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Abstract. With the advancement of machine learning and artificial intelligence, the
automated estimation of a bed’s complex lithology has become one of the most crucial
requirements in petroleum engineering because of its important role in reservoir char-
acterization. In the past geophysical modelling, petro-physical analysis, artificial intel-
ligence and several statistical approaches have been implemented to estimate lithology
since prediction of lithology from recorded continuous cores are very expensive and un-
profitable. Geoscience researchers often encounter uncertain, inexact, and vague data in
the process of lithology identification that results in inefficient classification. Addition-
ally, the complexities that are coupled to the lithology trends and their equivalent fluid
responses, produce ambiguity and confuse the models. The goal of this work is to develop
a lithology prediction technique by applying rough set theory (RST) as a granular com-
puting approach to construct logical rules from an inconsistent information system that
includes data from several well log attributes including the lithology indicator, SQp and
the fluid indicator, SQs that have noticeable contribution in lithology classification. In
addition, the rules will be established as a baseline for application in practice and future
developments for multivariate well-log analysis. The results were validated with cutting
data, and it was proved that the proposed approach has classified the lithology effectively
with misclassification rate less than 18% which is less than other methods in compari-
son. Moreover, the result has confirmed that the method has a promising prospect as a
lithology prediction tool, especially in real-time operation, because of the white-box nature
of the module that represents the ability of describing the model’s calculation steps and
results in easily understandable form.
Keywords: Lithology prediction, Rough sets, Granular computing, Knowledge acquisi-
tion, Decision making, Explainable AI
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1. Introduction. Lithology refers to the composition or type of rock in the Earth’s sub-
surface. The term lithology is used as a gross description of a rock layer in the subsurface
and uses familiar names, including sandstone, siltstone, mudstone, etc. The lithology
of a layer can be identified by drilling holes, although this method often does not pro-
vide exact information. We can also obtain the classification results of lithology from
recorded continuous cores that are very expensive and might be unprofitable. The lithol-
ogy can also be estimated by geophysical inversion and geophysical modelling methods.
Lithology prediction can be performed using petro-physical well logs. The estimation
of lithology from well logs multi-attribute data has become one of the most prominent
techniques used by several sectors of petroleum engineering, including geological studies
for reservoir characterization, reservoir modelling and formation evaluation, well planning
including drilling and enhanced oil recovery processes, well completion management, etc.
This study shows granular computation works effectively on a basis of rough sets (RS) to
recognize the pattern of a few well-log attributes to predict lithology. In the era of smart
data mining and analysis, granular computation involves the partitioning of an object
into granules, with a granule being a clump of elements defined by similarity, indistin-
guishability, functionality or proximity [1, 2, 3]. Rough set theory (RST) [4, 5, 6] is a
rising granular computing technique with a wide range of applications in many sectors,
particularly in decision studies, inductive inference, conflict resolution, machine learning,
knowledge discovery and acquisition, pattern recognition and inductive reasoning [7, 8].
It is very difficult for geoscientists to reduce the size of the dataset and to obtain the
associated data simultaneously. RST addresses this challenge by performing as an effi-
cient and effective module that reduces the data size in its computational process and
discovers the hidden data patterns in database(s), which is an approach called knowledge
discovery (KD) in the field of granular computing. KD has been used for the develop-
ment of information systems that assist in extracting concealed data patterns and other
important information in the datasets. RST performs granular computation from a vague
idea (set) depending on two vivid concepts, which are lower approximations and upper
approximations (discussed in Methodology section). To perform granular computation,
RST requires only the provided data [9]. RST performs by employing a granular under-
standing of the provided dataset. The most significant benefit of white-box models like
RST over black-box approaches is that the detailed knowledge of the classification process
is available for better understanding the problem under study. RST includes numerous
other advantages [10, 11]. Some are given here.

• Provide effective algorithms for finding invisible patterns inside the dataset.
• Generate a nominal dataset called the data reduction and, thus, show the significance
of data.

• Determine relations, which are not found in statistical methods.
• Find partial or total dependencies among the objects and discover the significance
of attributes.

• Generate set of significant decision rules from the datasets that are easily under-
standable and explainable.

Certainly, RST has been successfully applied in numerous fields of smart real-life ap-
plications, as an independent module or a combined module with other soft computing
method(s) [12], including fuzzy logic (FL), neural network (NN), etc., to deal with uncer-
tainty and vagueness. RST has also been used in several areas, such as cluster analysis
[13], fault diagnosis [14], image processing [15], classification and prediction [11, 16, 17, 18].
Recently rule based white-box classification modules such as RST and other modules

based on RST frameworks such as NIS (non-deterministic information system) Apriori



LITHOLOGY PREDICTION USING WELL LOGS 227

algorithm have been used in lithology interpretation and classification problems and
achieved satisfactory outcomes [11, 17, 19]. Hossain et al. [19] have used NIS-Apriori
rules to identify lithology classes directly from well logs and has achieved satisfactory
results. In another research Hossain et al. have employed RST to classify electrofacies
and interpret lithology classes from the electrofacies using RST rules [18]. This research
proposes a white-box novel architecture to deal with the uncertainty and vagueness in the
inconsistent well log datasets by using RST as a granular computing approach and to con-
struct logical rules to classify ten different lithology classes. These interpretable rules will
be useful for establishing a baseline for lithology identification and related applications in
practice and future developments for multivariate well-log analysis.

The rest of the study is organized as follows. Section 2 contains the problem and the
literature review. In Section 3 RST is explained as a form of granular computing and then
the methodology RST based rule induction is described in detail. Section 4 contains the
experimental steps and in Section 5 the experimental results are shown. In Section 6 the
comparison study is given where three other soft computing methods are used. Section 7
includes the overall discussion and concludes the paper.

Nomenclature

Variable Description Acronyms Description
CNc Boundary region ANN Artificial Neural Network
C∗ Upper approximation DS Depth Sequence
C∗ Lower approximation DT Decision Tree
G Shear modulus FL Fuzzy Logic
I Information system KD Knowledge Discovery
K Attributes’ set LDA Linear Discriminant Analysis
M Compressional modulus ML Machine Learning
N Knowledge base MLP Multi-Layer Perception
S Concept NN Neural Network
SQp Scale of quality factor of P-wave PNN Probabilistic Neural Network
SQs Scale of quality factor of S-wave RBF Radial Basis Function
U Universe RST Rough Set Theory
r Rough set rule RS Rough Sets
α Confidence of a particular rule SOM Self Organizing Maps
µ Rough membership function SVM Support Vector Machine
ρ Density TOC Total Organic Carbon

2. Problem and Background. In earth science, the prediction of subsurface prop-
erties, such as lithology composition, has always been among the basic problems. An
important concern in the oil and gas industry is reservoir characterization, and this is
conducted to ensure the improvement of hydrocarbon prediction; this task requires that
lithology be classified efficiently. Traditional methods that employ seismic data for the
estimation of reservoir lithology consist of finding a physical relationship between the
lithology properties to be identified and the seismic attributes, and then employ those
attributes over the entire seismic dataset in order to predict the target. However, usual-
ly the seismic datasets include noise values due to sensor’s noisy responses or equipment
mis-measurements and hence the conventional methods provide inaccurate means to make
lithology prediction. In some cases where the functional relationships between the at-
tributes and the target properties can be found, the physical foundation is not often clear
or understandable. Thus, relying on well logs is more efficient and recording such prop-
erties by well logging is considered to be much more reliable but costly, time consuming
and challenging. There are close relationships between well log data and formation and
conventionally, for lithology prediction by employing the recorded well log data, a wide
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range of soft computing methods has been proposed through combinations of various
measurements both in the qualitative and quantitative evaluation and hence automated
lithology prediction using well logs has achieved outstanding contribution in the field of
oil and gas. For solving lithology prediction and classification problems, several soft com-
puting methods such as support vector machines using conventional wire-line well logs
[20], cross plot interpretation and statistical analysis based on histogram plotting [21],
FL for association analysis, NN and multivariable statistical methodologies [22], artificial
intelligence approaches and multivariate statistical analysis [23], NIS apriori algorithm
[19], hybrid NN methods [24], self organizing maps (SOM) [25], FL methods [26], artifi-
cial neural network (ANN) methods [27], fuzzy curves and ensemble neural networks [28],
determination of the total organic carbon (TOC) using ANN [29], multi-agent collabora-
tive learning architecture approaches [30], random forest [31, 32], generative adversarial
network [33], multivariate statistical methods [34], aggregation of principal component,
clustering and discriminant analysis [35], statistical characterization, and discrimination
and stratigraphic correction methodologies [36] have been suggested by the researchers.
However, majority of these methods are black box which makes it difficult to under-
stand the models for further analysis [37]. The performance of ANN and FL methods
are superior compared with statistical methods [20, 27, 38, 39]. SOM methods provide
better results in lithology classification compared to other machine learning techniques
[40]. Other kinds of NN are faster than probabilistic neural networks (PNN) because
PNN involves more computational steps [39].
Moreover, due to high nonlinearity, uncertainty and the complexities that are coupled to

the lithology trends and their equivalent fluid responses, the system eventually produces
ambiguity that confuses the models making it difficult to get well-defined expressions us-
ing the conventional soft computing methods and improvement in prediction accuracy is
still a major concern. Hermana et al. [41, 42] have addressed this problem, and proposed
a unique transformation where decoupling can be performed by using the output of a
constrained elastic inversion attributes, SQp and SQs which are derived from attenua-
tion attributes through rock physics approximation by applying basic elastic properties:
S-wave, P-wave and density. According to their method, SQp and SQs attributes are
equivalent to the gamma ray and resistivity log response respectively and they can con-
tribute for facies prediction or classification and SQp and SQs would have a noticeable
effect on lithology classification and hydrocarbon prediction [41, 42]. The variations in
lithology can be predicted accurately by the integration of well logs including SQp and
SQs and geological core description data using RST rules applied to the wireline data.
Granular computing has a position of centrality in rough set theory. An interesting

motivation of using granular computing is that it involves perception-based arithmetic.
In this arithmetic, the objects of arithmetic operations are perceptions of numbers rather
than numbers themselves. Informally, granulation involves partitioning of an object into
granules, with a granule being a clump of elements drawn together by indistinguishabili-
ty, equivalence, similarity, proximity or functionality. In this research a rough set theory
(RST) based granular computing approach is proposed for special data pattern recogni-
tion system by using well log attributes along with the special attributes SQp and SQs

in order to efficiently predict lithology. In this approach granulation is done in two steps,
partitioning the raw attribute values into bins or intervals to reduce the noise and non-
linearity; and partitioning of the objects with binned or discretized values into different
nonoverlapping equivalence classes to represent the indiscernibility of the objects that
are constructed based on distinct subsets of attributes. Under this viewpoint, rough set
theory deals with approximation and reasoning with partitions of different levels of gran-
ularity to find patterns and generates significant descriptive rules showing the attributes’
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dependencies, and these rules are used for predicting lithology in diverse field conditions
with similar log responses.

3. Methodology.

3.1. Granular computing and rough set theory (RST). As given by Zadeh, the
following definitions may assist us in knowing the scopes and the purpose of granular
computing:

“Granulation of an object A leads to a collections of granules of A, with a
granule being a clump of points (objects) drawn together by indistinguishability,
similarity, proximity or functionality” [43].

“Granular Computing is a superset of the theory of fuzzy information granu-
lation, rough set theory and interval computations, and is a subset of granular
mathematics” [44].

From the quotations a fundamental idea of granular computing is the use of clusters,
groups or classes of elements named as granules. In 1982 RST was proposed by Pawlak
and since then it is in a state of continuous growth. The methodology of RST deals with
the categorization and incorporation of uncertain, incomplete or imprecise knowledge
and information, and has been considered as one of the first non-statistical approaches in
data-science [45]. RST is a mathematical approach having granular structures to deal with
imprecise or uncertain knowledge, knowledge discovery, quality evaluation, finding data
patterns and consistencies, evaluation and recognition of data reasoning and dependencies
on the basis of reduct of the information dataset. We consider the main concept of
granular computing is studied from two interrelated features, the formation of the granules
and computation with those granules for problem solving. Granular computing with
RST is originated on the equivalence classes which are basic granules, and the lower and
upper approximation spaces of a set can be computed by using those basic granules. In
other words, these two approximation spaces (upper and lower) of any given set are the
proper categorization of knowledge concerning the domain of interest [14]. The internal
arrangements or the patterns of a given condition-decision dataset can be minimized to
a set of nominal rules by employing the concept of core and reduct [45].

3.2. Information system and decision table. In RST the dataset is prepared in the
form of a table where the columns of the table consist of a dependent attribute and
some independent attributes. Each column consists of the information of a measurable
property for the objects or observations. In the rows there are the data samples or
observations. The entries in the table contain the attribute values. This table is called
an information system. Formally, an information system is a pair I = (U,K), where U is
called universe and K is the attribute set and both of these sets are basically nonempty
finite, i.e., k : U → Vk for k ⊂ K, where Vk is recognized as the domain of k. A decision
table is a special kind of information system which expresses all the knowledge about
the model. Formally, decision table, I = (U,K ∪D), where attributes in K are called
condition attributes and D is the decision attribute. The conditional attributes, also
known as independent attributes contain the conditional values of an observation to form
a decision. Decision attributes may have binary values like 0 and 1 or more than two
values.

Table 1 below is an RS decision table, where D is the dependant or decision attribute
and e, f , g, h are the independent or conditional attributes.

From Table 1 it is visible that in examples VII and VIII the independent attributes
have the same values but the dependent or the decision attribute values are not the same.
Table 1 is inconsistent because the objects VII and VIII are conflicting each other. In
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Table 1. Decision table

Objects e f g h D
I N O N 7 5
II N O P 5 5
III O O N 5 5
IV O K N 7 6
V N K N 6 6
VI O K O 7 7
VII P L P 6 6
VIII P L P 6 5
IX P K O 7 7
X P L O 7 7

Section 3.3 and Section 3.4 Table 1 is used to describe the basic steps to generate rules
using RST methodology.

3.3. Rough sets approximations. The primary part of RS is the relation of indis-
cernibility that is produced by information that concerns the objects of interest. The
intention of the indiscernibility relation is to define that by reason of the deficiency of
knowledge it is not possible to separate some objects that participate in the available in-
formation system. Approximations are also among the vital concepts in RST. There are
two different approximations in RST. Lower Approximation is defined as the domain of
the sample objects which certainly belong to the interest subset. On the contrary, Upper
Approximation consists of the sample objects that might belong to the interest subset.
Boundary Region is formed with the sample objects that cannot be classified under any
of the approximation sets.
The types of approximations in RST are described below. Let a set Y ⊆ U,C be an

equivalence relation and a knowledge base N = (U,C). So, mathematically the approxi-
mations are denoted as below:

C∗(Y ) = {y ∈ U : C(y) ⊆ Y } (1)

C∗(Y ) = {y ∈ U : C(y) ∩ Y ̸= ∅} (2)

Here, two data sets C∗(Y ) and C∗(Y ) are identified as the C-lower-approximation and
the C-upper-approximation of Y respectively.
The boundary region is defined as

CNC(Y ) = C∗(Y )− C∗(Y ) (3)

If the borderline area of Y is empty which means if CNC(Y ) = ∅, then data set Y is
said to be exact in C. Else if CNC(Y ) ̸= ∅, then the data set Y is a rough set which
relates to C. This definition is clearly demonstrated in Figure 1.
The definition of RS can also be given using a rough membership function [4], defined

as

µC
y (y) = |Y ∩ C(y)|/|C(y)| (4)

Apparently,

µC
y (y) ∈ [0, 1] (5)

The membership function value µC
y (y) is a type of conditional probability, and it can

be represented as a degree of certainty to which y belongs to Y (or 1− µC
y (y) as a degree

of uncertainty).
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Figure 1. Rough sets

For defining approximations and the boundary region of a set the rough membership
function can also be used which is shown below:

C∗(Y ) =
{
y ∈ U : µC

y (y) = 1
}

(6)

C∗(Y ) =
{
y ∈ U : µC

y (y) > 0
}

(7)

CNC(Y ) =
{
y ∈ U : 0 < µC

y (y) < 1
}

(8)

Now we can give two definitions for rough sets shown as follows.

Definition 3.1. Set Y is rough with respect to C if,

C∗(Y ) ̸= C∗(Y ) (9)

Definition 3.2. Set Y is rough with respect to C if for some y,

0 < µC
y (y) < 1 (10)

In Table 1, {I}, {II}, {III}, {IV}, {V}, {VI}, {IX}, {X} and {VII, VIII}; these sets are
the C-elementary sets and each one of these 9 sets is a granule of equivalence class. Now,
in order to discover the concept from Table 1, first we need to classify decision attributes
and C-elementary set associated with the decision as the subset of the example set having
the same decision values. We call these subsets as concept. Three different concepts are
found in Table 1: Si = {I, II, III,VIII} where decision value is 5, Sii = {IV,V,VII} where
decision value is 6 and Siii = {VI, IX,X} where decision value is 7.

Now let us find the lower- and upper-approximation and boundary region for three of
these concepts.

C-lower-approximation,

C∗(Y ) = {I, II, III, IV,V,VI, IX,X}
C-upper-approximation,

C∗(Y ) = {I, II, III, IV,V,VI,VII,VIII, IX,X}
The boundary-region,

CNC(Y ) = C-upper-approximation− C-lower-approximation

= C∗(Y )− C∗(Y )

= {VII,VIII}
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Hence, the consistent part of Table 1 turns into Table 2. It is found by abolishing the
samples VII & VIII because they conflict each other.

Table 2. Consistent portion of Table 1

Objects e f g h D
I N O N 7 5
II N O P 5 5
III O O N 5 5
IV O K N 7 6
V N K N 6 6
VI O K O 7 7
VII P K O 7 7
VIII P L O 7 7

3.4. Reduction of attributes and rule generation. Attribute reduction is a vital
application information system and a core application of RST. The key concept is reducing
the redundant information from the system but at the same time to keep the relation of
indiscernibility.
Let us assume, L is a subset of K and k belongs to L. By definition:

1) If I(L) = I(L− {k}), then k is discernible in L; or else k is indiscernible in L.
2) If attributes are necessary, then L is independent.
3) If I(L′) = I(L) and L′ is independent, then L′, the subset of L is an L’s reduction.

Reduction includes several functionalities. Let us explain them. The first one is finding
the core of the attributes. Core is the attribute set where the attributes are common
to all the reducts. Hence it consists of the attributes that are indispensable from the
information system devoid of breaking the structure of the similarity class. We set L to
be a subset of K. Then the set of the necessary attributes in L is the core of L. The main
relationship between core and reduction is as follows:

Core(L) = ∩Reduct(L) (11)

where Reduct(L) is all of the reductions of L.
So, Reducts of Table 2 will be {e, g, h}, {e, f, g} and {f, g, h} and the core is attribute

g. Since attribute g is the most important attribute in the table it is irremovable. From
the table another indispensable attribute is obtainable by calculating the strength or
confidence (α). The confidence for a particular rule r → D is the ratio of number of
example(s) which has r U D to the number of example(s) which has r.
The confidence e, f and h attributes can be calculated for Table 2.
The confidence (α) of the rules for attribute e is obtained as:

• (e = N) → (D = 5), value of α = .66.
• (e = O) → (D = 5), value of α = .33.
• (e = O) → (D = 6), value of α = .33.
• (e = N) → (D = 6), value of α = .33.
• (e = O) → (D = 7), value of α = .33.
• (e = P ) → (D = 7), value of α = 1.00.

Similarly the confidence (α) of rules for attribute f and h are obtained as:

• (f = O) → (D = 5), value of α = 1.00.
• (f = K) → (D = 6), value of α = .50.
• (f = K) → (D = 7), value of α = .50.
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• (f = L) → (D = 7), value of α = 1.00.

and

• (h = 5) → (D = 5), value of α = 1.00.
• (h = 6) → (D = 6), value of α = 1.00.
• (h = 7) → (D = 5), value of α = .20.
• (h = 7) → (D = 6), value of α = .20.
• (h = 7) → (D = 7), value of α = .60.

Based on the confidence (α) it can easily be concluded that f is indispensible among
the other attributes because of having the highest confidence. So, the reduct set of the
set {e, f, g, h} becomes {f, g}. Hence, the reducted version of Table 2 becomes Table 3.

Table 3. Attribute reduction

Objects f g D
I O N 5
II O P 5
III O N 5
IV K N 6
V K N 6
VI K O 7
VII K O 7
VIII L O 7

From Table 3 we can combine the rows having exactly the same values in conditional
and decision attributes which we denote as Row Reduction. Row Reduction is shown in
Table 4.

Table 4. Row reduction

Objects f g D
I O P 5
II O N 5
III K N 6
IV K O 7
V L O 7

Next step is to find the core for the examples. From Table 4 core can be derived but the
condition is that the table still needs to be consistent. Now, if we try to remove g = N ,
two D values are found (5 & 6). That implies, we cannot take an exclusive decision
depending on g; hence the g cannot be eliminated. Similarly, there are two D values (6
& 7) if we want to eliminate f = K. This means, we cannot make an exclusive decision
based on attribute f . Hence, the value of f cannot be eliminated. Therefore, Table 4 can
be reconstructed as Table 5 which shows the core of the examples.

By combining the identical rows we can again rewrite Table 5 as Table 6.
Now, reduction is not possible anymore. From Table 6 we can obtain the decision rules.

On the basis of reduct and core we found the decision rules as the followings:

1) iff f → O then D → 5
2) iff f → K and g → N then D → 6
3) iff g → O then D → 7
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Table 5. Core finding

Objects f g D
I O * 5
II O * 5
III K N 6
IV * O 7
V * O 7

Table 6. Merging identical rows

Objects f g D
I O * 5
II K N 6
III * O 7

4. Experiments.

4.1. Lithology dataset preparation.

1) Data Collection:
In data collection, a total of 5,560 samples and 11 well log attributes from the

well named “DMP Harvey 3” are considered in the digital well log dataset retrieved
from WAPIMS, a Petroleum Exploration Database [47]. The core descriptions of
“DMP Harvey 3” are also retrieved and they showed that the corresponding well
is composed of ten major lithology classes, namely, Claystone, Mudstone, Siltston,
Sandstone, Sandy Mudstone, Sandy Siltstone, Silty Sandstone, Silty Mudstone, Muddy
Sandstone and Granulestone which are the items in the prediction class set [47]. From
the core description dataset, the lithology classes are assigned for each depth interval.
The corresponding values for the important well log attributes in each depth interval
are also achieved by using the well log dataset. By combining these two datasets the
main dataset for the experiment is created where each object has well log attribute
values and corresponding lithology class information. For the main well log dataset,
we have considered the following attributes as explanatory variables that contribute
directly or indirectly to lithology classification.
a) Gamma Ray Log (GR): This variable is used for measuring radioactivity of rocks

and is helpful for geological correlations, separation of depth correlations between
clayey zones and clean zones, etc. Shale-free sandstones and carbonates give low
gamma ray readings. The gamma ray log response increases with growing shale
content.

b) Porosity or Neutron Log (NPHI): This variable is used for measuring the reaction
of the rock to fast neutron bombardment, and its unit is dimensionless. The record-
ed factor is an index of hydrogen for a particular formation of lithology.

c) Density Log (RHOB): The density log usually labelled ‘RHOB’ measures the den-
sity of the borehole and the rocks penetrated by the drill bit. The unit for density
is gram per cubic centimetre.

d) Photo Electric Effect Log (PE): The photo electric effect log is useful for determin-
ing lithology directly, because it has definitive matrix values, and linear interpola-
tion between two end points works well. The unit is b/e (barns per electron).
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e) Density Porosity Log (DPHI): In the standard sequential interpretation process,
the analyst determines porosity directly from the density log. It is conceptually the
easiest of the porosity logs to interpret. The unit of DPHI is %, v/v decimal.

f) Resistivity Log (RT10) and Conductivity Log (CT10): There are new tools that
can cope with extremely highly resistive muds (oil-based muds or gas as the borehole
fluid), which rely upon electromagnetic coupling and an induced alternating current
(induction logs). The induction log actually measures resistivity and conductivity.
The coil separation value is 10 inches for the attribute RT10 and CT10 and the unit
is ohm and mm.ohm/m.

g) Compressional Sonic Log:
The sonic or acoustic log measures the travel time of an elastic wave through the
formation. This information can also be used to derive the velocity of elastic waves
through the formation. The tool measures the time it takes for a pulse of “sound”
(i.e., and elastic wave) to travel from a transmitter to a receiver, which are both
mounted on the tool. When the sound energy arrives at the receiver, having passed
through the rock, it does so at different times in the form of different types of
wave. The transmitter fires at t = 0 and after some time the first type of wave
arrives which is called compressional or longitudinal or pressure wave (P-wave).
It is usually the fastest wave, and has a small amplitude. In the experiment, the
attribute DTC represents compressional sonic log.

h) Shear Sonic Log:
The next wave, usually, to arrive after the P-wave is the transverse or shear wave
(S-wave). This is slower than the P-wave, but usually has a higher amplitude. The
shear wave cannot propagate in fluids, as fluids do not behave elastically under
shear deformation. In the experiment, the attribute DTRS represents shear sonic
log.

i) SQp: SQp is a special attribute that is developed from seismic-attenuation rock
physics using the concept of elastic inversion. SQp is used as lithology indicator
[41].

SQp =
5

6ρ

(M/G− 2)2

(M/G− 1)
(12)

where M and G are the compressional and shear modulus, respectively, which are
measured under different conditions (high and low frequency conditions) and ρ is
the density.

j) SQs: SQs is a fluid indicator that is also derived from seismic-attenuation rock
physics using the concept of elastic inversion [41].

SQs =
10

3ρ

M/G

(3M/G− 2)
(13)

2) Data Preparation:
The number of samples in the main dataset is 5560. We divided the main dataset

into two subsets, training as DTr (70% or 3892) and testing as DTst (30% or 1668
samples). The training dataset, DTr was used to extract rules by using the RST
methodology, and for validation or prediction, the testing dataset, DTst was used.
The procedure for training the system with RST rules and predicting lithologies will
be described in the next section and the overall workflow is shown in Figure 2.

4.2. RST implementation. To implement RST these following steps are required (as
shown in Figure 3).
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Figure 2. Workflow of RST-based lithology prediction module

Figure 3. Flow chart of RST decision rules generation

1) Binning or Discretization: Binning or discretization is the process of transforming con-
tinuous variables into categorical variables. In this step the continuous explanatory
attributes of the training dataset are discretized or binned into 24 bins or 25 equal
length intervals. However, the decision attribute lithology does not need to be dis-
cretized since it consists of the lithology class information only. In Table 7 the cut
points of all the attributes are shown. To discretize the values of an attribute A into
N equal length intervals the following steps are taken:
• Minimum(A) and Maximum(A) are calculated.
• For each interval, width, w is calculated from the following equation:

w = [Maximum(A)−Minimum(A)]/N (14)
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• The cut points or bins are found from the following equation:

nth Cut Point = Minimum(A) + w × n (15)

where n = bin number = 1, 2, 3, . . . , N .
• For N number of equal length intervals, there are N−1 cut points. For an example,
if there are 2 bins or cut points, there are 3 intervals. The first interval contains
the numbers between the minimum value and bin 1; the second interval contains
the numbers between bin 1 and bin 2 (excluding bin 1) and the third interval
contains the numbers between bin 2 and the maximum value (excluding bin 2).
The minimum and maximum values of each attribute are denoted as −Inf and
+Inf respectively.

For example, for the attribute GR in our experiment, the minimum and maximum
values are 37.84 and 528.82 respectively. Since we have considered 25 equal length
intervals, the width of each interval for GR is (528.82 − 37.84)/25 or 19.64. So, the
1st cut point is 37.84 + 19.64× 1 or 57.48 (as shown in Table 7). Similarly, the last or
24th cut point for GR is 37.84 + 19.64× 24 or 509.2.

Table 7. Cut points for each well log attribute

Cut GR NPHI RHOB PE DPHI RT10 CT10 DTC DTRS SQp SQs

1 57.48 0.150 1.401 0.596 0.064 80.10 381.1 64.77 122.6 0.138 0.430
2 77.12 0.195 1.453 1.019 0.095 160.1 761.7 68.72 125.5 0.154 0.446
3 96.76 0.240 1.505 1.442 0.125 240.1 1142 72.67 128.3 0.169 0.462
4 116.4 0.286 1.557 1.865 0.156 320.1 1523 76.62 131.1 0.185 0.478
5 136.0 0.331 1.609 2.288 0.186 400.1 1903 80.57 134.0 0.201 0.494
6 155.7 0.376 1.661 2.711 0.217 480.1 2284 84.53 136.8 0.216 0.510
7 175.3 0.421 1.714 3.134 0.247 560.1 2665 88.48 139.6 0.232 0.526
8 195.0 0.466 1.766 3.557 0.278 640.1 3045 92.43 142.5 0.248 0.542
9 214.6 0.511 1.818 3.979 0.308 720.1 3426 96.38 145.3 0.263 0.558
10 234.2 0.556 1.870 4.402 0.339 800.1 3806 100.3 148.1 0.279 0.574
11 253.9 0.601 1.922 4.825 0.369 880.1 4187 104.3 151.0 0.295 0.590
12 273.5 0.646 1.974 5.248 0.400 960.1 4568 108.2 153.8 0.311 0.606
13 293.2 0.691 2.026 5.671 0.430 1040 4948 112.2 156.6 0.326 0.623
14 312.8 0.736 2.079 6.094 0.461 1120 5329 116.1 159.5 0.342 0.639
15 332.4 0.781 2.131 6.517 0.491 1200 5709 120.1 162.3 0.358 0.655
16 352.1 0.826 2.183 6.939 0.522 1280 6090 124.0 165.1 0.373 0.671
17 371.7 0.871 2.235 7.362 0.552 1360 6471 128.0 168.0 0.389 0.687
18 391.3 0.916 2.287 7.785 0.583 1440 6851 131.9 170.8 0.405 0.703
19 411.0 0.961 2.339 8.208 0.613 1520 7232 135.9 173.6 0.420 0.719
20 430.6 1.006 2.391 8.631 0.644 1600 7612 139.9 176.5 0.436 0.735
21 450.3 1.051 2.443 9.054 0.674 1680 7993 143.8 179.3 0.452 0.751
22 469.9 1.096 2.496 9.477 0.705 1760 8374 147.8 182.1 0.468 0.767
23 489.5 1.141 2.548 9.899 0.735 1840 8754 151.7 185.0 0.483 0.783
24 509.2 1.187 2.600 10.32 0.766 1920 9135 155.7 187.8 0.499 0.799

2) Generation of Reduct : In this step cores and reducts are generated by using DTr. At
the end of this step we found a minimal subset consists of the features and as shown
in the methodology part, and this subset still provides the same quality of information
that was present in the main dataset.
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3) Generation of Rules: In this step significant rules are generated from the dataset DTr.
According to the described methodology in Section 4. the support and confidence of
the rules are also counted.

4) Validation of the Generated Rules: In this step validation of the reduced rules is
performed, which turns the rules into final decision rules by incorporating the threshold
accuracy or confidence which is also denoted as laplace. Confidence or laplace is an
indication of how often the rule has been found to be true. (Laplace > .15 or 15% for
our experiment). If this threshold is raised, the number of rules to solve the problem
decreases resulting in the overall prediction accuracy to be less.

5. Experimental Results.

5.1. Explanations of RST rules. According to the described methodology, we have
found significant rules from dataset DTr. These rules are applied to DTst to perform
the task of prediction. We have found a total of 866 rules that differentiates 10 different
litthology classes. In Table 8 the number of rules for describing each lithology class is
shown. Some sample rules found from the experiment are given in Table 9.

Table 8. Lithology classes and their corresponding information

Lithology Class No. No. Rules No. Samples in DTr
Claystone 1 11 27
Mudstone 2 119 286
Siltston 3 10 16

Sandstone 4 421 2682
Sandy Mudstone 5 96 239
Sandy Siltstone 6 51 145
Silty Sandstone 7 97 289
Silty Mudstone 8 3 5

Muddy Sandstone 9 9 32
Granulestone 10 49 172

Total 866 3893

In Table 9 we can see that, the model can show the contributions of the antecedent
attributes in the rules in leading towards the decisions to classify the objects into different
lithology classes.

5.2. Calculating lithology prediction accuracy. In this step, the 866 decision rules
that we have found from the experiment by using the training dataset DTr are applied to
the sample testing dataset DTst and the prediction accuracy or hit rate is calculated for
each rule. Prediction accuracy (PA) of the module is calculated from DTst by employing
the decision rules and following the equation below:

PA =
No. of correctly classified instances

No. of instances in the test dataset
× 100% (16)

By applying the decision rules to DTr according to Equation (16), training score is
calculated. Similarly, by applying the decision rules to the training dataset DTst, training
score is calculated. In our experiment RST scores 0.8273 and 0.8261 for training and
cross-validation which is shown in Table 10 as well.

6. Comparison Study. For comparison we have used three other techniques to obtain
prediction accuracy of the lithology prediction problem: support vector machine (SVM),
artificial neural network (ANN) and linear discriminant analysis (LDA).
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6.1. Comparison methods.

6.1.1. Support vector machine (SVM). SVM is a machine learning tool [48, 49, 50] pro-
posed by Vladmir Vapnik in 1996 that has been used for 20 years to solve several problems,
including lithology prediction [40, 51, 52]. To examine how SVM performs, the same
datasets that we used for RST have been used. For training and testing the datasets,
the same training and testing ratio (70 : 30) has been selected. For SVM the following
settings have been selected.

1) Kernel = Radial basis function kernel.
2) C value = 1.
3) Cache Size = 200.

In Table 10 the training and cross validation scores for lithology prediction are shown
and Figure 4 illustrates the results.

Figure 4. SVM scores for lithology prediction

6.1.2. Artificial neural network (ANN). Several popular geophysical researchers suggest
using ANN [53]. ANN can solve problems efficiently and discover very complex rela-
tionships between several variables. Over the years ANN has been used for solving data
pattern recognition and classification problems [54, 55]. ANN methods have a remarkable
ability to establish a complex mapping between nonlinearly coupled input and output da-
ta; hence they can perform well in prediction [56]. For analyzing how an ANN performs,
the same training and testing datasets that we used for RST have been used and we have
applied two different methods: mulitilayer perception (MLP) and radial basis function
(RBF).
For the ANN with MLP, the following settings are selected:

1) Input layer
Number of layers = 2.
Activation Function = Hyberbolic tangent.

2) Output layer
Activation Function = Sigmoid.

The prediction accuracy of the ANN is described in Section 6.2.
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6.1.3. Linear discreminant analysis (LDA). In the machine learning domain linear dis-
criminant analysis (LDA) [57] is a very widely used technique for dimensionality reduction
and pattern classification applications. It is used for modeling differences in groups, i.e.,
separating two or more classes. It is used to project the features in higher dimension
space into a lower dimension space. For lithology classification several researchers used
this technique [35, 58]. It is usually used as a black box and hence the model is not
well understandable. In Table 10 the training and cross validation scores using LDA are
shown.

6.2. Comparison results. Table 10 compares lithology prediction accuracy among RST,
SVM, ANN and LDA and Figure 5 illustrates the results.

Table 10. Prediction accuracies for different methods

Accuracy RST SVM ANN (MLP) ANN (RBF) LDA
Training accuracy 0.8273 0.7975 0.7690 0.7038 0.6945
Validation accuracy 0.8261 0.7793 0.7680 0.7073 0.6738

Figure 5. Pictorial representation of Table 10

From Figure 5 it is clear that ANN performs better than LDA, SVM performs better
than ANN and LDA, and RST performs better than the others.

7. Discussion and Conclusion. In this paper we proposed a unique and efficient RST
based granular computing method using well log attributes including the lithology indica-
tor, SQp and the fluid indicator, SQs, to classify ten lithology classes. We also provided



242 T. M. HOSSAIN, J. WATADA, I. A. AZIZ ET AL.

the comparison study on the same dataset by employing some other renowned methods
that have been widely used in this field it is vivid that granular computing based on
the rule induction algorithm of RST offers a unique white-box ML approach for making
prediction on lithology classes from the well log dataset including SQp and SQs by gen-
erating explainable decision rules. Lithology prediction has been a challenging problem
in recent decades and our approach to lithology prediction has many noticeable positive
outcomes. RST provides efficient algorithms for finding hidden patterns in the well log
dataset and identifies their relationships in lithology. The prediction accuracy by RST is
more than the other methods in comparison. Moreover, using RST-based rule induction,
the decision-making process is performed in terms of easily interpretable and understand-
able rules and the rules themselves can explain the contributions of the antecedent well
log attributes in defining the lithology classes for each object and this explainability and
transparency of the algorithm makes it a white-box prediction module whereas almost all
of the available lithology prediction modules are blackbox or hardly interpretable.
The reliability of RST-based prediction module strongly depends on the input training

dataset. To guarantee a prediction module with better accuracy, an adequate training
dataset is required. Choosing the appropriate explanatory attributes among a large num-
ber of well-log attributes is also challenging for the prediction modules. However, a larger
dataset with more samples and datasets from different wells could also ensure a better
prediction outcome. However, despite RST being independent in its numerous achieve-
ments to its tribute, in the future, for better accuracy, we will be working on combined
modules of RST with other methods.
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[50] S. Maldonado and J. López, Dealing with high-dimensional class-imbalanced datasets: Embedded
feature selection for SVM classification, Applied Soft Computing, vol.6, pp.94-105, 2018.

[51] Wikipedia, Support Vector Machine, https://en.wikipedia.org/wiki/Support vector machine, Ac-
cessed on 11 April, 2019.

[52] A. Gasmi, C. Gomez, H. Zouari, A. Masse and D. Ducrot, PCA and SVM as geo-computational
methods for geological mapping in the southern of Tunisia, using ASTER remote sensing data set,
Arab. J. Geosci., vol.9, p.753, 2016.

[53] Y. Imamverdiyev and L. Sukhostat, Lithological facies classification using deep convolutional neural
network, Journal of Petroleum Science and Engineering, vol.174, pp.216-228, 2019.

[54] S. Chikhi and M. Batouche, Using probabilistic unsupervised neural method for lithofacies identifi-
cation, Int. Arab J. Inf. Technol., vol.2, no.1, pp.58-66, 2005.

[55] S. Sahoo and M. K. Jha, Pattern recognition in lithology classification: Modeling using neural
networks, self-organizing maps and genetic algorithms, Hydrogeol. J., vol.25, pp.311-330, 2016.

[56] J. R. Quinlan, Introduction of decision tree, Machine Learning, vol.1, pp.86-106, 1986.
[57] A. Tharwat and A. Ibrahim, Linear discriminant analysis: A detailed tutorial, AI Communications,

vol.30, no.2, pp.169-190, 2017.
[58] S. Dong, Z. Wang and L. Zeng, Lithology identification using kernel Fisher discriminant analysis

with well logs, J. Pet. Sci. Eng., vol.143, pp.95-102, 2016.


