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Abstract. The unknown input observer has been employed to estimate the state variable
of the plant in the presence of unknown input. Initially, the unknown input observer is
examined by Kudva, Viswanadham and Ramakrishna. Since then, several papers have in-
vestigated designing unknown input observers, and have revealed that the unknown input
observer for the plant (A,B,C, 0) can be designed if and only if the following two condi-
tions hold true: (c1) rank CB = rank B and (c2) the plant (A,B,C, 0) has no invariant
zero in the closed right half plane. As those conditions are often restrictive, various
studies have been dedicated to designing unknown input observers, even if the above two
conditions are not satisfied. In this paper, we newly consider designing unknown input
observers for non-minimum phase plants by focusing on the intended bandwidth of the
control system. The proposed design methods are derived based on the parametrization of
all state observers, and do not require the restrictive conditions (c1) and (c2). Numerical
examples are provided to examine the effectiveness of the proposed design methods.
Keywords: Unknown input observer, Non-minimum phase plant, Parametrization of
all state observers

1. Intoroduction. State observers are employed to estimate the unavailable state vari-
able of the controlled plant. The state observer theory is initially established by Luen-
berger [1, 2, 3]. Subsequently, the parametrization of all state observers [4] and of all
linear functional observers [5] is derived. The design methods in [1, 2, 3, 4, 5] require
the access to the control input for estimating the state variable. In contrast, in this pa-
per, we address design methods of unknown input observers, which are state observers
independent of the control input.

In some cases such as estimation of an IC engine torque [6] and velocity and angle of
planar gantry crane [7], both the state variable and the control input are unavailable,
and state observers are required to estimate the state variable using only the measured
output. Such a state observer is called the unknown input observer. That is, the unknown
input observer has been used to estimate the state variable of the plant in the presence
of unknown input. In addition, the unknown input observer is applied to the systems
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with nonlinearities or time-varying parameters [25, 26]. Initially, the unknown input
observer is examined by Kudva et al. [8]. Since then, several papers have been published
to design unknown input observers [9, 10, 11]. According to these papers, the unknown
input observer for the plant (A,B,C, 0) can be designed if and only if the following
two conditions hold true: (c1) rank CB = rank B and (c2) the plant (A,B,C, 0) has
no invariant zero in the closed right half plane. The first condition (c1) implies that the
number of outputs should be greater than or equal to that of inputs. The second condition
(c2) means that the controlled plant is of non-minimum phase. Since the conditions (c1)
and (c2) are rather restrictive, a number of authors have considered designing unknown
input observers by relaxing the conditions (c1) and (c2). [12, 13, 14, 15] considered the
problem of designing unknown input observers without requiring the first condition (c1).
Unfortunately, the design methods in [12, 13, 14, 15] cannot be applied if the second
condition (c2) fails. In contrast, [16, 17] tackled approximately lifting both of the first
and second conditions (c1) and (c2) via the minimal polynomial bases approach and
eigenstructure assignment approach, respectively. Those approaches are highly algebraic
and it is difficult to intuitively tune the input-output characteristics of the resulting control
systems. [24] proposes to augment the controlled plant with a low-pass filter so that the
augmented controlled plant satisfies the conditions (c1) and (c2). The design method in
[24] requires to increase the number of sensors for measuring the overall output of the
augmented plant, and hence from a cost-aware point of view it is not readily employed
when the original plant is given.
In this paper, we propose alternative design methods of unknown input observers for

non-minimum phase plants, such that they are handily applicable when the intended
bandwidth of the control system is specified. The proposed design methods do not require
neither of the conditions (c1) and (c2) nor plant augmentation [24]. The idea behind
that is as follows: If the controlled plant is intended to function in the lower-frequency
range, the control input mainly contains low-frequency-range signal components, that is,
the control input decays in the higher frequency range. Note that, if we design a state
observer discarding the high-frequency-range signal components of the control input, then
the resulting state observer works as an unknown input observer. In order to embody
this idea, we utilize the parametrization of all state observers [4, 5] and stable left filtered
inverses [20, 21] as underlying techniques. It is shown that the stable left filtered inverses
[20, 21] enable to determine the Youla parameter in the state observer parametrization
so that the resulting observer works as an unknown input observer. Furthermore, as a
complement to the proposed design methods, we describe that the resulting unknown
input observers can be employed for constructing output feedback control systems if it is
combined with the H∞ state feedback control [22].
This paper is organized as follows. In Section 2, the problem considered in this paper

is formulated. In Section 3, we derive the unknown input observer design methods. In
Section 4, we construct an output feedback control by employing the proposed unknown
input observer. In Section 5, the features of the resulting control systems are illustrated
through numerical examples. In Section 6, the present contributions are summarized.

2. Problem Formulation. Consider the plant written by{
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

, (1)

where x(t) ∈ Rn is the state variable, u(t) ∈ Rp is the control input, y(t) ∈ Rm is the
measured output, A ∈ Rn×n, B ∈ Rn×p, C ∈ Rm×n. The transfer function from the
control input u(s) to the measured output y(s) in (1) is denoted by
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y(s) = G(s)u(s), (2)

where

G(s) = C(sI − A)−1B ∈ Rm×p(s), (3)

where R(s) denotes the set of real-rational transfer functions. It is assumed that (A,B)
is stabilizable, (C,A) is detectable, and G(s) is of full row normal rank:

rank G(s) = p, (4)

and has no invariant zero on the imaginary axis. Furthermore, this paper focuses on the
situation that the frequency component range of the control input u(jω) is limited to
0 ≤ ω ≤ ωmax, where ωmax specifies the maximum frequency component of the control
input u(jω). We note that G(s) is allowed to have some invariant zeros in the open right
half plane, that is, G(s) is allowed to be of non-minimum phase.

When the state variable x(t) in (1) is not available, as is the case in many practical
control problems, we employ state observers, which estimate the state variable x(t) in (1)
utilizing the available information on y(t) and u(t). The general form of state estimates
based on the available information on y(t) and u(t) is given as follows (Figure 1):

ξ(s) = F1(s)y(s) + F2(s)u(s), (5)

where ξ(t) ∈ Rn is the estimate of the state variable x(t). The transfer functions F1(s) ∈
Rn×m(s) and F2(s) ∈ Rn×p(s) in (5) are required to satisfy the condition

lim
t→∞

(x(t)− ξ(t)) = 0. (6)

ξ

G

F 2 F 1
U

u yv

à

Figure 1. Configuration of control system

In some cases, not only the state variable x(t) but also the control input u(t) are
unavailable and the state observer (5) depends only on the measured output y(t). Such a
state observer is called an unknown input (state) observer. The purpose of this paper is
to propose alternative design methods of unknown input observers for the non-minimum
phase plant (1).

3. Design Methods of Unknown Input Observers. In this section, we describe the
unknown input observer design methods. According to [4, 5], the parametrization of all
state observers in (5) for the plant G(s) in (1) is written by

F1(s) = (sI − A+BU)−1BX(s) +Q(s)D̃(s) (7)

and

F2(s) = (sI − A+BU)−1BY (s)−Q(s)Ñ(s), (8)
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where U ∈ Rp×n makes A − BU have no eigenvalue in the closed right half plane. Fur-
thermore, Ñ(s) ∈ RHm×p

∞ and D̃(s) ∈ RHm×m
∞ are coprime factors of G(s) on RH∞ (i.e.,

the set of stable real-rational functions) satisfying

G(s) = D̃−1(s)Ñ(s) = N(s)D−1(s), (9)

where X(s) ∈ RHp×m
∞ and Y (s) ∈ RHp×p

∞ are functions satisfying[
Y (s) X(s)

−Ñ(s) D̃(s)

] [
D(s) −X̃(s)

N(s) Ỹ (s)

]
=

[
I 0
0 I

]
=

[
D(s) −X̃(s)

N(s) Ỹ (s)

] [
Y (s) X(s)

−Ñ(s) D̃(s)

]
(10)

and Q(s) is an arbitrary function in RHn×m
∞ .

From (8), it is observed that if there exists Q(s) ∈ RHn×m
∞ satisfying

(sI − A+BU)−1BY (s)−Q(s)Ñ(s) = 0, (11)

we can obtain an unknown input observer. However, in order to find Q(s) ∈ RHn×m
∞

satisfying (11), G(s) must be of minimum-phase.
In order to design unknown input observers for non-minimum phase plants, we adopt

the following idea. If we design Q(s) ∈ RHn×m
∞ such that

Q(jω)Ñ(jω) ≃ (jωI − A+BU)−1BY (jω) (0 ≤ ∀ω ≤ ωmax), (12)

then

F2(jω) ≃ 0 (0 ≤ ∀ω ≤ ωmax) (13)

holds true. Together with (13), the assumption that the frequency component range of
the control input u(t) is limited to 0 ≤ ω ≤ ωmax implies

ū(t) = L−1{F2(s)u(s)} ≃ 0, (14)

where L−1{·} denotes the inverse Laplace transformation. Therefore, when Q(s) is settled
to satisfy (12), the state estimate ξ(s) in (5) reduces to

ξ(s) = F1(s)y(s) (15)

with F1(s) defined by (7) working as an unknown input observer.
Hence in the rest of this section, we consider designing Q(s) ∈ RHn×m

∞ which satisfies
(12). Specifically, we propose to settle Q(s) so that the following condition is satisfied:

Q(s)Ñ(s) = (sI − A+BU)−1BY (s)GK(s)Ql(s), (16)

where GK(s) ∈ RHp×p
∞ is an inner part of the transfer function Ñ(s) with GK(0) = I.

Furthermore, Ql(s) is given as the diagonal matrix with
1

(1 + sT1)
α1

on its i-th diagonal

entry:

Ql(s) = diag
{

1
(1 + sT1)

α1 · · · 1
(1 + sTp)

αp

}
, (17)

where αi (i = 1, . . . , p) are positive integers chosen to make Q(s) proper and Ti (i =
1, . . . , p) are positive real numbers chosen to satisfy the condition

I −GK(jω)diag
{

1
(1 + jωT1)

α1 · · · 1
(1 + jωTp)

αp

}
≃ 0 (0 ≤ ∀ω ≤ ωmax). (18)

The following identity confirms that Q(s) settled by (16) satisfies (12):

(jωI − A+BU)−1BY (jω)−Q(jω)Ñ(jω)

= (jωI − A+BU)−1BY (jω)
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I −GK(jω)diag

{
1

(1 + jωT1)
α1 · · · 1

(1 + jωTp)
αp

}]
. (19)

Next, we provide state-space design methods of Q(s) ∈ RHn×m
∞ satisfying (16). Before

proceeding, let the state space realization of Ñ(s) in (10) be given by

Ñ(s) =

[
Ã B̃

C̃ 0

]
, (20)

where generally speaking,

[
A B
C D

]
represents the transfer function C(sI −A)−1B +D.

Then we assume that it holds that

rank Φ = p, (21)

where the matrix Φ is constructed from the parameters of the state-space realization of
Ñ(s) as follows:

Φ =


B̃T

1

(
ÃT

)α1−1

C̃T

...

B̃T
p

(
ÃT

)αp−1

C̃T

 , (22)

B̃ =
[
B̃1 · · · B̃p

] (
B̃i ∈ Rn (i = 1, . . . , p)

)
(23)

and

αi = min

(
j|B̃T

i

(
ÃT

)j−1

C̃T ̸= 0; j = 1, . . . , n

)
(i = 1, . . . , p). (24)

We note that the assumption (21) means that G(s) can be decoupled using static feedback
control, and hence does not impose severe restriction. Under the assumption (21), we
below propose (Method 1) and (Method 2) to determine Q(s) ∈ RHn×m

∞ satisfying (16).

(Method 1) This method is based on the result in [20] and determines Q(s) ∈ RHn×m
∞

as follows:
Q(s) = (sI − A+BU)−1BY (s)Ĝ(s), (25)

where

Ĝ(s) =

 Ã+KD̄−1
l XΦ̂TC̃ KD̄−1

l XΦ̂T

Γ−1
(
E− 1

2

)T

D̄−1
l XΦ̂TC̃ Γ−1

(
E− 1

2

)T

D̄−1
l XΦ̂T

 , (26)

ΦΦ̂ = Ip, (27)

X = diag
{

β1α1 · · · βpαp

}
, (28)

βij = αiCj (Ti)
−j (i = 1, . . . , p; j = 1, . . . , αi), (29)

and D̄l ∈ Rp×p is an arbitrary constant nonsingular matrix satisfying

E = D̄−1
l

(
D̄−1

l

)T
. (30)

Furthermore, the auxiliary feedback gain K and scaling matrix Γ are defined by

K = −ΨX−1D̄l − P
(
D̄−1

l XΦ̂TC̃
)T (

E−1
)T

, (31)

Γ = −
(
E− 1

2

)T

D̄−1
l XΦ̂TC̃

(
Ã+KD̄−1

l XΦ̂TC̃
)−1 (

ΨX−1 +KD̄−1
l

)
+
(
E− 1

2

)T

D̄−1
l , (32)
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Ψ =
[
Ãα1B̃1 + · · ·+ β1α1B̃1 . . . ÃαpB̃p + · · ·+ βpαpB̃p

]
, (33)

where P = PT ≥ 0 is the unique solution of the Riccati equation

P
(
ÃT − C̃TΦ̂ΨT

)
+
(
ÃT − C̃TΦ̂ΨT

)T

P

−P
(
D̄−1

l XΦ̂TC̃
)T

E−1
(
D̄−1

l XΦ̂TC̃
)
P = 0 (34)

to make Ã+KD̄−1
l XΦ̂TC̃ have no eigenvalue in the closed right half plane.

(Method 2) This method is based on the result in [21] and determines Q(s) ∈ RHn×m
∞

as follows:

Q(s) = (sI − A+BU)−1BY (s)GK(s)G0(s), (35)

where

G0(s) =

[
Ã−ΨΦ̂TC̃ −ΨΦ̂T

XΦ̂TC̃ XΦ̂T

]
=

 G01(s)
...

G0p(s)

 (
G0i(s) ∈ R1×m(s) (i = 1, . . . , p)

)
, (36)

Φ̂, X, βij and Ψ are given by (27), (28), (29) and (33), respectively. In addition, GK(s)
is designed as follows: Let the minimal realization of G0i(s) (i = 1, . . . , p) be

G0i(s) =

[
A0i B0i

C0i D0i

]
(i = 1, . . . , p). (37)

Then, from this realization, GK(s) is obtained by

GK(s) = diag

{
1

1 + C01 (sI − A01)
−1 K1

· · · 1
1 + C0p (sI − A0p)

−1Kp

}

=



A01 −K1C01 0 K1 0
. . . . . .

0 A0p −KpC0p 0 Kp

−C01 0 1 0
. . . . . .

0 −C0p 0 1


, (38)

where

Ki = PiC
T
0i (i = 1, . . . , p) (39)

and Pi ≥ 0 (i = 1, . . . , p) is the unique stabilizing solution of the Riccati equation

PiA
T
0i + A0iPi − PiC

T
0iC0iPi = 0 (i = 1, . . . , p). (40)

The key point common in (Method 1) and (Method 2) is that the Youla parameter Q(s)

includes a stable left filtered inverse of Ñ(s). In (Method 1), Ĝ(s) is the stable left filtered
inverse, and yields the inner function GK(s) for (16), which is not necessarily diagonal.
In (Method 2), GK(s)G0(s) is the stable left filtered inverse, and yields the inner function
GK(s) for (16), which has the diagonal structure.

4. Output Feedback Controller Design. In accordance with the proposed unknown
input observer design methods, this section describes how to construct the output feedback
control system in Figure 1.
Consider the output feedback control

u(t) = −Uξ(t) + v(t) (41)
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for the controlled plant G(s), where ξ(t) is the state estimate of the state variable x(t)
and v(t) ∈ Rp is an external input exerted on the control system. A method of designing
the state feedback gain U and state estimate ξ(t) for the output feedback control (41) is
summarized as follows:

1) Specify the frequency component range 0 ≤ ω ≤ ωmax from the supposed bandwidth
of the external input v(t).

2) Using the design method of H∞ state feedback controllers in [22], fix U in (41) so
that the maximal singular value of the transfer function from v(jω) to u(jω) is made
negligible outside the frequency component range 0 ≤ ω ≤ ωmax.

3) Using (Method 1) or (Method 2) in Section 3, design the unknown input observer
(5) which produces the state estimate ξ(t) used for (41).

5. Numerical Example. In this section, we design the output feedback control in Sec-
tion 4 for two sample cases, and examine the features of the proposed unknown input
observer design methods.

5.1. Numerical example 1. Consider employing (Method 1) in Section 3 to design the
output feedback control (41) for the controlled plant G(s) written by

ẋ(t) =


−10 0 0 0
0 −20 0 0
0 0 −30 0
0 0 0 −30

x(t) +


1 0
0 1
1 0
0 1

u(t)

y(t) =

[
2 0 4 0
0 4 0 5

]
x(t)

. (42)

The above controlled plant is of non-minimum phase, since it has invariant zeros at (10, 0)
and (20, 0).

It is supposed that the external input v(t) in (41) and initial state x(0) are given by

v(t) =

[
v1(t)
v2(t)

]
=

[
sin(0.1t)
2 sin(0.1t)

]
(43)

and

x(0) =
[
1 2 3 4

]T
, (44)

respectively. Referring to the angular frequency of the external input v(t), we specify the
frequency component range by ωmax = 0.1.

Using the method in [18], Ñ(s) satisfying (9) is obtained as

Ñ(s) =


−10 0 0 0 1 0
0 −20 0 0 0 1
0 0 −30 0 1 0
0 0 0 −30 0 1
2 0 4 0 0 0
0 4 0 5 0 0

 . (45)

The matrix Φ in (22), constructed from the state-space representation (45), satisfies the
condition

rank Φ = 2, (46)

as Φ in (22) is given by

Φ =

[
6 0
0 9

]
, (47)
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with α1 = 1 and α2 = 1. By (46), Φ̂ satisfying (27) is obtained as

Φ̂ =

[
0.1667 0

0 0.111

]
. (48)

We choose the time constants in (17) as T1 = 0.001, T2 = 0.002 so that the condition
(18) is satisfied in the frequency component range 0 ≤ ω ≤ ωmax = 0.1. Setting D̄l = I,
together with (28), (29), (30), (31), (33) and (34), we have{

β11 = 1000
β21 = 500

, (49)

X =

[
1000 0
0 500

]
, (50)

E = I, (51)

Ψ =


990 0
0 480
970 0
0 470

 , (52)

P =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (53)

and

K =


−0.990 0

0 −0.960
−0.970 0

0 −0.940

 . (54)

Substituting the above parameters into (25), Q(s) is obtained. Consequently, the unknown
input observer (5) reduces to (15) in the intended bandwidth of the control system.
The state estimation error

e(t) = x(t)− ξ(t) =


x1(t)
x2(t)
x3(t)
x4(t)

−


ξ1(t)
ξ2(t)
ξ3(t)
ξ4(t)

 (55)

evolves over time as depicted in Figure 2, where the solid, dotted, alternate long/short
dash, broken lines correspond with x1(t)−ξ1(t), x2(t)−ξ2(t), x3(t)−ξ3(t) and x4(t)−ξ4(t),
respectively. It is observed that the state variable x(t) is effectively estimated by the
unknown input observer designed using (Method 1).

5.2. Numerical example 2. Consider employing (Method 1) in Section 3 to design the
output feedback control (41) for the controlled plant G(s) written by

ẋ(t) =


−1 0 0 0
0 −1 0 0
0 0 −2 0
0 0 0 −2

 x(t) +


1 0
0 1
1 0
0 1

u(t)

y(t) =

[
2 −11 −2 12
1 −16 −1 17

]
x(t)

. (56)
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Figure 2. Time response of state estimation error x(t)− ξ(t)

The above controlled plant is of non-minimum phase, since it has an invariant zero at
(20, 0).

Using the method in [18], Ñ(s) satisfying (9) is obtained as

Ñ(s) =


−1 0 0 0 1 0
0 −1 0 0 0 1
0 0 −2 0 1 0
0 0 0 −2 0 1
2 −11 −2 12 0 0
1 −16 −1 17 0 0

 . (57)

The matrix Φ in (22), constructed from the state-space representation (57), satisfies the
condition

rank Φ = 2, (58)

as Φ in (22) is given by

Φ =

[
2 1
1 1

]
, (59)

with

α1 = 2 (60)

and

α2 = 1. (61)

By (58), Φ̂ satisfying (27) is given by

Φ̂ =

[
1 −1
−1 2

]
. (62)

Setting

T1 = 0.001, (63)

T2 = 0.002, (64)
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D̄l = I, (65)

together with (28), (29), (30), (31), (33) and (34), we have β11 = 2000
β12 = 1000000
β21 = 500

, (66)

X =

[
1000000 0

0 500

]
, (67)

E = I, (68)

Ψ =


998001 0

0 499
996004 0

0 498

 , (69)

P =


0.0869 −0.0174 0.0827 −0.0166
−0.0174 0.0035 −0.0166 0.0033
0.0827 −0.0166 0.0788 −0.0158
−0.0166 0.0033 −0.0158 0.0032

 (70)

and

K =


0.8298 −0.3657
−0.3657 −0.9248
0.7452 −0.3484
−0.3484 −0.9263

 . (71)

Substituting the above parameters into (25), Q(s) is obtained. Consequently, the unknown
input observer (5) reduces to (15) in the intended bandwidth of the control system.
When the external input v(t) and initial state x(0) are supplied as the same with (43)

and (44), respectively, the state estimation error x(t)− ξ(t) evolves over time as depicted
in Figure 3, where the solid, dotted, alternate long/short dash, broken lines correspond
with x1(t)− ξ1(t), x2(t)− ξ2(t), x3(t)− ξ3(t) and x4(t)− ξ4(t), respectively.
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Figure 3. Time response of state estimation error x(t)− ξ(t)
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Figure 3 shows that the state variable x(t) is not fully estimated by the unknown input
observer designed using (Method 1). The reason why (Method 1) failed is that GK(s) in
(16) is not a diagonal inner function. Next, to circumvent this problem, we will design
the unknown input observer according to (Method 2).

Let Ñ(s), Φ, αi (i = 1, 2), Φ̂, Ti (i = 1, 2), D̄l, βij (i = 1, 2; j = 1, . . . , αi), X, E
and Ψ be the same with (57), (59), (60), (61), (62), (63), (64), (65), (66), (67), (68) and
(69), respectively. Using these parameters, G0(s) is determined by (36). By obtaining the
minimal realization of G0i(s) (i = 1, 2) and calculating Pi (i = 1, 2), we have

K1 =
[
−1.9010 0.3803 −1.8109 0.3623

]T
(72)

and

K2 =
[
9.5011 −1.9010 9.0511 −1.8109

]T
. (73)

Using above parameters, GK(s) in (38) is obtained as

GK(s) =


−20.0000 0 2.6775 0

0 −20.0000 0 −2.6255
14.9393 0 −1 0

0 −15.2355 0 −1

 =

[ −s+ 20
s+ 20 0

0 −s+ 20
s+ 20

]
. (74)

It is verified that GK(s) in (74) is a diagonal inner function. In Figure 4, we depict the
state estimation error resulting from the unknown input observer designed using (Method
2), and confirm that the state variable x(t) is effectively estimated.
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Figure 4. Time response of state estimation error x(t)− ξ(t)

6. Conclusion. In this paper, we proposed alternative design methods of unknown input
observers for the non-minimum phase plant (1) by focusing on the intended bandwidth
of the control system. The proposed design methods start from the parametrization of
all state observers (5), (7), (8), and determine the free-parameter Q(s) by utilizing the
techniques of the stable left filtered inverses [20, 21]. The stable left filtered inverses in [20]
and [21] led to the two methods (Method 1) and (Method 2), respectively. In Sections 4
and 5, it is also described that the proposed unknown input observer can be employed for
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constructing output feedback control systems. Two sample cases were considered in order
to illustrate the features of (Method 1) and (Method 2). It was observed that (Method
2) enabled to estimate the state variable effectively even in the case (Method 1) failed. In
the recent authors’ work [27], the underlying technique of the stable left filtered inverses
[20, 21] is extended to a class of nonlinear systems. Hence a future subject of research
is to enhance the proposed design methods of unknown input observers to the extent of
handling the nonlinear systems directly.
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