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ABSTRACT. Statistical downscaling (SD) is modeling technique using global scale data in
the grid form to predict local scale data such as rainfall. To this present, SD with Bayes
frameworks applied to spatio-temporal cases still uses the Markov chain Monte Carlo
(MCMC) algorithm which demands expensive computational capabilities. Therefore, we
present spatio-temporal Bayes regression in SD model with efficient inference method,
namely INLA (integrated nested Laplace approzimation), to predict local extreme rainfall
at unobserved locations. The modeling algorithm uses a combination of three distribu-
tions, i.e., gamma, Bernoulli, and generalized Pareto respectively for modeling average,
identification of extreme, and prediction of extreme. For high accuracy of extreme predic-
tion, we innovatively propose improvisations in determining important parameters, i.e.,
spatial smoothing, extreme value threshold, and tail index parameters. Big data analysis
consists of the spatio-temporal monthly local rainfall from 57 locations, and the month-
ly precipitation general circulation model (GCM) explanatory variables with 5 x 8 grid
dimensions observed from 1981-2017. The model successfully predicts the unobserved lo-
cations with strong correlations between predictive and validation values about 0.81-0.84
for low to moderate extreme rainfall, and 0.70-0.72 for high extreme rainfall. Based on
the RMSEP value, the proposed model is the best method for estimating rainfall to high
extreme levels compared to other spatio-temporal Bayes models with INLA inference.
Keywords: Extreme rainfall prediction, Big data analysis, Principal component analy-
sis, INLA (integrated nested Laplace approximation), GCM (global circulation model)

1. Introduction. Statistical downscaling (SD) is one of the downscaling techniques of-
ten used in climate modeling by utilizing global scale data to obtain conclusions at a local
scale. Global scale data usually used as explanatory is GCM (global circulation model)
output that represents a variety of systems found on earth, including the atmosphere,
oceans, land surface and sea ice which are very useful for research on climate change and
variability [1]. Big data analysis such as climate modeling is a representation of complex
phenomena, which involve spatial, temporal (or its interaction), regional topography and
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other influences. The Bayes method is one solution in representing these complex phenom-
ena, because the complexity of the model can be represented by designing a hierarchical
structure for data and its parameters. SD modeling with Bayes frameworks applied to
spatio-temporal data has a very large amount of observation, because the model collects
data from various spatial locations and relatively long observation time intervals.

Extreme undesirable events such as hydrometeorological disasters, can have an enor-
mous impact on material and life losses. Various prevention activities are strived to
reduce the impact of losses incurred, and one of these is the prediction of extreme events.
Estimation of extreme originated from the first theory of extreme value, that is block
maxima which focuses on asymptotic behavior from maximum samples, which converges
to the generalized extreme value (GEV) distribution. The block maxima method is very
popularly used in the field of environmental science, for example, the distribution of GEV
is used for annual maximum temperature data or maximum annual river discharge, see
[2-5] for the current studies. The second theory of extreme values is peaks over threshold
(POT), focusing on samples that are above the threshold (u), so that data X that exceeds
w is quite high, Y = X —u > 0 converges to the generalized pareto (GP) distribution, see
[6-9] for recent applications.

Ordinarily in the current research, the posterior distribution estimations of spatio-
temporal Bayes inference in SD model still use MCMC. [2] uses MCMC to analyze annual
minimum temperatures for the past 6 decades in China, while [3] uses a dynamic linear
model on monthly maximum wind speed data. For complex spatio-temporal Bayes in
SD model whose processes and parameters are designed with a hierarchical structure,
the computational time needed by MCMC is very long. This inefficiency not only has
effects on the time and computational resources but also on the problem of convergence
of the posterior distribution produced. INLA (integrated nested Laplace approximation)
is a solution to the limitations of MCMC, which has recently been used and is still being
highly used and developed. INLA is designed to improve the efficiency and accuracy of
posterior distribution estimation by utilizing Laplace’s approximation [10-12]. The use of
INLA inference in very complex models, such as Bayes spatio-temporal data with global
scale GCM in SD modeling, ensures that the resulting estimators are convergent, accurate
and efficient. Current study [6] uses the hierarchical Bayes method with INLA to model
daily precipitation data in Norway. However, [6] has not used global scale data, so this
research is not included in the SD modeling category. Therefore, INLA inference for
spatio-temporal Bayes in SD modeling has not been applied to the current research.

The main objectives of this research are to obtain temporal patterns and predict quan-
tile of monthly rainfall for observed and unobserved (no data have been recorded) loca-
tions, using spatio-temporal Bayes model as used in our latest work on [13]. However, in
this research, we enhance the prediction to SD modeling which is unique to this paper
based on the results of latest international publications. Some improvisations are also car-
ried out innovatively to get more accurate predictions, for example, 1) spatial smoothing
parameters are extremely important in borrowing characteristics across spatial locations
and efficiently estimating spatial pattern. Therefore, we revise the estimated value of spa-
tial smoothing parameters using classical method local regression; 2) threshold u has an
important role in assessing extreme data. An appropriate threshold v must be determined
carefully to assess bias variance trade-off; therefore, we revise u using measure of surprise
(MoS) method as in [14,15]; 3) tail index parameter ¢ is very influential in modeling the
extreme distribution. For this reason, the value & should no longer be of constant value
but by establishing a prior distribution. In this study, the parameter £ uses the penalized
complexity (PC) prior which was introduced by [16].
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In the remaining part of this paper, we present the dataset description and its prepro-
cessing in Section 2. The purposed spatio-temporal Bayes in SD model, the improvisations
of spatial, extreme value threshold and tail index parameters, INLA inference and model-
ing algorithm are explained in Section 3. Results, discussions and comparisons with our
works on [13,17] are reported in Section 4. Some concluding remarks and possible future
developments are summarized in Section 5.

2. Dataset Description. The local response dataset consists of monthly rainfall record-
ed in milliliters at 57 stations in West Java, Indonesia, during the period 1981-2017. There
are so many stations with missing data cases, and there are even stations that do not have
observations (unobserved) at all, as happened at new stations. Estimation of rainfall for
unobserved locations is a challenging statistical problem, this is because the more missing
data, the greater the predictive bias value. Based on this background and as one of the
important contributions in this study, the proposed model includes a spatial effect, so
that unobserved locations can be estimated by borrowing spatial characters from other
observed locations that are close to each other. The data were divided into training set
(January 1981 — December 2005) which was made available to spatio-temporal Bayes SD
model, and a validation set (January 2006 — December 2017) which was used to evaluate
quantile predictions. To see the ability of the proposed model in estimating unobserved
locations, in training period, a varied dataset is composed of 12 unobserved (stations 4,
6, 11, 22, 26, 30, 32, 33, 40, 42, 47 and 50) and 45 observed (the rest) stations. The
exact coordinates of stations are shown in Figure 1. West Java is a province with very
diverse rainfall, this is because the morphology of the region tends to form slopes, with
the northern part bordering the Java Sea and the south with the Indian Ocean. In the
rainy season, the local government establishes this area as an area prone to flooding and
landslides [18].

The GCM data used is precipitation, which was issued by the National Centers for
Environmental Prediction (NCEP) in the form of Climate Forecast System Reanalysis
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FIGURE 1. (color online) Map of monitoring locations, colored according
to posterior distribution of spatial random component in Equation (8)
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(CFSR). CFSR is a model that describes a global interaction between land, sea, and air
on earth that is measured every 6 hours or 4 times a day. In this study the variables used
were the average precipitation rate taken from the website https://rda.ucar.edu/. The
average precipitation rate from the GCM data has a grid type and covers all of the West
Java land, with grid size as 2.5° x 2.5° and 5 x 8 dimensions (40 variables) as can be seen
in Figure 2.
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FIGURE 2. 5 x 8 grid GCM (blue dots), West Java (red rectangle), Indonesia

GCM provides the best tools for making climate change projections, but they are
only designed to describe the large-scale features and do not provide sufficient details
for many applications. However, the local climate is linked to the large scales, and it is
possible to make some inferences about local climate change through downscaling [19].
Principal component analysis (PCA) is a statistical analysis that is still very often used
in the handling of multicollinearity and the reduction dimensions of the GCM variable
on statistical downscaling model. PCA reduces the dimensions of the data which have
many variables that are correlated while maintaining variation of the initial data, so that
the diversity of global variables can still be represented but also has a smaller dimension
allowing for local scale predictions.

The PCA is used as a pre-processing technique to obtain latent variables that are or-
thogonal and are linear combinations of the covariates. The number of latent variables
used for further analysis is generally determined by at least two of the following three
things: scree-plot graphical representation, cumulative variance proportion, and the mag-
nitude of the variance indicated by the Eigen value. According to [20] the graphical
representation often leads to the first two or three principal components (PCs), cumu-
lative variance proportion can be subjective with at least 70% is common and non-zero
Eigen values. Therefore, this research uses 3 PCs, the cumulative variance proportion
is taken > 90% and the Eigen value > 1. Cumulative variance proportion and Eigen
value presented in Table 1 suggest to take as many as 3 principal components (PC) as
orthogonal latent variables. The cumulative proportion for the first three PC of the GCM
output has given a value of > 90%. Variance values characterized by the Eigen values
of the three main components have been obtained > 1. Therefore, further analysis uses
three latent variables (PC1, PC2 and PC3 scores) for global explanatory variables in the
purposed model.
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TABLE 1. Eigen value and cumulative proportion

PC | Eigen value | Cumulative proportion
1 32.03 80.08
2 2.78 87.02
3 1.17 90.00
4 0.48 91.13
5 0.46 92.27

3. Spatio-Temporal Bayes in SD Model. We decompose rainfall modeling algorithm
into space-time model combining three distributions which consist of three stages.
Stage 1: Let Y,' state the intensity of rainfall that is positive, i.e., Yo" = Y (s,1)|Y (s, )
> () assumed to have a gamma distribution
Kk ky
"~ Gamma {y; u(s, 1), k} := ————y*" exp{ } , y>0, (1)
0 1i(s,t)T (k) p(s, t)
with p(s,t) as mean parameter for location s at time ¢ and k as shape parameter.
Stage 2: Threshold u(s,t) is derived from MoS method, and then we defined ex-
ceedance indicator as Bernouli’s random variable which states that daily rainfall exceeds
the threshold, i.e., Z,(s,t) = I{Y (s,t) > u(s,t)},

Zu(s,t) ~ Ber{z; p,(s,t)} := pu(s,t)*{1 —pu(s,t)}l_z, z€{0,1}, (2)

where p,(s,t) states the probability rainfall in location s at time ¢ above the threshold w.

Stage 3: With u(s,t) derived from stage 2, positive exceedance Yy = Y (s, t) —
u(s,t)|Y (s,t) > u(s,t) assumed to have reparameterized GP distribution. We know that
GP(y; &, o) is GP distribution with tail index (§) — scale (o) parameters, so for y > 0 the
GP distribution is stated as follows:

1/
1—<1+§—y) L E#0

o

Fleoy) = : (3)
1 —exp (—_y) , E=0

Using scale repameterization, i.e., o = , the reparameterized GP(y; ¢, K,;) distri-

log(l q
bution can be written as

e
1-(1+(1-¢g =1 i) , 0
Fleson () = (14 (001 % 7

q

1_(1_q)y/Kq’ §=0

: (4)

which is a function of g-quantile, x,(s,t) and tail index (or shape) & > 0. Therefore,
generally, a-quantile, §,(s,t) is

u(s,t) + Kky(s,t) [{pl_si ]/{1—(] -1}, £€#0
ol L)

u(s, £) + kg (s, 1) log {pi(sj) }/log(l _q), £=0

To represent location and time diversity in spatio-temporal parameters in each step,
a regression equation is formulated additively, which is the sum of spatial and temporal

@a(s, t) =
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random components which are assumed to be separable. Therefore, the purposed spatio-
temporal Bayes regressions in SD model are as follows:

log{p(s,t)} = BF*™ + BiPCy + BoPCs + f5PCs, (6

logit{pu(s,t)} = BF + zP(s) + a:BeT(t) (7

log{rq(s, 1)} = 10g{ﬂ(3a 1)} + 657 + 29 (s) + 2T (1), (8
where g§9™ gPer and S5 are the intercept regressions for each step, x5 (s) and 2F (s
are spatial random components in steps 2 and 3, 27" (¢) and 7 () are temporal random

components in steps 2 and 3, while 3y, (2, and (3 are the constant effects of principal
components derived from dimension reduction of GCM data preprocessing.

)
)
)
)

3.1. Improvisations of spatial, extreme threshold and tail index parameters.
In point data, spatial influence 2%¢"(s) and 297 (s) are defined by the Matérn correlation
function in [10],

Cov{z(s1),x(s2)} = Ts_lil(;; <\/?h>va (\/?Z)h) ’

with h = ||s; — ss|| as Euclidean distance, K, with v = 1 as modified Bessel function
and v as spatial range (smoothing) parameter which has an important role in borrowing
strength of spatial effects across nearby locations to predict the unobserved stations. [10]
states that the distance which represents spatial smoothing parameter can be determined
so that the rainfall correlation between spatial locations is close to 0.1. We perform the
range of ¥ using local regression method according to [10], and we derive 1) is about 106
km.

Threshold, u, is a very important parameter in extreme data modeling using GP distri-
bution. Determination of u values is a scheme to balance bias and variance of estimators.
Too low u may cause bias in the estimators, while too high v implies a large estimation
variance due to the small numbers of data that exceed the threshold [11,12,14]; there-
fore, u selection must be performed carefully. In our application, we select u by MoS [9].
MosS is useful for calculating the degree of discrepancy between the data with the given
distribution. The degree of incompatibility measured by the expected surprise value is
close to 0.5, whereas a value close to 0 or 1 indicates u selection mismatch. The u for GP
distribution is chosen when the surprise value converges to 0.5. For example, in Figure 3
the estimated u for station 20 is 171 millimeters, because 171 is the minimum point when
the surprise value convergence around 0.5.

The distribution for the tail index £ is an important part of modeling extreme values
based on GP distribution. One distribution used to model the tail index is penalized
complexity (PC) prior which was introduced by [16]. The PC prior gives a “penalty”
for the reference model of the base model; in other words, the PC prior is designed to
produce a simpler model, by giving penalties to more complex models. Penalties are
given to reference models based on the concept of “distance” d(fe, fe,), with fe and fe,
respectively being the reference and the base model.

The concept of distance used in [16] is based on Kullback-Leibler divergence (KLD),
ie.,

(9)

d(fe, feo) = \/QKLD (fellfeo ),
with
fey)
ffo(y> v

KLD (fllfe)) = [ felw)log
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For GP distribution as in (3), the reference model distribution for ¢ is

fe(y) = 0(1+§_y) , ¥y>0,0>0,£6>0

o

and the distribution of the most natural base model in selecting prior distribution & is the
exponential distribution, which is GP distribution for £ = 0:

1 _
feo(y) = li_{nfg(y) = —oxp (%) ., y>0,0>0,&=0.

Therefore, KLD in Equation (10) can be obtained with

1

0 1_q €
1 ¢ L+3) ¢
KLD (fell feo) = f;(u—) og [ LEe)
0

e L

By using t = %log (1 + %y), we obtain dy = o (1 + i_—y) dt; thus, the above equation can
be written as

_14
KLD (fllfe) = [ (14 %2) [1g{<1+%y) }_g]dy
1 4 o0 1y
) ) o8
o o & o o o
0

SHES
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(1 r gy ¢ Ll o
KLD (fellfeo) = (—5_1)J(1+?) tedt =~ (1—5)
& 0
- 0sf<lL (11)

Thus, the penalty given for reference model is d (fe, fe,) = vV2KLD = v/2£(1 — 5)71/2.
Based on model in Equation (11), for £ — 1 then KLD (f¢||fe,) — 0, therefore, in forming
a penalty for fe can be obtained by determining the value of the basic model parameters
that meet the exact solution in Equation (11) and the approximation of Equation (11)
for the value & — 0.

The PC prior distribution for £ using the exact solution in Equation (11) is

m(&) = Nexp (=Ad (fe, fe,)) ‘%ﬁffa)

_S\GXp(S\ ¢ ){(1_5/2 }, 0<¢<1, (12)

1-¢) | 1-9*?

with A = v/2\. The PC prior distribution for the approximation of Equation (11) for the
value & — 0 is d (fe, fe,) = lime_,o vV2KLD = limg_, 4 /215—_25 = 1/2€,0 < € < o0. Thus the

approximation of PC prior distribution for £ is

ad (f€7 ffo)
0¢

with A = v/2\. Based on Equations (12) and (13), the PC prior distribution for £ is an
exponential distribution with rate A =/2\

Furthermore, the determination of value A = 5\/ V2 can be determined subjectively by
the researcher. In this study the value of X is chosen so that the curve of Equations (12)
and (13) have the same shape. For various scenarios of A values (the plot curve not shown

here), the greater the value of A, plot the two curves show the same result, so the value
of A = 10.5 is chosen.

7(6) = A (-Ad (e fe)) '

= \exp (5\§>, 0<€ <o, (13)

3.2. Bayesian inference with INLA and rainfall modeling algorithm. Let y(s;, ;)
= (y1,Y2,---»Ym) =y, @ = 1,2,....m be the observation data with the latent Gauss
explanatory variable declared as n = (11,72, ... ,nm)T, n; in Equations (6)-(8), 8, is a
vector for hyperparameters for y, and vector for hyperparameters for spatial and temporal
random component is 8,. The distribution of prior hyperparameters is defined as 7(0)
with 6 = (8,,0,), with Gaussian probability x being written as m(x|0,). Let 7 (y;|n;,0,)
be a likelihood from y; with condition of the explanatory variables n; and likelihood from
hyperparameters 0,. In our case vector x consists of intercept 5§, pBer, p§F, j3; for
i =1,2,3, 28 (s), 29P(s), 2P (t) and T (t). Hyperparameter vector 0, consists of
Matérn precision 7, and precision for RW of order 27;. In this paper we assume (5™,

Fer, B§T, By, for i = 1,2,3 ~ Normal (0, 10°), and shape parameter k ~ Gamma(2, 2).

INLA is an analytical Bayes-based inference, which can be applied to the generalized
additive model that is complex and hierarchical and produces an approximation to the
two posterior distributions of the following single variables:

(Bkly) — J 7 (x,6]y) dzdd_. (14)
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m(zily) = JJW (x,0]y) dx_;d6 = fﬂ (x;0,y) m(0]y)de. (15)

The Laplace approximation is applied nestedly, to determining the posterior distribu-
tion of the hyperparameter 7(0|y) at (14), and the posterior distribution of parameters
m(z;|y) at (15). For more details on INLA estimation procedure and its statistical prop-
erties can be seen in [10,14,15]. Algorithm 1 presents the pseudocodes of our algorithm
in modeling extreme rainfall using spatio-temporal Bayes regression in SD model. The
a-quantiles, are used to compare the quantile values §,(s,t) of low intensity of rainfall
(v = 0.65), moderate rainfall (&« = 0.80) and high extreme rainfall (o« = 0.95,0.975)
predictions.

Algorithm 1. Rainfall modeling
Input: The training data Yi..m, the test data Yiet, assumption of parameters and
hyperparameters
Output: The RMSEP (root mean square error prediction) and correlation between
goz(& t) and ya<57 t)
1: for Y., do
Compute 5™, B; for i = 1,2,3 in Equation (6)
Compute threshold u for each location, using MoS method
Compute 3P, 28 (s) and 2P () in Equation (7)
Compute 857, x¢F(s) and z¢F () in Equation (8)
end for
Plot spatial and temporal random effect 2" (s), 5" (t) in Equation (7)
Plot spatial and temporal random effect 297 (), 257 (t) in Equation (8)
9: for a = 0.65,0.80,0.95,0.975 do
10:  Compute g,(s,t) in Equation (5)

11: end for

12: for Y. do

13: for each location s and time ¢t do
14: for o = 0.65,0.80,0.95,0.975 do
15: Compute y,(s,t)

16: end for

17: end for

18: end for

19: Compute RMSEP and correlation between 7,(s,t) and y,(s,t)
20: return: RMSEP and correlation

4. Results and Discussions. The results of estimating the intercept value 5™ and
the coefficient of explanatory variable (the first three PC’s score) §; for i = 1,2,3 in
Equation (6) are presented in Table 2. Intercepts and all explanatory variables have a
significant influence on the estimation of average monthly rainfall at each location. This
can be seen from the value of the credibility interval which does not contain 0. From
this result, we have succeeded in determining the exact number of PC. This is because if
the PCs are chosen correctly, then these variables will have a significant effect. And the
existence of a significant effect indicates that the global fixed component, represented by
the three PCs selected, plays an important role in estimating average rainfall.

The spatial random components 25 (s), 27 (s) for Bernoulli and GP distribution
based on Equations (7) and (8) are presented in Figure 4. Black circles are the posterior
mean for estimated spatial random components, while blue lines represent 95% credibility
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TABLE 2. Estimator of fixed effects in Equation (6)

Fixed effect | Mean | Standard deviation | Credibility interval
(ram 5.60 0.02 (5.56,5.65)
51 0.05 0.01 (0.04,0.06)
Ba 0.02 0.01 (0.01,0.03)
B3 —0.10 0.01 (—0.12,—-0.08)
Bernoulli GP
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intervals. From Figure 4 spatio-temporal Bayes regression in SD model can infer spatial
characteristics especially for unobserved location. In general, the spatial random compo-
nent for observed location has a significant value and its credibility intervals are shorter
than those in unobserved locations. Location 32 is an unobserved station that has the
greatest interval credibility for both Bernoulli and GP distribution. This is because the
location is located in eastern part of West Java and is not near or surrounded by any
observed station. Longer credibility intervals also occur in other unobservable locations,
except for location 13 which have shorter credibility intervals. This is because the location
is adjacent to the observed location 14.

The closeness extreme rainfall characteristics among locations can be represented by
the mean posterior spatial random component, 2% (s) derived from the GP distribution
and is presented in Figure 1. It can be seen that locations which are located close to each
other have almost the same extreme rainfall characteristics. The lower extreme rainfall
(below average 0) more scattered in the north and eastern part of West Java, while higher
extreme rainfall (above average 0) is spread in west and southern part of West Java region.

The temporal random components z5¢ (), x9F(t) for the Bernoulli and GP distribu-
tions based on Equations (7) and (8) are presented in Figure 5. The single inner and
two outer curve represents the posterior mean and 95% credibility interval respectively.
The temporal random component with an annually cyclic behavior has a significant effect
and produces an almost similar pattern in Bernoulli and GP distribution. During the
rainy season, Bernoulli distribution identifies the extreme positive rainfall that began to
occur in November and continues to increase until January. The highest identification of
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extreme rainfall occurred in January and decreased from April to May. The dry season
is indicated by the value of a negative temporal random component which indicates a
decrease in identification of extreme rainfall, which occurs in May to September. On the
GP distribution the intensity of extreme positive rainfall starts in October and continues
to increase until January. January has the highest extreme rainfall, then decrease occurs
until March, and enters the dry season from April to September. The estimated value of
the tail index parameter on the GP distribution has a positive posterior mean £ = 0.002
with credibility intervals (0.0001,0.0006). This indicates that although £ value is quite
small, it has a significant effect on estimating extreme rainfall, and a positive £ indicates
that the rainfall characteristics in 57 locations in the West Java region have the right tail
distribution.

Model evaluations using RMSEP values and correlations for quantiles 0.65, 0.80, 0.95
and 0.975 were obtained using validation data and are presented in Table 3. It can be
seen that the higher the quantile, the smaller the correlation and the greater the RMSEP.
The best RMSEP and correlation are in the estimation of low extreme rainfall, that is at
0.65 quantile, with the smallest RMSEP about 116 mm and strong correlation of 0.84.
Estimation of high extreme rainfall at 0.95 and 0.975 quantiles results in large RMSEP
values, this is likely due to the very small amount of extreme data at quantiles 0.95 or
more.

TABLE 3. RMSEP statistical value and correlation

Quantile | RMSEP | Correlation
0.65 116.55 0.84
0.80 132.51 0.81
0.95 217.32 0.72
0.975 281.30 0.70

To evaluate the performance of our purposed spatio-temporal Bayes regressions in SD
model, we compare RMSEP and correlation criteria with our latest work on spatio-
temporal Bayes regression in [13] and [17]. The details of the differences of the three
spatio-temporal Bayes models are summarized in Table 4. Model in [13] becomes the
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TABLE 4. Differences in spatio-temporal Bayes models

. ) . Assumption | Include SD
Model Spatio-temporal Bayes specification
of Y modeling?
Model log {uu(s,t)} = B§™ + xGam(s) + xGam(¢) gamma,
ode
. logit {pu(s,t)} = BP + xBer(s) + zBer(t) Bernoulli, No
in [13] _ GP __ GP GP
log {kq(s,t)} =log {pu(s,t)} + B5" +a%"(s) + 2“7 (t) GP
Model | log {u(s,t)} = BN + aNor(s) + alNor(t)
) Normal Yes
in [17] + B1PCy + B2PCa + B3PC3
log {u(s,t)} = B§¥™ + B1PCy + B2PCy + B3PCs gamma,
Purposed . B B B .
del logit {pu(s,t)} = By + x7"(s) + 7" (¢) Bernoulli, Yes
mode
log {kq(s,t)} = log {u(s,t)} + BST + 2GP(s) + 297 (1) GP

basis from our purposed model in this paper by developing average rainfall modeling in
gamma distribution to SD model. Whereas [17] has included SD model but the rainfall
is still using the assumption of normal distribution.

The comparison of RMSEP statistical values of spatio-temporal Bayes models in es-
timating extreme rainfall can be summarized in Figure 6 (top). The purposed model
is generally the best method for estimating low (quantile 0.65) to high (quantile 0.95)
extreme rainfall at 57 locations in West Java. The development of SD model on gam-
ma distribution resulted in an RMSEP value that was much smaller than model in [13].
This shows that the score of three PC’s selected from GCM output data has a signifi-
cant influence in producing more accurate estimation in predicting low extreme rainfall.
However, we found very different results on SD modeling based on normal distribution in
model [17]. RMSEP generated for estimating moderate (quantile 0.80) to high extreme
rainfall (quantile 0.95 and 0.975) is much higher than the other two models. In other
words, spatio-temporal Bayes SD model with normal distribution is only able to predict
low extreme rainfall. In general, the results in Figure 6 also show that our purpose model
and the addition of GCM always give a smaller RMSEP compared to other approaches
up to quantile 0.80.

Figure 6 (bottom) summarizes the comparison of correlations from spatio-temporal
Bayes models in estimating extreme rainfall. It can be seen that spatio-temporal Bayes
without involving SD modeling produces the lowest correlation value. While the proposed
model produces the highest correlation up to the estimation of moderate extreme rainfall.
While spatio-temporal Bayes model with normal distribution has the highest correlation in
the estimation of high extreme rainfall. Therefore, based on the smallest RMSEP and the
largest correlation criteria, generally, SD modeling can provide better estimation results
compared to model without involving the influence of global scale data as explanatory
variables.

5. Conclusions. This paper uses three combinations of distribution, i.e., gamma, Bern-
oulli and GP which were developed into SD modeling to obtain a temporal cycle and
predict extreme rainfall at observed and unobserved locations. The purposed spatio-
temporal Bayes in SD model is able to capture clearly and significantly annual rainfall
patterns both in rainy and dry seasons. Our proposed model is also able to predict
extreme rainfall even for unobserved locations with satisfactory RMSEP and correlation
value. Improvisation of substantial parameters described in Section 3 has been successful
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FiGURE 6. RMSEP and correlation of spatio-temporal Bayes models
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in producing rainfall predictions that are more accurate and efficient than the cross-
validation method in [6]. In this paper, development of SD model on gamma distribution
is able to reduce RMSEP value significantly compared to the model in [13]. Generally, the
proposed model also has a higher correlation value to moderate extreme rainfall prediction.

Further research can be carried out by developing the following aspects: 1) rainfall zon-
ing. Estimation of extreme rainfall produced only applies to certain locations with specific
coordinates. Then how about other locations that are not included in the observation.
For this reason, the rainfall zoning is interesting to obtain characteristics of rainfall in
the entire region. Zoning can be explored by the smoothing method as in [4], or by using
the finite element method [21,22]; 2) rainfall projections. The advantage of SD modeling
is essential for making future climate projections, so it can identify short, medium-to-
long-term climate change, such as the following studies [23-25]. Rainfall projections that
include the effects of climate variability and oceanographic events in a wider geographic
area such as the El Nino and La Nina, are also very interesting research opportunities
such as in [26]; 3) comparison with machine learning algorithm. Climate data that has
been collected for decades from various places and types is a “Big Data”. Not only in the
form of text or raw data, but also radar and satellite imagery to video animation such as
tropical cyclone movements, it requires high performance computing (HPC) to process it
into a new climate information without adding it to the database. So even though the
model we propose is very useful in predicting rainfall with missing or even unobserved
data, comparing the prediction accuracy with machine (and/or deep) learning techniques
is very interesting to study as in the following researches [27-29].
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