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Abstract. This paper deals with the problem of the mean-square exponential stability
and H∞ performance of impulsive stochastic systems with time-varying uncertain param-
eters. First, by using the Lyapunov function approach and well-known vector inequalities,
we develop criteria on the mean-square exponential stability of uncontrolled systems in
the form of certain linear matrix inequalities (LMIs) for admissible uncertainty. Sec-
ondly, we give the memoryless state feedback controller and present sufficient conditions
of robust stochastic stability of systems. Furthermore, we analyze the H∞ performance
level of systems with time-varying uncertain parameters. Finally, we give a numerical
example with simulation results to verify the validity of the obtained method.
Keywords: Time-varying uncertain parameters, Mean-square exponential stability, H∞
performance, Impulsive stochastic system, Linear matrix inequalities

1. Introduction. Over the last few decades, many researchers have begun to pay increas-
ing attention to performance analysis of dynamical systems with impulsive perturbations
due to the important theoretical and practical significance of theoretical analysis of impul-
sive disturbed dynamic systems [1-6]. The impulse is an instantaneous change in the state
of the system at some point. For instance, regular spraying of pesticides in agricultural
pest control is a typical impulse phenomenon. On the one hand, impulsive perturbations
will destroy the stability and reliability of the system, resulting in poor performance of
the system [4]. On the other hand, for the original unstable system, a good control effect
can be obtained by introducing proper impulse [5]. What is more, for the deterministic
situation, many conclusions about the stability and control of the impulse disturbance
system have been presented in [6].

Meanwhile, many real systems in information science, biology, physics, and engineering
are stochastic dynamical systems. Many researchers have devoted efforts to expanding the
results of deterministic systems where there are no stochastic perturbations to stochas-
tic systems [7-13]. In [11], many innovative research results of stochastic systems theory
were discussed in SSS, and many results on stochastic processes and stochastic systems are
presented. Meanwhile, the stability of impulse systems was also extended to stochastic
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systems [12, 13]. In [12], the problem of mean-square exponential stability for stochastic
systems with time-varying delay was solved by employing the formula for the variation
of parameters and the Cauchy matrix. In [13], using Lyapunov-Razumikhin techniques,
sufficient conditions for impulsive stabilization of stochastic differentia systems were es-
tablished.
On the other hand, because parameter uncertainties are unavoidable in practical sys-

tems, many researchers have paid attention to stability analysis and control of impulsive
stochastic uncertain systems [15-18]. For instance, in [16], exponential stability and H∞
performance of the uncertain impulsive stochastic system were investigated by construct-
ing a controller. In [17], by applying Lyapunov-Razumikhin techniques, some criteria of
robust mean-square exponential stability for stochastic systems with parameter uncer-
tainties were developed. Unlike the constraint conditions of uncertain parameters in [17],
in [18], a sufficient condition of robust stochastic stability of impulsive stochastic systems
with time-varying uncertainties was developed. Stochastic stability and H∞ performance
of the system were ensured by designing a filter.
Motivated by the above discussion, this paper focuses on the problem of mean-square

exponential stability and H∞ performance of a class of impulsive stochastic systems with
time-varying uncertain parameters. We utilize the Lyapunov function approach and well-
known vector inequalities to establish the novel criteria of mean-square exponential sta-
bility of the uncontrolled system with time-varying uncertain parameters. Then, we pro-
pose the memoryless state feedback controller to make sure that the system is robustly
stochastically stable. Furthermore, some criteria are given to guarantee that the system
can achieve a prescribed H∞ performance level. At last, a numerical example is given to
verify the validness of our research.
The remaining of the paper is arranged as follows. In Section 2, the considered problems

are formulated, and some relevant definitions and lemmas are reviewed. The mean-square
exponential stability of the system with time-varying uncertainty is discussed in Section 3,
which is followed by a discussion of robust stochastic stability of the discussed systems in
Section 4. In Section 5, the H∞ performance of the proposed systems is analyzed. Section
6 provides an example that demonstrates our theoretical results. Section 7 presents some
conclusions.
Notations: In this note, Rn denotes the n-dimensions Euclidean space; Rm×n is a

set of real m × n matrices; X > Y (respectively X ≥ Y ), where X and Y are the
symmetric matrices, means that X − Y is a positive definite matrix (respectively, semi-
definite matrix); Y −1 and Y T denote the inverse and transpose of Y ; £2[0,∞) is the space
of square-integrable vector functions on [0,∞); ∥·∥2 represents the £2[0,∞) norm over
[0,∞); λmin(·) and λmax(·) stand for minimum and maximum eigenvalues of a symmetric
matrix λ; He(X) refers to X +XT ; E{·} denotes the mathematical expectation.

2. Problem Statement and Preliminaries. We will examine the stability of the fol-
lowing system:

Σ1 =



dx(t) = [(A+△A(s))x(t) + (B +△B(µ))u(t) +B0v(t)]dt

+ [Dx(t) +Hu(t) +D0v(t)]dw(t), t ∈ (tk, tk+1],

∆x(tk) = Fx(t), t = tk,

z(t) = Cx(t) +Gv(t),

x(t+0 ) = x0,

(1)

where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input, v(t) ∈ Rq is the
continuous disturbance which pertains to £2[0,∞), z(t) ∈ Rp is the controlled output,
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w(t) is zero-mean real scalar Wiener process satisfying that E{dw(t)} is zero and

E
{
dw(t)2

}
= dt. (2)

∆x(t) = x
(
t+
)
− x

(
t−
)
, lim

h→0+
x(t− h) = x

(
t−
)
, lim

h→0+
x(t+ h) = x

(
t+
)
. (3)

{tk, k = 0, 1, 2, . . .} are the impulsive time instants and satisfy: 0 ≤ t0 < t1 < t2 < · · · <
tk−1 < tk < · · · , and limk→∞ tk = +∞. Under normal circumstances, it can be supposed
that x(tk) = x(t−k ) = limh→0+x(tk − h). A, B, B0, C, G, D, H, D0 and F are known
real constant matrices. ∆A and ∆B represent time-varying uncertain parameters which
satisfy

|∆A| < A1, |∆B| < B1, (4)

where A1, B1 are known nonnegative real constant matrices. The notation |∆| < ∆,
means |eij| ≤ eij, where eij (eij) is the elements at the corresponding position in the matrix
∆
(
∆
)
, respectively. Furthermore, the parameters of uncertainties satisfy s ∈ Λ ⊂ Rn1 ,

µ ∈ Ξ ⊂ Rm1 , where Λ, Ξ refer to bounded compact set.

Definition 2.1. [5] The equilibrium x∗ = 0 of the system Σ1 with u(t) = 0 and v(t) = 0
is said to be mean-square exponential stable, if there exist constants m > 0, γ > 0 such
that

E{∥x(t)∥} ≤ mE ∥x(t0)∥ e−λ(t−t0), ∀t ≥ t0.

Definition 2.2. [5] Given a scalar γ > 0, the system Σ1 is said to robustly stochastically
stable (RSS) and has the H∞ performance γ, if it is RSS in zero initial conditions, for
all v ∈ £2[0,∞) and all admissible uncertainties ∆A, ∆B, such that

∥z(t)∥ < γ∥v(t)∥.

Lemma 2.1. [18] Let A, D be real matrices of appropriate dimensions, then we have: for
any scalar ε > 0 and vectors a, b ∈ Rn,

2aTDAb ≤ ε−1aTDDTa+ εbTATAb.

Lemma 2.2. [18] Let n×m matrix ∆A satisfying |∆A| < A1, and then we have

Ω(A1) ≥ ∆A∆AT , Γ(A1) ≥ ∆AT∆A,

where

Ω(A1) =

{ ∥∥A1A
T
1

∥∥ In×n,
∥∥A1A

T
1

∥∥ I ≤ n · diag
(
A1A

T
1

)
,

n · diag
(
A1A

T
1

)
, otherwise,

Γ(A1) =

{ ∥∥AT
1A1

∥∥ Im×m,
∥∥AT

1A1

∥∥ I ≤ m · diag
(
AT

1A1

)
,

m · diag
(
AT

1A1

)
, otherwise,

where diag(R) = diag(r11, r22, . . . , rnn), R = (rij) is an n× n symmetric matrix.

Lemma 2.3. [19] For given symmetric matrix S =

[
S11 S12

ST
12 S22

]
, the following three

conditions are equivalent
1) S < 0.
2) S11 < 0, S22 − ST

12S
−1
11 S12 < 0.

3) S22 < 0, S11 − S12S
−1
22 S

T
12 < 0.

Remark 2.1. The system Σ1 is said to be RSS if the system Σ1 with v = 0 is mean-square
exponential stable for all admissible time-varying uncertain parameters ∆A and ∆B.
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3. Mean-Square Exponential Stability. First considering the situation of u(t) = 0
and v(t) = 0 in system Σ1, then Σ1 becomes the following uncontrolled system:

Σ2 =


dx(t) = [(A+∆A(s))x(t)]dt+Dx(t)dw(t), t ∈ (tk, tk+1],

∆x(tk) = Fx(t), t = tk,

z(t) = Cx(t),

x(t+0 ) = x0.

(5)

Theorem 3.1. Given scalar λk and α > 0, and supposing there exist ε1 > 0, a matrix
X > 0 such that the following matrix inequalities hold Θ0 XDT X(Γ(A1))

1
2

DX −X 0

(Γ(A1))
1
2X 0 −ε1I

 < 0, (6)

[
−λkX (X + FX)T

X + FX −X

]
≤ 0, (7)

where
Θ0 = He(AX) + ε1I + 2αX, 0 < −λk ≤ eα(tk−tk−1),

then, the system Σ2 is mean-square exponential stable.

Proof: We choose an appropriate Lyapunov functional candidate as:

V (x) = xTPx. (8)

Adopting the Itô formula to (5), it is noted that

dV (x) = LV (x)dt+ 2xT (t)PDx(t)dw

= 2xT (t)P (A+∆A)x(t) + xT (t)DTPDx(t) + 2xT (t)PDx(t)dw(t).
(9)

Using Lemma 2.1 and Lemma 2.2, it can be seen that

2xTP∆Ax ≤ xT
[
ε1PP + ε−1

1 ∆AT∆A
]
x ≤ xT

[
ε1PP + ε−1

1 Γ(A1)
]
x. (10)

From (9) and (10), it can be confirmed that

LV (x) ≤ xTΦx, (11)

where
Φ =

[
He(PA) + ε1PP + ε−1

1 Γ(A1) +DTPD
]
.

Let P = X−1. Left- and right-multiplying by diag[P, I, I] matrix Inequality (6), which
combined Lemma 2.3 yields Θ1 DT (Γ(A1))

1
2

D −P−1 0

(Γ(A1))
1
2 0 −ε1I

 < 0, (12)

where
Θ1 = He(PA) + ε1PP + 2αP, X = P−1.

Based on Lemma 2.3, (12) is equivalent to

Φ + 2αP < 0. (13)

It follows from (11) and (13) that

LV (x) < −2αxTPx = −2αV (x). (14)
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Therefore,
dV (x) < −2αV (x)dt+ 2xTP (D +∆D)xdw. (15)

Then, adopting the formula of integration by parts, we can deduce that

d
(
e2αtV (x)

)
< 2αeαtV (x)dt+ e2αtdV (x)

< e2αt
[
2αV (x)dt− 2αV (x)dt+ 2xTP (D +∆D)xdw

]
(16)

= 2e2αtxTP (D +∆D)xdw.

From tk−1 to t, integrating both sides of Inequality (16) and taking expectations yields

E{V (t)} ≤ e−2α(t−tk−1)E {V (tk−1)} . (17)

Hence, when t = t+k , in view of (7), it gives

(I + F )TP (I + F )− λkP ≤ 0.

E
{
V
(
t+k
)}

− λkE{V (tk)} = E
{
xT (tk)

(
(I + F )TP (I + F )− λkP

)
x(tk)

}
≤ 0. (18)

That is
E
{
V (t+k )

}
≤ λkE{V (tk)}. (19)

From (17), we can deduce that for any t ∈ (t0, t1]

E{V (t)} ≤ E
{
V (t+0 )

}
e−2α(t−t0). (20)

When t = t1, (20) is equivalent to

E{V (t1)} ≤ e−2α(t1−t0)E
{
V
(
t+0
)}

. (21)

Therefore, for t ∈ (t1, t2], combining (19) and (21) yields

E
{
V
(
t+1
)}

≤ λ1e
−2α(t1−t0)E

{
V
(
t+0
)}

. (22)

For any t > 0 and t ∈ (tk−1, tk], applying mathematical induction, one obtains

E{V (t)} ≤

(
k−1∏
i=1

λi

)
E
{
V
(
t+0
)}

e−2α(t−t0). (23)

Considering the condition 0 < λk ≤ eα(tk−tk−1), we can obtain that

E{V (t)} ≤

(
k−1∏
i=1

λi

)
e−α(tk−t0)E

{
V
(
t+0
)}

e−α(t−t0)e−α(t−tk−1)

≤ E
{
V
(
t+0
)}

e−α(t−t0) (24)

= eα(t0)E
{
V
(
t+0
)}

e−αt.

Let m =
√
eαt0 λmax(P )

λmin(P )
> 0, γ = α/2 > 0. It follows that

E{∥x(t)∥} ≤ me−γtE{∥x(t0)∥}. (25)

This ends the proof.

4. Robust Stochastic Stability. Now, in consideration of v(t) = 0 and uncertainties,
we will address the problem that the system Σ1 is RSS. We construct a memoryless state
feedback controller which presents with formula u(t) = Kx(t), and the corresponding
system becomes

Σ3 =


dx(t) = [A+∆A(s) + (B +∆B(µ))K]x(t)dt+ [(D +HK)x(t)]dw(t),

∆x(tk) = Fx(t), t = tk,

x(t+0 ) = x0.

(26)
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Theorem 4.1. Given scalars λk, α > 0, if there are ε2 > 0, ε3 > 0 and matrices X > 0,
Y such that the following inequalities hold:

Θ2 Y THT +XDT X(Γ(A1))
1
2 Y T (Γ(B1))

1
2

DX +HY −X 0 0

(Γ(A1))
1
2X 0 −ε2I 0

(Γ(B1))
1
2Y 0 0 −ε3I

 < 0, (27)

[
−λkX (X + FX)T

X + FX −X

]
≤ 0, (28)

where
Θ2 = He(AX +BY ) + (ε2 + ε3)I + 2αX, 0 < λk ≤ eα(tk−tk−1),

then, the system Σ3 is RSS with controller u(t) = Kx(t), and K = Y X−1.

Proof: For simplicity and convenience, we define

Ξ = D +HK. (29)

Employing Itô formula to the system Σ3, we can get that

dV (x) = LV (x)dt+ 2xTPΞxdw, (30)

where V (x) is mentioned in (8) and

LV (x) = 2xTP [A+∆A+ (B +∆B)K]x+ xTΞTPΞx. (31)

Using Lemma 2.2, one obtains

2xTP∆Ax ≤ xT
[
ε2PP + ε−1

2 ∆AT∆A
]
x ≤ xT

[
ε2PP + ε−1

2 Γ(A1)
]
x, (32)

and

2xTP∆BKx ≤ xT
[
ε3PP + ε−1

3 KT∆BT∆BK
]
x ≤ xT

[
ε3PP + ε−1

3 KTΓ (B1)K
]
x.
(33)

Thus, it follows from (31)-(33) that

LV (x) < xT [Π1 +Ψ1]x, (34)

where
Π1 = He(P (A+BK)) + (ε2 + ε3)PP,

Ψ1 = ε−1
2 Γ(A1) + ε−1

3 KTΓ (B1)K + ΞTPΞ.

Left- and right-multiplying both side of (27) by [P, I, I, I] and combining Lemma 2.3,
where X = P−1, the following inequality holds

Θ3 KTHT +DT (Γ(A1))
1
2 KT (Γ(B1))

1
2

D +HK −P−1 0 0

(Γ(A1))
1
2 0 −ε2I 0

(Γ(B1))
1
2K 0 0 −ε3I

 < 0, (35)

where
Θ3 = He(A+BK) + (ε2 + ε3)PP + 2αP.

Combining (29) and (35), applying Lemma 2.3, we can obtain that

Π1 +Ψ1 ≤ −2αP. (36)

From (34) and (36), we have

LV (x) < −2αxTPx = −2αV (x). (37)
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Combining (30) and (37), it gives

dV (x) < −2αV (x)dt+ 2xTPΞxdw. (38)

Similar to the proof of Theorem 3.1. We can get that

E{∥x(t)∥} ≤ mE{∥x(t0)∥}e−γt, (39)

where

m =

√
eαt0

λmax(P )

λmin(P )
> 0, γ = α/2 > 0.

The proof settles the issue of mean-square stability of the system Σ3, which also indicates
the system Σ1 is RSS.

5. H∞ Performance Analysis. This section is devoted to studying H∞ performance
level of the system Σ1.

Theorem 5.1. Given γ > 0, α > 0, λk, if there are ε4 > 0, ε5 > 0, a matrix Y and
X > 0, such that

Θ4 BT
0 X(Γ(A1))

1
2 Y T (Γ(B1))

1
2 XCT (DX +HY )T

B0 −γ2I 0 0 GT DT
0

(Γ(A1))
1
2X 0 −ε4I 0 0 0

(Γ(B1))
1
2Y 0 0 −ε5I 0 0

CX G 0 0 −I 0

DX +HY D0 0 0 0 −X


< 0, (40)

[
−λkX (X + FX)T

X + FX −X

]
< 0, (41)

where

Θ4 = He(AX +BY ) + (ε4 + ε5)I + 2αX, 0 < λk ≤ eα(tk−tk−1),

then, the system Σ1 has H∞ performance level γ with controller u(t) = Kx(t), and K =
Y X−1.

Proof: Set

Ξ = D +HK. (42)

Applying Itô formula to the system Σ1, we can derive that

dV (x) = LV (x)dt+ 2xTP [Ξx+D0v]dω

=
[
2xTP (A+∆A+ (B +∆B)K)x+ 2xTPB0v (43)

+ (Ξx+D0v)
TP (Ξx+D0v)

]
dt+ 2xTP (Ξx+D0v)dω.

Similar to the derivation of Inequality (34), for any t ∈ [ih, (i+ 1)h), we have that

dV (x(t)) ≤
[
x(t)Tv(t)T

]
Φ1

[
x(t)

v(t)

]
dt+ 2xTP [Ξx+D0v]dω, (44)

where

Φ1 =

[
Π2 PBT

0

∗ 0

]
+

[
ΞT

DT
0

]
P
[
Ξ D0

]
,

Π2 = He(P (A+BK)) + (ε4 + ε5)PP + ε−1
4 Γ(A1) + ε−1

5 KTΓ (B1)K.
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Left- and right-multiplying both sides of (40) by diag[P, I, I, I, I, I] and combining Lemma
2.3, where X = P−1, it is obtained that

Θ5 PBT
0 (Γ(A1))

1
2 KT (Γ(B1))

1
2 CT (D +HK)T

B0P −γ2I 0 0 GT DT
0

(Γ(A1))
1
2 0 −ε4I 0 0 0

(Γ(B1))
1
2K 0 0 −ε5I 0 0

C G 0 0 −I 0

D +HK D0 0 0 0 −P−1


< 0, (45)

where
Θ5 = He(P (A+BK)) + (ε4 + ε5)PP + 2αP.

Applying Itô formula, we can derive

E{V (x(t), t)} = E

{∫ t

0

dV (x(ς))

}
= E

{∫ t

0

LV (x(ς), ς)dς

}
. (46)

So, for t ∈ (tk, tk+1], k = 1, 2, . . ., let

J(t) = E

{∫ t

0

[
z(ς)T z(ς)− γ2v(ς)Tv(ς)

]
dς

}
= E

{∫ t

0

[
z(ς)T z(ς)− γ2v(ς)Tv(ς) + LV (x(ς), ς)

]
dς

}
− E{V (x(t), t)} (47)

≤ E

{∫ t

0

[
z(ς)T z(ς)− γ2v(ς)Tv(ς) + LV (x(ς), ς)

]
dς

}
.

Observe

z(ς)T z(ς)− γ2v(ς)Tv(ς) + LV (x(ς), ς) ≤
[
xT (ς) vT (ς)

]
Π

[
x(ς)

v(ς)

]
, (48)

where

Π =

[
Π3 PB0

BT
0 P −γ2I

]
+

[
ΞT

DT
0

]
P
[
Ξ D0

]
+

[
CT

GT

] [
C G

]
,

Π3 = He(P (A+BK)) + (ε4 + ε5)PP + ε−1
4 Γ(A1) + ε−1

5 KTΓ (B1)K.

Using Lemma 2.3 and considering Equation (42), (45) is equal to Π < 0. By means of
(47) and (48), we have

J(t) ≤ E

{∫ t1

0+

[
xT (ς) vT (ς)

]
Π

[
x(ς)

v(ς)

]
ds

}

+E

{∫ t2

t+1

[
xT (ς) vT (ς)

]
Π

[
x(ς)

v(ς)

]
ds

}

+ · · ·+ E

{∫ tk

t+k−1

[
xT (ς) vT (ς)

]
Π

[
x(ς)

v(ς)

]
ds

}
< 0.

(49)

When t = t+k ,

β(t) = LV (x(t)) + 2αV (x(t)) + z(t)T z(t)− γ2v(t)Tv(t). (50)

By (45), we uncover β(t) < 0. In view of the proof of the above two theorems, we can
derive

LV (x) ≤ −2αV (x)−Θ, (51)
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where Θ = ∥z∥2 − γ2∥v∥2, and

d
(
e2αtV (x(t))

)
= 2αe2αtV (x(t))dt+ e2αtdV (x(t))

< e2αt
[
2αV (x(t))dt− 2αV (x(t))dt−Θ(t)dt

+2xT (t)P (Ξx(t) +D0v(t))dω(t)
]

= −e2αt[Θ(t)dt− 2xT (t)P (Ξx(t) +D0v(t))dω(t)].

(52)

Integrating both sides of Formula (52) simultaneously from tk−1 to t, it gives

E{V (t)} ≤ E{V (tk−1)}e−2α(t−tk−1) − E

{∫ t

tk−1

Θ(ς)dς

}

≤

(
k−1∏
i=1

λi

)
E
{
V (t+0 )

}
e−2α(t−t0) − E

{∫ t

tk−1

Θ(ς)dς

}
.

(53)

When t0 = 0, x(t0) = 0, aiming at Inequality (41), we can confirm

V
(
t+0
)
= xT

(
t+0
)
Px
(
t+0
)
= xT (t0)(I + F )TP (I + F )x(t0). (54)

On account of E{V (t)} > 0, e−2α(t−ς) > 0, from (53), we deduce that

E

{∫ t

tk−1

e−2α(t−ς)Θ(ς)dς

}
< 0, (55)

which means that

Θ(t) = ∥z(t)∥2 − γ2∥v(t)∥2 < 0.

This completes the proof.

6. A Numerical Example. In this part, an example is given to demonstrate the use-
fulness of the theoretical results.

Example 6.1. Consider the uncertain impulsive stochastic system (1) with the following
parameters:

A =

[
−2 1.2
0.8 −2

]
, B =

[
−1 2
0.4 3

]
, B0 =

[
2 0
0.2 −1

]
, D =

[
1.2 0
−2 0.5

]
,

H =

[
0.5 0
−1 2

]
, D0 =

[
2 0.4
−1 −4

]
, F =

[
1.9 0
0 1.9

]
, C =

[
1 0
1.2 0.1

]
,

G =

[
0.1 1
0.2 −0.1

]
, A1 =

[
1 5

0.02 10

]
, B1 =

[
1 0, 2
1.2 1

]
.

Choose γ = 1.2, α = 1, the the impulsive time interval tk+1 − tk = 0.5. The solutions of
LMIs (28) and (29) are

ε4 = 0.9558, ε5 = 0.4691, X =

[
0.1278 −0.1755
−0.1755 0.5569

]
, Y =

[
0.1564 −0.8262
−0.1380 −1.1560

]
.

Thus, the memoryless state feedback controller is taken as

u(t) =

[
−1.4349 −1.9359
−6.9307 −4.2604

]
x(t).

The simulation results are given in Figures 1 and 2. From Figure 2, it can be seen that
E|x(t)|2 converges to 0 rapidly.
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Figure 1. State trajectory of the uncertain impulsive stochastic system
(1) in Example 6.1

0 1 2 3 4 5 6

t (s)

0

1

2

3

4

5

6

E
|x

(t
)|

2

E|x(t)|2

Figure 2. The mean square of the solution to Example 6.1
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7. Conclusions. The problem of the mean-square exponential stability and H∞ perfor-
mance for impulsive stochastic systems with time-varying uncertain parameters has been
addressed by designing a memoryless state feedback controller. Using the Lyapunov func-
tion approach and well-known vector inequalities, the sufficient conditions of mean-square
exponential stability and robust stochastic stability have been given in terms of linear ma-
trix inequalities. Then, we have designed a memoryless feedback controller, which leads
to having a prescribed H∞ performance level of the system with uncertainties. The va-
lidity of the proposed method is illustrated by numerical simulation. The further work
directions may extend to stability analysis of linear time-delay systems with parameter
uncertainties and Semi-Markovian jump systems with parameter uncertainties.
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