the known friction torque model and self-aligning torque
model can be relaxed.
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Figure 6. Comparison results of FLS-PID controller and PID controller
in HiL tests

5. Conclusions. This paper presents an FLS-based PID control scheme for controlling
of uncertain nonlinear SbW system. In our control algorithm, the adaptive fuzzy system
term employs the tracking error to compensate the PID controller. Mathematically, we
prove the stability of the closed-loop system and show that the outputs of the SbW system
can follow the reference signals rapidly. Finally, the contrastive simulation and HiL test
results have demonstrated favorable performances of our proposed controller. Our main
shortage of this paper is the lack of road experiments with a real vehicle. In the future
work, we will build a real vehicle platform of the SbW system to verify and improve the
control method.
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