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Abstract. This study considers a reliability demonstration test to estimate a failure-
time distribution of a product, which is made up of a large array of electronic devices, such
as a display made up of pixel devices, a solar panel made up of photo-voltaic cells, and
a semiconductor memory chip made up of memory cells. As a product ages, its devices
encounter failures individually, and finally the product malfunctions when the number
of failed devices exceeds a certain threshold. This study proposes a device-life model
that estimates a product-failure distribution from device-failure observations. Product-
failure time is extrapolated from a device-failure distribution. Because device failures are
much more frequently observed than product failures, a test can be finished earlier than
a conventional test observing product failures. The proposed model is illustrated by an
example of a dark spot defect of OLED (organic light-emitting diode) displays. In this
numerical study, it estimates a distribution that closely follows an empirical distribution.
Keywords: Reliability demonstration test, Device-life model, Large array of devices,
Failure-time estimation, Frailty model

1. Introduction. This study considers a reliability demonstration test (RDT) to esti-
mate a failure-time distribution of a product that is made up of a large array of electronic
devices, such as a display panel made up of pixel devices, a solar panel made up of
photo-voltaic cells, and a semiconductor memory chip made up of memory cells. As a
product ages, its devices encounter failures individually. Whereas it is tolerable that a
small portion of them fails, the whole product would fail when failed devices are more
than a certain threshold. For example, an organic light-emitting diode (OLED) display
suffers from the formation of dark spots, which are non-emissive pixel devices, and the
growth of dark spots leads to total malfunction of a display panel [1].

A focus of RDT is to estimate the time until a product encounters a failure: a failure-
time distribution. A conventional life test operates test samples for a certain period and
estimates it from the observed failure time of the samples [2]. If some of the samples
survive until the end of the test, they contribute to the estimation as censored data. It is
unavailable, however, if most of the samples are censored. In the OLED case, a commercial
display is usually required to guarantee over 30,000 hours of operation. None of such
samples may fail during the usual test period of one or two thousand hours. Although
a special test environment, e.g., high temperature and humidity, can be established for
accelerating deterioration speed, it may still yield an insufficient number of failures, and
it is not sure that the resulting estimation sustains for a decelerated environment.
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This study proposes a device-life model, which is a method to estimate a product-failure
distribution from device-failure observations. Because device failures are more frequent
than product failures, it may be possible to observe a sufficient number of failures for a
relatively short test duration. A tester can extrapolate product-failure time by computing
a quantile value that matches a product-failure threshold on the device-failure distribution.
There are two problems to solve to apply the device-life model. First, where a product

has a large array of devices, a device-failure distribution is unidentifiable because of too
many survived devices. For example, a 4K display panel has 3,840 × 2,160 × 3 (RGB)
≈ 24 millions of pixels. Theoretically, all of the devices in a product are a population to
estimate a failure-time distribution of devices. Although a small portion of them have
failed, other survived devices have censored failure times, which lead to almost an infinite
expected value. To this end, this study introduces the concept of failure-latent (FL)
devices and considers them as the total population of devices. The number of FL devices
r is determined much smaller than the original number of devices to make the estimation
identifiable. This study reveals that the product-failure time estimation is robust even if
r is arbitrarily chosen.
Second, individual products are independent populations of devices, and they are het-

erogeneous in device reliability. This study takes the heterogeneity into account by adopt-
ing the shared frailty model [3]. This model assumes the hazard function of a device is
a multiple of heterogeneous effect (frailty) of each product sample and a baseline hazard
function. The device-failure distribution is estimated as a mixture of the frailty distribu-
tion and the baseline hazard function.
This study solves these two problems and provides a model to estimate a product-life

distribution from short-period test data, in which no product fails at all. This model only
requires a sufficient number of device failures that are frequently observed during a test.
Thus, a tester can early terminate an RDT and save testing time related costs. The paper
is organized as follows. Section 2 reviews the RDT literature including the degradation
models. Section 3 describes the proposed model and estimation methods. The model is
applied to an artificial test dataset for OLED dark spot defects in Section 4. Section 5
concludes this paper with limitations and future research directions.

2. Literature Review. The main purpose of the RDT is to estimate the failure-time
distribution function of a whole product population from test samples. Meeker and Es-
cobar [2] comprehensively review test planning and estimation methods. If exact failure
times of all samples are given, it is rather simple to estimate distribution parameters and
their confidence intervals [4, 5]. Unfortunately, most of RDT data is censored by test time
(type I) or the number of failures (type II). A tester only knows that censored samples
have survived until a certain moment rather than their exact failure time. Lawless’s semi-
nal work [6] provides a method for finding exact confidence intervals for log-location-scale
distributions, e.g., Weibull and lognormal, with censored data. Wu [7] proposed gen-
eral weighted moments estimator of the scale parameter for two-parameter exponential
distributions.
Nevertheless, an RDT is extremely expensive and time-consuming ironically because

commercial products are usually highly reliable. It usually takes a very long time to
observe a sufficient number of failures to construct a reasonable confidence interval. When
allowed test time is too short to observe sufficient failures, accelerated life tests (ALT)
are used to demonstrate reliability. The ALT accelerates the failure time of a test sample
by operating it in a high-stress environment like high temperature, humidity, and voltage
[8]. The failure-time distribution estimated in an accelerated environment is extrapolated
to a normal usage condition.
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Another alternative is to model degradation of a key characteristic that may cause
failure in the future. Failure time is predicted by when an estimated degradation path
crosses a threshold that causes the total malfunction of a product. Degradation also can
be tested in an accelerated environment. Such a test is called an accelerated degradation
test (ADT). The ADT is widely used in practice to predict the reliability of electronic
devices [9, 10]. Meeker et al. [11] describe how to model accelerated degradation data with
a general degradation path and to estimate a failure-time distribution. A degradation
model assumes unit-to-unit variability of degradation paths to take different failure time
of individual products into account. Lu and Meeker [12] model the paths with random
coefficients, and Bae and Kvam [13] extend it to nonlinear path forms. Other studies
model degradation as a stochastic process of random increments rather than a parametric
function [14, 15]. The stochastic process models also can incorporate random effects in
their parameters [16, 17].

This study alternatively models the failure time of each device as an individual random
variable. Failure-time distributions of devices are assumed homogeneous and independent
within a product and heterogeneous between products. This assumption is implemented
by the shared frailty model. The concept of frailty, which is random effect of an unob-
served covariate, was proposed by Vaupel et al. [3]. Clayton [18] applies the concept to
associating event times based on Cox’s [19] regression model. In this model, a hazard
function of device-failure time is separated into a baseline hazard and random frailty,
which is different between products. Whereas this study utilizes the existing methods to
estimate those distributions, it introduces an idea to resolve an unidentifiability problem
arising from a large number of devices and provides a method to compute a distribution
function of product-failure times triggered by the number of failed devices.

3. Model. Consider an RDT to estimate a cumulative distribution function Q(t) of
product-failure time T . The RDT is performed for n test products, each of which is
equipped with M electronic devices, for S test periods. Some of the devices may fail as
a product ages, and the product eventually malfunctions if more than u devices fail; a
product-failure threshold is u. A device that has once failed can never be recovered or
repaired. The test data gives us time point tij when a device j of product sample i fails.
The total number of failed devices of product i is denoted by ci. Assume that ci is most
likely less than u. Otherwise, if many product samples fail, Q(t) can be directly estimated
from the product-failure times. The proposed model first estimates a cumulative distribu-
tion function F (t|z) of device-failure time variable τ , and extrapolates the distribution to
compute the time when more than u devices fail. The underlying parameter z is assumed
different between individual products taking account of their heterogeneity of reliability.

3.1. Estimation of device-failure distribution. Let us pick a sample product i whose
product-specific parameter is zi. In this section, will denote its device-failure distribution
F (t|zi) is denoted by Fi(t) for brevity. The distribution Fi(t) is estimated by tij’s where
j = 1, . . . , ci and the information that M − ci devices survived until S. Where Fi(t) has
a parameter θ, its maximum likelihood estimator (MLE) θ∗ is derived by (1).

θ∗ = argmax
θ

ci∏
j=1

fi(tij|θ) · F̄i(S|θ)(M−ci), (1)

where fi(t) is a derivative of Fi(t), and F̄i(t) = 1 − Fi(t). The first term is for devices
that actually failed and the second term is for devices that survived until S.

A problem rises where M is too large. As mentioned above, a display panel has 24
million pixel devices. Then the second likelihood term goes to 0 for any θ; it is not
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identifiable. In order to resolve the problem, this study replaces M with the number of
FL devices r. It is assumed that only a portion of the devices are latent to fail, so r is
much less than M . Then Equation (1) becomes identifiable. This concept is physically
meaningful because some failure is subject to a device’s own condition. In the example of
the dark spot defect, foreign particles intruded into a manufacturing process are suspected
as its cause; only particle-intruded pixels are latent to fail.
The number r is usually unknown in practice. It is impossible to count dark-spot-latent

OLEDs because intruded particles are too small (< 1 µm) to detect. This study suggests
choosing an arbitrary number for r, instead. Although estimated parameter θ∗ strongly
depends on r, the estimated failure time of product i is fairly robust to how large it is.
Let θ∗r be an estimate of θ assuming r. Upon this estimation, product i is expected to
fail at t such that Fi (t|θ∗r) = u/r. A more slowly growing, i.e., more reliable, Fi (t|θ∗r) is
estimated from a larger r value. At the same time, a larger r decreases the right-hand-side
ratio and makes the failure time earlier. These compensating effects keep its failure time
robust to any r.
This study numerically shows the robustness by estimation results on simulated data,

as illustrated in Figure 1. For a single experiment, 1,000 device failure times are randomly
generated from aWeibull distribution, and only the earliest 10 failures are chosen assuming
other failures are censored by limited test time. The distribution parameters are estimated
from this data varying r values. Where T ∗(r) = F−1

i (u/r|θ∗r) is the extrapolated product
failure time from the estimated parameter θ∗r , a ratio of T ∗(r)/T ∗(1,000) presents their
similarity. Figure 1 shows distributions of the ratio with 1,000-times repetition of the
experiments. It reveals that the failure time is on-average longer estimated for smaller
r, but the difference is under 7% in the worst case. Moreover, the susceptibility to
r exponentially diminishes as r grows. It also shows that shape parameter γ affects
the robustness. An increasing failure rate distribution (γ = 2) is more robust than a
decreasing failure rate distribution (γ = 0.5).

3.2. Estimation of product-failure distribution. First, derive product-failure distri-
bution Q(t) with device-failure distribution F (t|z) and heterogeneity distribution G(z)
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Figure 1. Distributions of the ratio of T ∗(r)/T ∗(1,000)



A DEVICE-LIFE MODEL FOR RELIABILITY DEMONSTRATION TEST 171

from which z is drawn. Function Q(t) is the probability that a product fails earlier than
t. A product fails when u devices fail out of r FL devices. Define a sample cumulative pro-
portion of failed devices until t as F̂ (t|z). Then probability of P [T ≤ t] is the probability

that F̂ (t|z) is larger than u/r. Then, Q(t) is derived by Equations (2)-(4).

Q(t) = P [T ≤ t] =

∫
Ω

P [T ≤ t|z] · g(z)dz (2)

=

∫
Ω

P
[
F̂ (t|z) > u

r

]
· g(z)dz (3)

=

∫
Ω

Φ̄

(√
r{u/r − F (t|z)}√
F (t|z)F̄ (t|z)

)
· g(z)dz, (4)

where Ω is the support of z, g(z) is the density function of G(z), and Φ̄(x) is the com-
plimentary cumulative probability of the standard normal distribution. Equations (3)

and (4) hold because
√
rF̂ (t|z) follows a normal distribution of mean F (t|z) and variance

F (t|z)F̄ (t|z). A random variable F̂ (t|z) is a sample mean of a Bernoulli random variable
I{τ≤t|z} (whether a device of frailty z fails or not before t) for r devices. Where expectation

and variance of I{τ≤t|z} are F (t|z) and F (t|z)F̄ (t|z), respectively,
√
rF̂ (t|z) asymptotically

follows the normal distribution by the central limit theorem.
To model F (t|z), this study adopts the shared frailty survival model where z represents

frailty of an individual product. The term frailty means an unobserved random effect
shared by subjects with similar risks in the analysis of mortality rates [18]. In this
study, devices are subjects, and their risks of failure are assumed similar within the
same product. Where frailty is conditioned, the failure time of an individual device is
assumed independently and identically distributed. The model forms the hazard function
λ(t|z) = f(t|z)

/
F̄ (t|z) as a multiple of frailty z and the baseline hazard function λ0(t);

λ(t|z) = zλ0(t). The frailty z is drawn from a random variable Z ∼ G(z). Distribution
G(z) is also estimated from the test samples. The value of Q(t) is numerically evaluated
by the estimation on G(z) and λ0(t).

This study considers G(z) and λ0(t) as parametric distributions, in order to extrapolate
future device failures. Their parameters are estimated by maximizing the likelihood of
the data [20]. Let λ0(t) have a parameter vector θ and G(z) have variance σ2. Its mean
value is normalized to 1 since frailty multiplies the hazard. First, define a conditional
likelihood of device-failure observations tij’s for given z. Substituting yij = tij, δij = 1 for
j = 1, . . . , ci and yij = S, δij = 0 for j = ci + 1, . . . , r, rewrite the likelihood of (1) to (5).
The first term becomes a hazard function by dividing the density by the complementary
cumulative probability. Then the conditional likelihood is given by (7).

Li(θ|z) =
r∏

j=1

fi(yij|θ)δij F̄i(yij|θ)(1−δij) (5)

=
r∏

j=1

{
fi(yij|θ)
F̄i(yij|θ)

}δij

F̄i(yij|θ) (6)

=
r∏

j=1

{zλ0(yij|θ)}δij e−zΛ0(yij |θ), (7)

where cumulative hazard function Λ0(t) =
∫ x

0
λ0(x)dx. The marginal likelihood function

of the whole data is L(θ, σ) =
∏n

i=1

∫
Ω
Li(θ|z)·g(z|σ)dz. The likelihood function is derived

for various forms of baseline hazard and frailty distributions in the literature. This study
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uses the parfm package in R that implements MLE of log-location-scale baseline hazard
distributions and gamma, inverse Gaussian, and lognormal frailty distributions [21].
Estimation on Q(t) is affected by sampling bias. This study computes its confidence

intervals by a simulation-based bootstrap method [2]. The bootstrap method draws inde-
pendent samples from an estimated failure-time distribution and makes another estima-
tion for each sample. The estimated parameters from the newly drawn samples provide
confidence intervals of the original estimate. Where QB is an empirical set of newly esti-
mated Q(t) values from the bootstrap samples, 100(1− α)% confidence interval of Q∗(t)
is a range between α/2 and (1− α/2) quantiles of QB.

4. Illustrative Example. The numerical example shows how to estimate product life
distribution by the proposed device-life model. This study generates an artificial data set
mimicking a dark-spot defect test for OLED displays. A display panel is an assembly of
millions of pixels emitting light. A panel fails if more than u = 15 pixels turn into dead
pixels (dark spots). The RDT is conducted for S = 1,500 hours in a certain accelerated
environment. For n = 20 sample panels, frailty zi, i = 1, . . . , n is drawn from a lognormal
distribution with µ = 0 and σ = 0.5. Each panel i has 100 FL devices, and their failure
time is generated from a hazard function λ(t|z) = ziλ0(t), where λ0(t) is a Weibull hazard
function with shape parameter γ = 2.5 and scale parameter α = exp(8.5). Increases
of dark spots are illustrated in Figure 2. Connected dots represent a single panel. The
estimation procedure only uses pixel failure times earlier than 1,500 hours. Its fitness is
evaluated by the full data of 3,000 hours.
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Figure 2. Increase of dark spots for 20 sample panels (artificial data)

The distribution parameters are estimated as σ∗ = 0.517, α∗ = exp(8.399) and γ∗ =
2.705 using parfm package in R. The number of FL devices r is assumed as 100 devices.
The cumulative product-failure probability Q(t) is numerically evaluated by (4). Figure
3 compares the estimated Q(t) with the empirical and theoretical probabilities. The
empirical one shows the time when each panel forms more than fifteen dark spots, and
the theoretical one is evaluated from the true parameter values. The estimated curve is
close to the empirical and theoretical curves. Confidence intervals are found by simulating



A DEVICE-LIFE MODEL FOR RELIABILITY DEMONSTRATION TEST 173

B = 10,000 bootstrap samples. Each sample k is constructed by simulating 100 dark spots
of 20 panels from parameter values of σ∗, α∗, and γ∗. The probability Q∗

k(t) is re-estimated
for each sample. Among {Q∗

k(t)|k = 1, . . . , 10,000}, the smallest 250th and 9,750th values
are lower and upper bounds of the 95% confidence interval, respectively.

Figure 3 also shows Q(t) estimated by a random-effect degradation path model. The
degradation path is specified by a Weibull cumulative probability function with a normal
random scale parameter. It greatly under-estimates failure probabilities. This example
shows that the device-life model is a good alternative for the data that a degradation
model poorly fits for.
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Finally, whereas the above estimation assumes r = 100, the result is robust to how
large it is. Section 3.1 already has shown that the expected product-failure time is robust
to r. Figure 4 confirms it by comparing estimated percentile values Px’s, the time until
which x percent of products have failed, for r = 100 to 500. They are almost the same.

5. Conclusion. The RDT for estimating a failure-time distribution of products may re-
quire an extremely long time to observe a sufficient number of failures. It is not allowed for
the timely introduction of a new product. This study proposes the device-life model that
can reduce test time by observing failures of devices rather than products. Because devices
much more frequently fail than products, shorter time is required to observe failures. It
first estimates device-life distributions for heterogeneous products and extrapolates them
to compute a product-life distribution. A tester can early terminate a test if a sufficient
number of device have failed even if no product has failed at all. Although the existing
degradation model also extrapolates product-failure time from a degrading measure, the
proposed model provides a different specification for the data that any degradation model
poorly fits for. The illustrative case in Section 4 shows such an example.
This model adopts the shared frailty model to accommodate heterogeneity between

products. It first jointly estimates a baseline device-failure distribution and a frailty dis-
tribution, and next evaluates a cumulative probability function of product-failure time.
The device-failure distribution is unidentifiable if a large number of devices are all includ-
ed in a population to observe a failure. This study resolves this problem by introducing
FL devices and shows that the product-failure distribution is robust to any given num-
ber of FL devices. The proposed model is widely applicable to any baseline and frailty
distributions for which parametric estimators are known.
Whereas this study assumes a unified test environment, the model is easily extendable

to accelerate test environments by adding deterministic hazard coefficients to the device-
life distribution. In future research, competing failure modes could be modeled as frailty
factors as well as the product heterogeneity.
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