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Abstract. We in this paper investigate the cache allocation problem of Information-
Centric Networking (ICN), i.e., distribute the cache capacity across content routers under
a constrained and fixed total cache budget, in which both topology information and traf-
fic characteristics are considered as two factors to determine the importance of content
router. Meanwhile, the evaluation of network topology depends on degree centrality, be-
tweenness centrality and closeness centrality, while that of traffic characteristics depends
on node load and interest preference. In particular, t-distributed stochastic neighbor em-
bedding is used to reduce the dimensions of data. The simulation is driven by the real
dataset over a real network topology, and the experimental results demonstrate that the
proposed cache allocation mechanism is efficient by comparing with two baselines in terms
of cache hit ratio, cache utilization rate and routing delay.
Keywords: ICN, Heterogeneous deployment, Dimensionality reduction, Cache alloca-
tion

1. Introduction. At present, the inherent caching strategies in Information-Centric Net-
working (ICN) have some limitations, such as redundant content copies, low cache uti-
lization rate, and unbalanced node load. Given this, a number of optimization schemes
have been proposed [1], including for homogeneous scenario (i.e., all Content Routers
(CRs) have the same cache size) and heterogeneous scenario (i.e., different CRs are likely
to be allocated different cache sizes while the total cache capacity is fixed). Although
some schemes devised for the homogeneous scenario can be also applied to the hetero-
geneous scenario, the obtained effect is usually indistinctive compared to those schemes
specially devised for the heterogeneous scenario. In fact, the assumption that each node
is deployed with the same cache capacity is unscientific in the real practical applications.
On the one hand, not all CRs for a network topology have the same significance because
their corresponding affairs are different; for example, the core CR that handles traffic is
several times larger than the ordinary CR. On the other hand, it is very expensive and
costly; for example, a CR with 10TB cache costs 300000 dollars, consuming 500W at the
full work [2]. Therefore, it is required to pay more attention to the cache allocation under
the heterogeneous scenario.

Certainly, the heterogeneous cache allocation has the considerable research value, es-
pecially when the (time or/and space) distribution of user requests changes greatly. To
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address this issue, the fundamental thought is summarized as that more important CR is
allocated larger cache size in order to cache more items. However, it is very difficult to
determine which nodes are important and which nodes are not that important because
the term “important” is an abstract word. Regarding this, there are three different types
of solutions, i.e., central nodes [3,4], edge nodes [5] and selective nodes according to the
real user requests and network topology [6]. In particular, the first two solutions are the
opportunistic caching and usually have no good global performance over the arbitrary
network topology. Regarding this, there are some related researches. For example, in
[7], an oblivious request routing scheme based on cache division was devised. It divid-
ed a cache into a number of slices. In [8], authors presented a greedy caching scheme
by caching the relatively popular contents at the edge CRs. In [9], an adaptive caching
strategy was proposed to enable the caching system to adapt to the dynamic network en-
vironment. Furthermore, [10] raised the heterogeneous cache allocation problem in ICN,
and its experiments had demonstrated that topological properties and request patterns
could affect cache performance. In [11], authors explored the caching capacity of the path
by sharing the contents. In [12], the economics and game theory were exploited to address
the heterogeneous cache allocation. In [13], the top centrality based cache allocation was
proposed to reduce the computing complexity. Different from them, this paper adopts the
last approach, i.e., using both network topology and traffic characteristics of user requests
to determine the importance of CR and then does the heterogeneous cache allocation.
This paper proposes an Optimal Heterogeneous Cache Allocation (OHCA) mechanism

in ICN to distribute the cache capacity across CRs under a constrained cache budget,
and the major contributions are concluded as follows. Network topology and traffic char-
acteristics are exploited to determine the importance of CR, where the former considers
degree centrality, betweenness centrality and closeness centrality while the latter considers
node load and interest preference. Especially for the high-dimensional data with multiple
aspects and multiple parameters, t-distributed Stochastic Neighbor Embedding (t-SNE)
is used for dimensionality reduction (see Figure 1).
Section 2 presents the method of network modelling. In Section 3, the information

including network topology analysis, traffic characteristics analysis and information inte-
gration is extracted. The heterogeneous cache allocation method is proposed in Section
4. The experimental results are reported in Section 5 and finally Section 6 concludes this
paper. In particular, Section 2 gives the model of traffic distribution which supports the
information extraction in Section 3. Especially for the high-dimensional data integrated
by network topology and traffic characteristics in Section 3, Section 4 provides a method
for dimensionality reduction and on this basis does cache allocation.

2. Network Modelling. ICN topology is modelled as G = (V,E,Γ), where V is the set
of CRs, E is the set of edges and Γ is the request model of interests. Here, V and E are
defined as

V = {CRi|1 ≤ i ≤ n ∧ i ∈ N+}, (1)

E = {eij|CRi ∈ V ∧ CRj ∈ V, i ̸= j}, (2)

where n is the number of CRs.
For Γ, it usually follows the independent reference model and the arrival rate of interest

requests follows the Poisson distribution [14]. However, the interest requests are dynamic,
showing temporal locality and spatial locality, which indicates that the independent ref-
erence model cannot be acceptable to describe these dynamic interest requests. Instead,
in this paper, we exploit the shot noise model to describe the distribution of interests.
For any content item, denoted by c, it is expressed as a four tuples, i.e., < τc, Nc, λc(t),

classc >. Among them, τc is the initial time when c is requested, Nc is the average number
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Figure 1. The system framework of OHCA

of requests requesting c, λc(t) is the independent mathematical expectation with respect
to c, and classc is the application type of c. In particular, λc(t) meets the conditions:

λc(t) ≥ 1

+∞∫
0

λc(t)dt = 1
. (3)

Let Nclassc , Tclassc , Ntclassc and λclassc(t) denote the average number of requests request-
ing classc, the average survival time of classc, the total number of content items included
by classc and the integral mathematical expectation with respect to classc respectively,
and we have

λclassc(t) =
NclasscNtclassc

Tclassc

. (4)

3. Information Extraction.

3.1. Network topology analysis. The CR that locates the hub usually has higher
probability to handle more interest requests. As a result, this paper selects three metrics
on centrality to determine the importance of CR, i.e., degree centrality, betweenness
centrality and closeness centrality, denoted by Cd, Cb and Cc respectively.

At first, Cd is used to reflect the direct influence of CR, and Cd of CRi is defined as

Cdi =
n∑

k=1,k ̸=i

a(CRi,CRk), (5)

a(CRi,CRk) =

{
1, CRi is adjacent to CRk

0, otherwise
, (6)

where a(·) is the connection function.
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Then, Cb of CRi is defined as

Cbi =
∑

CRs ̸=CRi ̸=CRt∈V

γst(i)

γst
, (7)

where γst is the number of the shortest paths between CRs and CRt while γst(i) is that
via CRi. This equation implies the proportion of the shortest paths and it reflects the
indirect influence of CR.
Finally, Cc is used to reflect the relative location of CR, and Cc of CRi is defined as

Cci =

(
n∑

k=1,k ̸=i

sd(CRi,CRk)

)−1

, (8)

where sd(CRi,CRk) is the distance of the shortest path between CRi and CRk.

3.2. Traffic characteristics analysis. The traffic characteristics information shows the
distribution of user requests clearly, where node load and interest preference are regarded
as its two attributes to distinguish the importance of CR. Furthermore, for the evaluation
of node load, it depends on the received number of interest requests, the responded number
of interest requests and the number of content replacements, denoted by RecI, ResI and
RepC respectively, which can be obtained during the process of routing. For the evaluation
of interest preference, it depends on the aggregation rate of interests and the influence
degree of interests, denoted by Agg and Inf respectively.
At first, Agg of CRi is defined as

Aggi =
Nface i
RecIi

, (9)

where Nface i is the additional interfaces to Pending Interest Table (PIT) of CRi and
RecIi is RecI of CRi. In particular, the higher aggregation rate means that the requested
content has higher popularity and the CR has more serious congestion.
Then, Inf of CRi is defined as

Inf i =
TTL∑
q=1

Hhopq ∗
1

q + 1
, (10)

where TTL is the abbreviation of time to live and it is the maximal tolerance number
of hops, q is the traversed number of hops from interest requester to CRi, and Hhopq is
the total number of interest requests requesting q. In particular, if a CR can respond to
interest requests as many as possible, it means that the cached contents are popular and
important.

3.3. Information integration. According to the above, we know that the importance
of CR is determined by two classes of parameters, i.e., the first class with Cd, Cb and
Cc, and the second class with RecI, ResI, RepC, Agg and Inf . Let Traf i(t) denote the
traffic characteristics information collected at CRi within t time frame, and we have

Traf i(t) = {RecIi(t), ResIi(t), RepCi(t), Aggi(t), Inf i(t)}, (11)

where Traf i(t) only expresses the traffic condition for CRi with a five-dimensional vector
and it cannot comprehensively reflect the change situation of network traffic. Thus, it
requires to select T segments of sampling time, denoted by t1, t2, . . . , tT respectively. Based
on this, combining Cd, Cb and Cc, we have

Xi = {Traf i(t1), . . . ,Traf i(tT ), Cd, Cb, Cc}, (12)
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where Xi is the integrated information within T sampling periods and it is a (5T + 3)-
dimensional vector. Consider that there are n CRs, the integrated information including
network topology and traffic characteristics is defined as

X = {X1, X2, . . . , Xi, . . . , Xn}, (13)

which indicates that there are n(5T + 3) data points in G.

4. Heterogeneous Cache Allocation.

4.1. Dimensionality reduction. The integrated information cannot be used for cache
allocation directly due to the high-dimensional feature (i.e., multiple aspects and multiple
parameters). Thus, the dimensionality reduction is performed in advance. In this paper,
t-SNE [15], a machine learning algorithm is improved and used for dimensionality reduc-
tion, as follows. At first, the similarity between data points according to the conditional
probability is computed. Then, the gradient training is performed, where a part of the
collected data is used as the training set and the other as the verification set.

Let dpxi and dpxj denote any two data points in the high-dimensional space, and their
mapped data points in the low-dimensional space are denoted by dpyi and dpyj. For
the high-dimensional space, the law of normal distribution is exploited to compute the
similarity, and we have

hpj|i =
exp

(
−dx2

ij/2σ
2
i

)∑
k ̸=i exp (−dx2

ik/2σ
2
i )
, (14)

dxij = ∥dpxi − dpxj∥, (15)

where dxij is the Euclidean distance between dpxi and dpxj. For n(5T + 3) data points,
let Np denote the number of calculations on similarity, and we have

Np =
n(5T + 3)(n(5T + 3)− 1)

2
. (16)

It is obvious that the computation overhead is considerably expensive, thus Np should
be optimized. Indeed for X, the similarity between data points that are far apart is very
small, which has no significant averse impact on dimensionality reduction. Given this, we
can only compute the similarity between two adjacent data points. Let Nebi denote the
nearest neighbors set of dpxi, and (14) is modified as

hpj|i =
exp

(
−dx2

ij/2σ
2
i

)∑
k∈Nebi

exp (−dx2
ik/2σ

2
i )
. (17)

In particular, Nebi is obtained by constructing K-nearest neighbor based on Vantage
Point Tree (VPT), and the process consists of four steps as follows. (i) A data point
is randomly selected as the highland. (ii) The distance between the highland and the
other any data point is computed, and a distance set is obtained. (iii) The mid-value of
distance set is computed and these data points are divided into two parts according to the
mid-value: if some distance is smaller than the mid-value, its corresponding data point
belongs to the left-subtree; otherwise, that for the right-subtree. (iv) The left-subtree and
right-subtree are completed by the recursive manner.

Furthermore, the Euclidean distance cannot be employed directly in the high-dimension-
al space due to the curse of dimensionality [16]; instead, the shortest distance between
data points is used to modify (15). Let sdxij denote the shortest distance between dpxi

and dpxj, and we have

sdxij = min{dxij, dxik + dxkj}. (18)
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With the above optimization consideration, the similarity between dpxi and dpxj is
defined as

hpj|i =
exp

(
−sdx2

ij/2σ
2
i

)∑
k∈Nebi

exp (−sdx2
ik/2σ

2
i )
. (19)

According to (19), for the high-dimensional space, the joint probability distribution
function on dpxi and dpxj is defined as

hpij =
hpj|i + hpi|j
2n(5T + 3)

. (20)

Consider that the law of t-distribution is exploited in the low-dimensional space, here
the degree of freedom is 1, and the joint probability distribution function on dpyi and
dpyj is defined as

lpij =

(
1 + dy2ij

)−1∑
k ̸=i (1 + dy2ik)

−1 . (21)

To the best of our knowledge, the ultimate objective of t-SNE is to minimize the
difference between hpij and lpij, denoted by Cost, and we have

Cost =
∑
∀i

∑
∀j

hpij log
hpij
lpij

. (22)

Let Y denote the result of dimensionality reduction from X. The process from X to Y
is completed by the stepwise iterations, involving the gradient training:

δCost

δdpyi
= 4

∑
j ̸=i

dyij(hpij − lpij)
(
1 + dy2ij

)−1
. (23)

In order to guarantee convergence speed and avoid running into the local optimum,
three variables are introduced, i.e., the number of iterations, learning rate and momentum
factor for each iteration, denoted by I, η and α(I) respectively. Therefore, the iteration
equation is defined as

Y (I) = Y (I − 1) + η
Cost

Y
+ α(I) (Y (I − 1)− Y (I − 2)) . (24)

In particular, the first 1
3
T data is regarded as the training set while the last 2

3
T data

is regarded as the verification set during the process of gradient training. If the finally
acquired two accuracy values are close, t-SNE for dimensionality reduction is acceptable.
Mathematically, we have

|actr − acve| = ε → 0, (25)

where actr and acve are the finally acquired accuracy values by the training set and the
verification set respectively. Suppose that there are κ analogies generated by the training
set and each one has an accuracy actri (1 ≤ i ≤ κ) for the training result, and we have

actr = minκ
i=1 actri, (26)

where actri is defined as the ratio of the correct data points and the total data points.
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4.2. Allocation method. The previous sections have introduced information integra-
tion and dimensionality reduction, and this section will make cache allocation based on
their outputs (see Figure 1). In this paper, we use weight assignment method to allocate
cache capacity for different CRs, where the importance of CR is allocated large cache size
and has large weight. According to Y , n CRs are divided into Q classes, where numj

denotes the number of CRs that belong to class j (1 ≤ j ≤ Q and j ∈ N+). Let W denote
the weight vector to which Q classes correspond, and we have

W = {w1, w2, . . . , wi, . . . , wQ}, (27)
Q∑

j=1

wj = 1

0 < wj < wj+1 < 1

. (28)

Suppose that the total cache budget is Ctotal and that numj CRs are allocated Cj

capacity, and we have
Cj = wjCtotal. (29)

For these CRs that belong to the same class, their cache capacities are equally allocated.
For one of numj CRs, let Cji denote its cache capacity, and we have

Cji =
Cj

numj

. (30)

5. Performance Evaluation.

5.1. Simulation setup. The proposed OHCA is implemented over Network Simulator
3 (NS3) based on C++ programming language, running on a personal computer with
Intel(R) core(TM)i5-6200u, CPU2.92 GHz, 4GB RAM. The simulation is driven based on
the real YouTube dataset, of which the collection of trace comes from a campus network
measurement [17]. In particular, the YouTube dataset contains 18751 user requests for
13764 short videos across 2377 hosts, which has some inherent distribution laws. In spite
of this, the dataset does not present the designated network topology. To address this,
Global Technology Service for Continent Europe (GTS-CE) with 130 nodes and 168 edges
[18] is used as simulation topology. According to those distribution laws of the original
YouTube dataset, we distribute 18751 user requests and 13764 short videos across 130
nodes rather than 2377 hosts in the same proportion.

We compare the proposed OHCA with two state-of-the-art mechanisms, shorted for
BCN [12] and BToC [13] respectively. Certainly, there are many heterogeneous cache al-
location mechanisms. However, most of them are not the latest studies or do not show the
concrete schemes. Different from those mechanisms, [12] and [13] present the relatively
systematic designs and thus they are selected as the baselines. In addition, Average Hit
Ratio (AHR), Average Utilization Rate (AUR) and Average Routing Delay (ARD) are
considered as three evaluation metrics. Furthermore, we divide these 18751 interest re-
quests into five intervals in chronological order. For each interval, we extract 400 interest
requests, i.e., [1, 400], [3751, 4150], [7501, 7900], [11251, 11650] and [15001, 15400] and re-
port the corresponding experimental results. For these parameters, we make simulations
under different settings to find the proper one. As shown in Table 1, we give the settings
for the involved parameters.
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Table 1. Parameters

Parameter Setting Ownership
Collection duration 24h YouTube
The size of dataset 166GB YouTube

The period of sampling 10mins OHCA
T 24× 60/10 = 144 OHCA

Ctotal 20GB OHCA
η 0.6 OHCA
ε 0.18 OHCA

The number of simulations 30 OHCA
The network bandwidth 10Gb/s GTS-CE

5.2. t-SNE optimization analysis. The conventional t-SNE has the considerably high
computation overhead; thus this paper optimizes Np by constructing VPT-based K-
nearest neighbor. For different interest requests, we report the corresponding Np before
and after optimization, as shown in Table 2. We observe that the number of required
calculations after optimization only approximatively accounts for 8.1% of that before
optimization, which indicates that the optimization effect is very significant.

Table 2. t-SNE optimization test

Interests 400 600 1000 1500 2500
Np before optimization 4417013055 4417013055 4417013055 4417013055 4417013055
Np after optimization 366612081 366574145 366503926 366641157 366630394

5.3. Comparison analysis.

5.3.1. Cache hit ratio. The cache hit ratio is defined as Numhit/Numsuccess, where Numhit

is the number of interest requests which are satisfied by CS and Numsuccess is the success-
ful number of interest requests. AHRs for OHCA, BCN, BToC under different interest
requests are reported in Figure 2. We observe that OHCA has the highest AHR, fol-
lowed by BToC and BCN. In fact, only BCN does not consider the dynamic change of
interest requests, that is to say, the corresponding CRs cannot satisfy interest requests
as many as possible, which causes that lots of interest requests have to retrieve the con-
tents from the origin server. Thus, BCN has the lowest AHR. Although both OHCA and
BToC are devised for the dynamic interest requests, BToC only considers the inherent

Figure 2. Average hit ratios for OHCA, BCN and BToC
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network topology; instead, OHCA comprehensively considers network topology and traffic
characteristics. Furthermore, for the same mechanism, we observe that the subsequent
experiments have higher AHR and gradually tend to become stable, this is because the
initial experiment has no optimal caching collaboration and the latter experiments con-
tinuously adjust the cached contents until the system is stable in terms of the YouTube
dataset.

5.3.2. Cache utilization rate. The cache utilization rate is used to measure the usage of
cache and defined as

∑n
i=1 cui/Ctotal, where cui is the used cache for CRi. In particular,

the large cache utilization rate means good cache allocation. AURs for OHCA, BCN
and BToC under different interest requests are reported in Figure 3. We observe that
OHCA has the highest AUR, followed by BCN, BToC, which suggests that the high cache
utilization rate benefits from the cache allocation mechanism. In fact, it is very hard to
clearly and accurately explain the inherent reason on which mechanism has the best cache
allocation performance. However, by reviewing the external factors, OHCA considers
network topology and traffic characteristics, i.e., analyzing the most comprehensive factors
(i.e., degree centrality, betweenness centrality, closeness centrality, node load and interest
preference). Especially the introduction of node load and interest preference can make
CR cache more valuable videos, which cause that OHCA has higher AUR than BCN and
BToC. For BCN and BToC, although the information on network topology is analyzed,
BToC only considers degree centrality irrespective of betweenness centrality and closeness
centrality, which results in that it cannot obtain the relatively optimal cache size according
to the extracted topology information. From the other perspective, BCN leverages the
game theory and tries to find the optimal solution, while BToC only obtains the sub-
optimal cache location in SPT. Given the two aspects, BCN has higher AUR than BToC.

Figure 3. Average utilization rates for OHCA, BCN and BToC

5.3.3. Routing delay. The routing delay is defined as the difference between the time-
point when interest request is sent and that when the corresponding content is obtained
by user. ARDs for OHCA, BCN and BToC under different interest requests are reported
in Figure 4. We observe that OHCA has the smallest ARD, followed by BToC and BCN,
this is because OHCA has the highest AHR and AUR and it can respond to more interest
requests as quickly as possible.

5.4. Discussion. As can be seen from Section 5.3, we know that the proposed OHCA has
the best performance in terms of average hit ratio, average utilization rate and average
routing delay, which suggests that it is optimal from the perspective of experiments. In
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Figure 4. Average routing delays for OHCA, BCN and BToC

particular, we can observe that the average utilization rate of OHCA is always larger than
90%, which indicates that the proposed cache allocation is considerably acceptable.

6. Conclusions. This paper proposes an optimal heterogeneous cache allocation mech-
anism, called OHCA, which consists of two parts, i.e., cache allocation which distributes
the cache capacity across CRs under a constrained and fixed total cache budget. Regard-
ing the cache collocation, it is based on weight assignment by determining the importance
of CR which depends on network topology and traffic characteristics. For the integrated
information, t-SNE is used to do dimensionality reduction. The proposed OHCA is sim-
ulated based on the real YouTube dataset over GTS-CE topology, and the comparison
experiments reveal that OHCA outperforms two state-of-the-art cache allocation mecha-
nisms.
However, as a novel heterogeneous cache allocation mechanism, the proposed OHCA

has two distinguished shortages. On the one hand, it lacks the theoretical analysis to
support the optimal conclusion. On the other hand, more comprehensive factors should
be considered during the process of information extraction. In future, we improve and
enhance OHCA around above two issues. Specifically, we plan to prove OHCA in mathe-
matics under some feasible assumptions. In addition, we also plan to consider and further
the distribution of content location in order to do more complex and more comprehensive
data analysis.
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