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Abstract. This work is concerned with the robust H∞ filtering of two-dimensional (2-
D) discrete systems with state delays described by the Roesser state space model with
uncertain parameters of the polytopic type problem. By using the parameter-dependent
Lyapunov-Krasovski functional approach and by introducing some slack matrix variables,
new sufficient conditions for the H∞ performance analysis are developed in terms of lin-
ear matrix inequalities (LMIs). Based on those results, both types of parameter-dependent
and independent filters are designed by solving a convex optimization problem. Finally,
two numerical examples are introduced to illustrate the effectiveness, reduced conser-
vatism and potential of the developed theoretical results.
Keywords: 2-D discrete systems, Delays, Roesser model, Polytopic uncertainties, H∞
performance, H∞ filter

1. Introduction. The two-dimensional (2-D) systems have widely attracted interest
with their theoretical importance such as linear repetitive control [1] and iterative learning
control [2, 3] and with a practical significance in image processing and process control [4].

It has been well known that time-delays are inevitable in practical systems, especially
in the 2-D class due to the finite speed of information processing and data transmission
among various parts of the system. The time-delay often degrades the system performance
and even causes the system instability. Therefore, the highlighting of stability of time-
delay systems plays an important role in applied models and has been greatly studied in
control theory and signal processing fields [5].

The H∞ technique introduced in [6] has attracted the attention of many researchers,
for example, [7, 8, 9, 10]. It is a technique well known in literature to minimize the im-
pact of perturbations on systems. Over the past decades, considerable attention has been
devoted to the problem of state estimation. When a priori information on the external
noises is not incisively known, although the famed Kalman filtering provides an optimal
state estimation approach in the sense of error variance, it has been acknowledged that
the traditional Kalman filter is considerably sensitive to system parameters [5] but not ro-
bust enough against large uncertainties. Therefore, many attempts have been established
toward other more robust filtering arrangements, among which, H∞ filtering is the most
concerned one [11, 12, 13], in which the input signal is assumed to be energy bounded
and the prime aim is to minimize the H∞ norm of the filtering error system.
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In this paper, by constructing a Lyapunov-Krasovski functional [14] on a 2-D system
described by Rosser model [15], a delay-dependantH∞ performance analysis is established
for error systems by retaining some useful terms from the difference of Lyapunov-Krasovski
functions. As a result, the H∞ filter is designed in terms of linear matrix inequalities
(LMIs).
Many useful results on the problem of H∞ filtering for various dynamic 2-D systems

have appeared [16]. In contrast, the problem of H∞ filtering for uncertain 2-D discrete
systems described by the Roesser model with delays has not been fully investigated yet
and deserves more attention, the increase in computational complexity due to the addition
of more decision variables in our case constant delays, motivates the present study.
This paper is adjusted to six sections. In Section 2, the problem under study is for-

mulated. In Section 3, new criterion is obtained in terms of LMI, which ensures the H∞
performance of the 2-D discrete system described by the Rosser model and the filtering
design is thus established in Section 4. Numerical examples are given to highlight the
results in Section 5. Finally, some conclusions are provided in Section 6.
Notations. Throughout the paper, Rp denotes the p-dimensional real Euclidean space,

and Rp×q denotes the set of all p × q matrices. 0 and I represent zero matrix and iden-
tity matrix respectively. diag{. . .} denotes a block-diagonal matrix in symmetric block
matrices or long matrix expressions. XT stand for the transpose of the matrix X. Q > 0
(Q < 0) means that Q is real symmetric and positive (negative) definite matrix. The
notation ||x|| stands for the Euclidean norm of the vector x.

2. Problem Formulation. Consider the 2-D systems with polytopic uncertainties and
constant delays described as such:[

xh(i+ 1, j)

xv(i, j + 1)

]
= A(α)

[
xh(i, j)

xv(i, j)

]
+ Ad(α)

[
xh(i− d1, j)

xv(i, j − d2)

]
+B(α)w(i, j)

y(i, j) = C(α)

[
xh(i, j)

xv(i, j)

]
+D(α)w(i, j)

z(i, j) = E(α)

[
xh(i, j)

xv(i, j)

]
+ F (α)w(i, j) (1)

where xv(i, j) ∈ Rnv , xh(i, j) ∈ Rnh are vertical and horizontal state vectors, respectively,
w(i, j) ∈ Rq disturbance input, z(i, j) ∈ Rs signal to be estimated, y(i, j) ∈ Rm is
the measured output, d1 and d2 are positive integers representing constant delays along
horizontal and vertical directions, respectively. The matrices

A(α) =

[
A11(α) A12(α)

A21(α) A22(α)

]
, B(α) =

[
B1(α)

B2(α)

]
, E(α) =

[
E1(α) E2(α)

]
Ad(α) =

[
Ad11(α) Ad12(α)

Ad21(α) Ad22(α)

]
, C(α) =

[
C1(α) C2(α)

]
F (α) and D(α) are presumed to belong to a known convex bounded polyhedral domain
D described as:

Ω(α) ,
[
A11(α), A12(α), A21(α), A22(α), Ad11(α), Ad12(α), Ad21(α), Ad22(α),

B1(α), B2(α), C1(α), C2(α), D(α), E1(α), E2(α), F (α)
]
∈ D

where
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D ,
[
Ω(α)\Ω(α) =

N∑
n=1

αnΩn;
N∑

n=1

αn = 1, αn ≥ 0

]
(2)

with

Ωn ,
[
A11n, A12n, A21n, A22n, Ad11n, Ad12n, Ad21n, Ad22n, B1n, B2n,

C1n, C2n, Dn, E1n, E2n, Fn

]
denoting the n-th vortex of the polyhedral domain.

The purpose of this work is to estimate the signal z(i, j) with ensured H∞ performance.
To achieve that the following full-order 2-D discrete filter will be observed:[

x̃h(i+ 1, j)

x̃v(i, j + 1)

]
= Af

[
x̃h(i, j)

x̃v(i, j)

]
+Bfy(i, j)

z̃(i, j) = Cf

[
x̃h(i, j)

x̃v(i, j)

]
+Dfy(i, j)

x̃h(i, j) = x̃v(i, j) = 0, i, j = 1, 2, . . . (3)

The matrices Af , Bf and Cf have the following form:

Af =

[
Af11 Af12

Af21 Af22

]
, Bf =

[
Bf1

Bf2

]
, Cf =

[
Cf1 Cf2

]
From (1) and (3), the filtering error system is obtained as follows:[

x̂h(i+ 1, j)

x̂v(i, j + 1)

]
= Â(α)

[
x̂h(i, j)

x̂v(i, j)

]
+ Âd(α)

[
x̂h(i− d1, j)

x̂v(i, j − d2)

]
(4)

+ B̂(α)w(i, j)

e(i, j) = Ĉ(α)

[
x̂h(i, j)

x̂v(i, j)

]
+ D̂(α)w(i, j) (5)

where

e(i, j) = z(i, j)− z̃(i, j)

x̂h(i, j) =

[
xh(i, j)

x̃h(i, j)

]
x̂v(i, j) =

[
xv(i, j)

x̃v(i, j)

]
and

Â(α) =

[
Â11(α) Â12(α)

Â21(α) Â22(α)

]
=


A11(α) 0 A12(α) 0

Bf1C1(α) Af11 Bf1C2(α) Af12

A21(α) 0 A22(α) 0

Bf2C1(α) Af21 Bf2C2(α) Af22



Âd(α) =

[
Âd11(α) Âd12(α)

Âd21(α) Âd22(α)

]
=


Ad11(α) 0 Ad12(α) 0

0 0 0 0

Ad21(α) 0 Ad22(α) 0

0 0 0 0


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B̂(α) =


B1(α)

Bf1D(α)

B2(α)

Bf2D(α)


Ĉ(α) =

[
Ĉ1(α) Ĉ2(α)

]
Ĉ1(α) =

[
E1(α)−DfC1(α) −Cf1

]
Ĉ2(α) =

[
E2(α)−DfC2(α) −Cf2

]
D̂(α) = F (α)−DfD(α)

To get the main results of this paper, the following remark and lemma are needed.

Lemma 2.1. [17] For given symmetric matrices

S = ST =

[
S11 S12

∗ S22

]
where S11 and S22 are square matrices, the following conditions are equivalent
1) S < 0;

2) S11 < 0, S22 − ST
12S

−1
11 S12 < 0;

3) S22 < 0, S11 − ST
12S

−1
22 S12 < 0.

Remark 2.1. The H∞ filtering problem is important due to its theoretical and practical
value in control engineering and signal processing. In this work, we consider the problem
of robust H∞ filtering for a class of uncertain 2-D discrete systems with polytopic uncer-
tainties and constant delays. The model used in this paper can find many applications,
for example, the thermal processes in chemical reactors [18] and the stationary random
field in image processing [19].

3. Main Results. In this section, we solve the robust H∞ filtering problem.

3.1. H∞ performance analysis.

Theorem 3.1. Consider the uncertain 2-D system with delays (1) and given a positive
scalar γ, an admissible full-order filter of the form (4) assuring a prescribed H∞ perfor-
mance and the robust stability of the filtering error system exists if there exist matrices
Gh(α) > 0 and Gv(α) > 0, L, J , Z1 > 0, Z2 > 0, Q1 > 0, Q2 > 0, N1, N2, Xh, Xv such
that the following LMIs are feasible

E(α) =



E1(α)
√
d1ϕ

T
hZ1

√
d2ϕ

T
v Z2 ET

2 (α) ET
3 (α) ET

4 (α)

∗ −Z1 0 0 0 0

∗ ∗ −Z2 0 0 0

∗ ∗ ∗ −Gh(α) 0 0

∗ ∗ ∗ ∗ −Gv(α) 0

∗ ∗ ∗ ∗ ∗ −I


< 0 (6)

ψ1 =

[
Xh N1

∗ Z1

]
≥ 0

ψ2 =

[
Xv N2

∗ Z2

]
≥ 0
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with

E1(α) =



ϕh1 − sym(L) 0
(
L
2

)T
+GhT (α) 0 ϕh2 0 0

∗ ϕv1 − sym(J) 0
(
J
2

)T
+GvT (α) 0 ϕv2 0

∗ ∗ −2Gh(α) 0 0 0 0

∗ ∗ ∗ −2Gv(α) 0 0 0

∗ ∗ ∗ ∗ ϕh3 0 0

∗ ∗ ∗ ∗ ∗ ϕv3 0

∗ ∗ ∗ ∗ ∗ ∗ −γ2I


sym(L) = L+ LT

sym(J) = J + JT

ϕh1 = ET
(
N11 +NT

11 +Q1 + d1 ×Xh11

)
E

ϕh2 = ET
(
−N11 +NT

21 + d1 ×Xh12

)
ϕh3 = −N21 −NT

21 −Q1 + d1 ×Xh22

ϕv1 = ET
(
N12 +NT

12 +Q2 + d2 ×Xv11

)
E

ϕv2 = ET
(
−N12 +NT

22 + d2 ×Xv12

)
ϕv3 = −N22 −NT

22 −Q2 + d2 ×Xv22

E = [I 0]

and

ET
2 (α) =



ÂT
11(α)L

T

ÂT
12(α)L

T

0
0

ÂT
d11(α)L

T

ÂT
d12(α)L

T

B̂T
1 (α)L

T


, E3(α)

T =



ÂT
21(α)J

T

ÂT
22(α)J

T

0
0

ÂT
d21(α)J

T

ÂT
d22(α)J

T

B̂T
2 (α)J

T



E4(α)
T =



ĈT
1 (α)

ĈT
2 (α)
0
0
0
0

D̂T (α)


, ϕT

h =



ET
(
AT

11(α)− I
)

ETAT
12(α)
0
0

AT
d11(α)

AT
d12(α)

BT
1 (α)



ϕT
v =



ETAT
21(α)

ET
(
AT

22(α)− I
)

0
0

AT
d21(α)

AT
d22(α)

BT
2 (α)


Proof: Suppose the parameter-dependent matrices Gv(α) and Gh(α) have the following

form:
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Gh(α) =
N∑

n=1

αnG
h
n, Gh

n > 0;

Gv(α) =
N∑

n=1

αnG
v
n, Gv

n > 0; n = 1, . . . , N

The Lyapunov-Krasovski function of our system is

V (i, j) = V h(i, j) + V v(i, j)

where

V h(i, j) = V h
1 (i, j) + V h

2 (i, j) + V h
3 (i, j)

V v(i, j) = V v
1 (i, j) + V v

2 (i, j) + V v
3 (i, j)

and

V h
1 (i, j) = x̂hT (i, j)LTGh(α)−1Lx̂h(i, j)

V v
1 (i, j) = x̂vT (i, j)JTGv(α)−1Jx̂v(i, j)

V h
2 (i, j) =

i−1∑
l=i−d1

xhT (l, j)Q1x
h(l, j)

V v
2 (i, j) =

j−1∑
l=j−d2

xvT (i, l)Q2x
v(i, l)

V h
3 (i, j) =

0∑
θ=1−d1

i−1∑
l=i−1+θ

ρTh (l, j)Z1ρh(l, j)

V v
3 (i, j) =

0∑
θ=1−d2

j−1∑
l=j−1+θ

ρTv (i, l)Z2ρv(i, l)

Q1, Q2, Z1, Z2 > 0 matrices with appropriate dimensions.
Let us find the increment of the function V (i, j).

∆V (i, j) =
[
∆V h

1 (i, j) + ∆V h
2 (i, j) + ∆V h

3 (i, j)
]

+ [∆V v
1 (i, j) + ∆V v

2 (i, j) + ∆V v
3 (i, j)]

∆V h
1 (i, j) = x̂hT (i+ 1, j)LTGh(α)−1Lx̂h(i+ 1, j)

− x̂hT (i, j)LTGh(α)−1Lx̂h(i, j)

and

∆V h
2 (i, j) =

i−1+1∑
l=i−d1+1

xhT (l, j)Q1x
h(l, j)− V h

2 (i, j)

= x̂hT (i, j)ETQ1Ex̂
h(i, j)− xhT (i− d1, j)Q1x

h(i− d1, j)

and

∆V h
3 (i, j) =

0∑
θ=1−d1

i−1+1∑
l=i−1+θ+1

ρTh (l, j)Z1ρh(l, j)− V h
3 (i, j)

∆V h
3 (i, j) = d1ρ

T
h (i, j)Z1ρh(i, j)−

i−1∑
l=i−d1

ρTh (i, l)Z1ρh(i, l)
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same for the vertical direction:

∆V v
1 (i, j) = x̂vT (i, j + 1)JTGv(α)−1Jx̂v(i, j + 1)

− x̂vT (i, j)JTGv(α)−1Jx̂v(i, j)

∆V v
2 (i, j) = x̂vT (i, j)ETQ2Ex̂

v(i, j)− xvT (i, j − d2)Q2x
v(i, j − d2)

∆V v
3 (i, j) = d2ρ

T
v (i, j)Z2ρv(i, j)−

j−1∑
l=j−d2

ρTv (i, l)Z2ρv(i, l)

Denote

ρh(i, j) = xh(i+ 1, j)− xh(i, j)

ρh(i, j) = ϕhξsys(i, j)

with

ξsys(i, j) =
[
x̂hT (i, j) x̂vT (i, j) x̂hT (i, j)LTG−T

h (α) x̂vT (i, j)JTG−T
v (α)

xhT (i− d1, j) xvT (i, j − d2) wT (i, j)
]T

and
ϕh =

[
(A11(α)− I)E A12(α)E 0 0 Ad11(α) Ad12(α) B1(α)

]
the same goes for the vertical direction:

ρv(i, j) = ϕvξsys(i, j)

with
ϕv =

[
A21E (A12(α)− I)E 0 0 Ad21(α) Ad22(α) B2(α)

]
The addition and substraction of the same terms in the next equations are true:

η1 = 2
(
x̂hT (i, j)LTG−1

h (α)Lx̂h(i, j) + x̂hT (i, j)Gh(α)G
−1
h (α)Lx̂h(i, j)

− x̂hT (i, j)LTG−1
h (α)Gh(α)G

−1
h (α)Lx̂h(i, j)− x̂hT (i, j)Lx̂h(i, j)

)
= 0

η2 = 2
(
x̂vT (i, j)JTG−1

v (α)Jx̂v(i, j) + x̂vT (i, j)Gv(α)G
−1
v (α)Jx̂v(i, j)

− x̂vT (i, j)JTG−1
v (α)Gv(α)G

−1
v (α)Jx̂v(i, j)− x̂vT (i, j)Jx̂v(i, j)

)
= 0

i−1∑
l=i−d1

ρh(l, j) =
i−1∑

l=i−d1

xh(l + 1, j)−
i−1∑

l=i−d1

xh(l, j)

0 = xh(i, j)− xh(i− d1, j)−
i−1∑

l=i−d1

ρh(l, j)

the same for the vertical direction:

0 = xv(i, j)− xv(i, j − d2)−
j−1∑

l=j−d2

ρv(i, l)

we have

0 = 2
[
x̂hT (i, j)ETN11 + xhT (i− d1, j)N21

]
×

[
Ex̂h(i, j)− xh(i− d1, j)−

i−1∑
l=i−d1

ρh(l, j)

]
0 = 2

[
x̂vT (i, j)ETN12 + xvT (i, j − d2)N22

]
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×

[
Ex̂v(i, j)− xv(i, j − d2)−

j−1∑
l=j−d2

ρv(i, l)

]

for N1 =

[
N11

N21

]
and N2 =

[
N12

N22

]
with appropriate dimensions.

For Xh = XT
h > 0, Xv = XT

v > 0 the following equations are true:

0 = d1ξ
T
1 (i, j)Xhξ1(i, j)−

i−1∑
l=i−d1

ξT1 (i, j)Xhξ1(i, j)

0 = d2ξ
T
2 (i, j)Xvξ2(i, j)−

j−1∑
l=j−d2

ξT2 (i, j)Xvξ2(i, j)

with

ξ1(i, j) =
[
xhT (i, j) xhT (i− d1, j)

]T
ξ2(i, j) =

[
xvT (i, j) xvT (i, j − d2)

]T
and

Xh =

[
Xh11 Xh12

∗ Xh22

]
Xv =

[
Xv11 Xv12

∗ Xv22

]
If we add ∆V (i, j) to all previous equations we will find that

∆V(i, j) + eT (i, j)e(i, j)− γ2wT (i, j)w(i, j)

< ξTsys(i, j)
[
ϕ+ ϕT

1G
h(α)−1ϕ1 + ϕT

2G
v(α)−1ϕ2 + ϕT

3 ϕ3 + ϕT
hd1Z1ϕh

+ϕT
v d2Z2ϕv

]
ξsys(i, j)−

i−1∑
l=i−d1

ξTh (l, j)ψ1ξh(l, j)

−
j−1∑

l=j−d2

ξTv (i, l)ψ2ξv(i, l)

with

ξh(l, j) =
[
ξT1 (i, j) ρTh (l, j)

]T
ξv(i, l) =

[
ξT2 (i, j) ρTv (i, l)

]T
ψ1 =

[
Xh N1

∗ Z1

]
≥ 0

ψ2 =

[
Xv N2

∗ Z2

]
≥ 0

with

ϕ = E1(α), ϕ1 = E2(α), ϕ2 = E3(α), ϕ3 = E4(α)

thus, if ψi ≥ 0, i = 1, 2, and

ξTsys(i, j)
[
ϕ+ ϕT

1G
h(α)−1ϕ1 + ϕT

2G
v(α)−1ϕ2 + ϕT

3 ϕ3 + ϕT
hd1Z1ϕh + ϕT

v d2Z2ϕv

]
ξsys(i, j)

< 0
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then

∆V(i, j) + eT (i, j)e(i, j)− γ2wT (i, j)w(i, j) < 0

which mean: ∆V(i, j) < 0, which ensures stability under zero-conditions for all nonzero
w(i, j) ∈ L2 {[0,∞), [0,∞)}. This completes the proof.

4. H∞ Filter Design.

4.1. Filter design.

Theorem 4.1. Taking into consideration the uncertain 2-D system with constant delays
(1) and given a positive scalar γ, an admissible full-order filter of the form (4) assuring
an established H∞ performance and the robust stability of the filtering error system exists
if there exist matrices Gh

n > 0 and Gv
n > 0 with n ∈ 1, . . . , N , L, J , Af11, Af12, Af21,

Af22, Bf1, Bf2, Cf1, Cf2 and Df such that the following LMI is feasible for n ∈ 1, . . . , N

LMI =



ϕh1 − sym(L) 0
(
L
2

)T
+GhT

n 0 ϕh2 0 0

∗ ϕv1 − sym(J) 0
(
J
2

)T
+GvT

n 0 ϕv2 0

∗ ∗ −2Gh
n 0 0 0 0

∗ ∗ ∗ −2Gv
n 0 0 0

∗ ∗ ∗ ∗ ϕh3 0 0

∗ ∗ ∗ ∗ ∗ ϕv3 0

∗ ∗ ∗ ∗ ∗ ∗ −γ2I
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

π1 π2 π3 π4 π5
π6 π7 π8 π9 π10
0 0 0 0 0
π11 π12 π13 π14 0

π15 π16 π17 π18 0

0 0 0 0 0
π19 π20 π21 π22 π23
−Z1 0 0 0 0

∗ −Z2 0 0 0

∗ ∗ −Gh
n 0 0

∗ ∗ ∗ −Gv
n 0

∗ ∗ ∗ ∗ −I



< 0

with

Gh
n =

[
Gh

1n Gh
2n

∗ Gh
3n

]
, Gv

n =

[
Gv

1n Gv
2n

∗ Gv
3n

]
L =

[
L11 L12

L21 L12

]
, J =

[
J11 J12
J21 J12

]

ψ1 =

 Xh11 Xh12 N11

∗ Xh22 N21

∗ ∗ Z1

 ≥ 0, ψ2 =

 Xv11 Xv12 N12

∗ Xv22 N22

∗ ∗ Z2

 ≥ 0
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where

π1 =

[ √
d1A

T
11Z1 −

√
d1Z1

0

]
, π2 =

[ √
d2A

T
21Z2

0

]
π3 =

[
AT

11nL
T
11 + CT

1nB
T
f1 AT

11nL
T
21 + CT

1nB
T
f1

AfT
11 AfT

11

]
π4 =

[
AT

21nJ
T
11 + CT

1nB
T
f2 AT

21nJ
T
21 + CT

1nB
T
f2

AT
f21 AT

f21

]
π5 =

[
ET

1n − CT
1nD

T
f

−CT
f1

]
, π6 =

[ √
d1A

T
12Z1

0

]
π7 =

[ √
d2A

T
22Z2 −

√
d2Z2

0

]
π8 =

[
AT

12nL
T
11 + CT

2nB
T
f1 AT

12nL
T
21 + CT

2nB
T
f1

AT
f11 AT

f11

]
π9 =

[
AT

22nJ
T
11 + CT

2nB
T
f2 AT

22nJ
T
21 + CT

2nB
T
f2

AT
f11 AT

f11

]
π10 =

[
ET

2n − CT
2nD

T
f

−CT
f2

]
, π11 =

[ √
d1A

T
d11Z1

0

]
π12 =

[ √
d2A

T
d21Z2

0

]
, π13 =

[
AT

d11L
T
11

0

]
π14 =

[
AT

d11L
T
21

0

]
, π15 =

[
AT

d21J
T
11

0

]
, π16 =

[
AT

d21J
T
21

0

]
π17 =

[ √
d1A

T
d12Z1

0

]
, π18 =

[ √
d2A

T
d22Z2

0

]
π19 =

[
AT

d12L
T
11

0

]
, π20 =

[
AT

d12L
T
21

0

]
π21 =

[
AT

d22J
T
11

0

]
, π22 =

[
AT

d22J
T
21

0

]
π23 =

[ √
d1B

T
1 Z1

]
An appropriate filter in the form of (3) is given: Āf11 Āf12 B̄f1

Āf21 Āf22 B̄f2

C̄f1 C̄f2 D̄f

 =

 L−1
12 0 0
0 J−1

12 0
0 0 I

 Af11 Af12 Bf1

Af21 Af22 Bf2

Cf1 Cf2 Df


Proof: Let

l =

[
l11 l12
l21 l22

]
, j =

[
j11 j12
j21 j22

]
Ḡh(α) =

[
Ḡh

1(α) Ḡh
2(α)

∗ Ḡh
3(α)

]
, Ḡv(α) =

[
Ḡv

1(α) Ḡv
2(α)

∗ Ḡv
3(α)

]
Suppose that l12, l22 and j12, j22 are nonsingular, and determining the following matrices:

Kh = diag
{
I, l−1

22 l12
}

Kv = diag
{
I, j−1

22 j12
}
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K = diag
{
Kh, Kv, Kh, Kv, Kh, Kv, I,Kh, Kv, Kh, Kv, I

}
Pre- and post-multiply E(α) in (6) by KT and K respectively, and consider the following
variables change:

KhT Ḡh(α)Kh = Gh(α) =

[
Gh

1(α) Gh
2(α)

∗ Gh
3(α)

]
=

N∑
n=1

αn

[
Gh

1n Gh
2n

∗ Gh
3n

]
KvT Ḡv(α)Kv = Gv(α) =

[
Gv

1(α) Gv
2(α)

∗ Gv
3(α)

]
=

N∑
n=1

αn

[
Gv

1n Gv
2n

∗ Gv
3n

]

KhT lKh = L =

[
L11 L12

L21 L12

]
, KvT jKv = J =

[
J11 J12
J21 J12

]
and [

Af11 Af12

Af21 Af22

]
=

[
l12 0

0 j12

] [
Āf11 Āf12

Āf21 Āf22

] [
l−1
22 l12 0

0 j−1
22 j12

]
(7)[

Bf1

Bf2

]
=

[
l12 0

0 j12

] [
B̄f1

B̄f2

]
(8)

[
Cf1 Cf2

]
=

[
C̄f1 C̄f2

] [ l−1
22 l12 0

0 j−1
22 j12

]
(9)

Then, we assure that the filtering error system (3) is robustly asymptotically stable with
an H∞ disturbance attenuation level γ if the following inequality holds

S(α) = KTE(α)K =
N∑
1

αnSn < 0

This completes the proof.

4.2. Parameter-dependant H∞ filter design. In this subsection we will try the de-
sign of robust parameter-dependant H∞ filter where the parameter matrices and the
parameter α jointly vary. We consider a parameter-dependant full-order filter in the
following form: [

x̃h(i+ 1, j)

x̃v(i, j + 1)

]
= Af (α)

[
x̃h(i, j)

x̃v(i, j)

]
+Bf (α)y(i, j)

z̃(i, j) = Cf (α)(α)

[
x̃h(i, j)

x̃v(i, j)

]
+Df (α)y(i, j) (10)

x̃h(i, j) = x̃v(i, j) = 0, i, j = 1, 2, . . .

Theorem 4.2. Considering the uncertain 2-D system with constant delays (1) and given
a positive scalar γ, the precedent parameter-dependant filter exists, such as assuring a
prescribed H∞ performance and the robust stability of the filtering error system if there
exist matrices Gh

n > 0 and Gv
n > 0 with n ∈ 1, . . . , N , L, J, Af11n, Af12n, Af21n, Af22n,

Bf1n, Bf2n, Cf1n, Cf2n and Df such that the following LMI is feasible for n ∈ 1, . . . , N
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ϕh1 − sym(L) 0
(
L
2

)T
+GhT

n 0 ϕh2 0 0

∗ ϕv1 − sym(J) 0
(
J
2

)T
+GvT

n 0 ϕv2 0

∗ ∗ −2Gh
n(α) 0 0 0 0

∗ ∗ ∗ −2Gv
n(α) 0 0 0

∗ ∗ ∗ ∗ ϕh3 0 0
∗ ∗ ∗ ∗ ∗ ϕv3 0
∗ ∗ ∗ ∗ ∗ ∗ −γ2I
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

π1 π2 π3 π4 π5
π6 π7 π8 π9 π10
0 0 0 0 0
π11 π12 π13 π14 0
π15 π16 π17 π18 0
0 0 0 0 0
π19 π20 π21 π22 π23
−Z1 0 0 0 0

∗ −Z2 0 0 0

∗ ∗ −Gh
n 0 0

∗ ∗ ∗ −Gv
n 0

∗ ∗ ∗ ∗ −I



< 0

with

π1 =

[ √
d1A

T
11nZ1 −

√
d1Z1

0

]
, π2 =

[ √
d2A

T
21nZ2

0

]
π3 =

[
AT

11nL
T
11 + CT

1nB
T
f1n AT

11nL
T
21 + CT

1nB
T
f1n

AT
f11n AT

f11n

]
π4 =

[
AT

21nJ
T
11 + CT

1nB
T
f2n AT

21nJ
T
21 + CT

1nB
T
f2n

AT
f21n AT

f21n

]
π5 =

[
ET

1n − CT
1nD

T
fn

−CT
f1n

]
, π6 =

[ √
d1A

T
12nZ1

0

]
π7 =

[ √
d2A

T
22nZ2 −

√
d2Z2

0

]
π8 =

[
AT

12nL
T
11 + CT

2nB
T
f1n AT

12nL
T
21 + CT

2nB
T
f1n

AT
f11n AT

f11n

]
π9 =

[
AT

22nJ
T
11 + CT

2nB
T
f2n AT

22nJ
T
21 + CT

2nB
T
f2n

AT
f11n AT

f11n

]
π10 =

[
ET

2n − CT
2nD

T
fn

−CT
f2n

]
, π11 =

[ √
d1A

T
d11nZ1

0

]
π12 =

[ √
d2A

T
d21nZ2

0

]
, π13 =

[
AT

d11nL
T
11

0

]
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π14 =

[
AT

d11nL
T
21

0

]
, π15 =

[
AT

d21nJ
T
11

0

]
π16 =

[
AT

d21nJ
T
21

0

]
, π17 =

[ √
d1A

T
d12nZ1

0

]
π18 =

[ √
d2A

T
d22nZ2

0

]
, π19 =

[
AT

d12nL
T
11

0

]
π20 =

[
AT

d12nL
T
21

0

]
, π21 =

[
AT

d22nJ
T
11

0

]
π22 =

[
AT

d22nJ
T
21

0

]
, π23 =

[√
d1B

T
1nZ1

]
Furthermore, a suitable filter in the form of (3) is given by Āf11n Āf12n B̄f1n

Āf21n Āf22n B̄f2n

C̄f1n C̄f2n D̄fn

 =

 L−1
12 0 0

0 J−1
12 0

0 0 I

 Af11n Af12n Bf1n

Af21n Af22n Bf2n

Cf1n Cf2n Dfn


Proof: By considering the uncertain 2-D discrete system in (1) and the parameter-

dependent filter (3), similar to the proof of Theorem 4.1, the corresponding filtering error
system is robustly asymptotically stable and has a prescribed H∞ disturbance attenuation
performance level γ, if the following inequality holds

ϕh1 − sym(L) 0
(
L
2

)T
+GhT (α) 0 ϕh2 0 0

∗ ϕv1 − sym(J) 0
(
J
2

)T
+GvT (α) 0 ϕv2 0

∗ ∗ −2Gh(α) 0 0 0 0

∗ ∗ ∗ −2Gv(α) 0 0 0

∗ ∗ ∗ ∗ ϕh3 0 0

∗ ∗ ∗ ∗ ∗ ϕv3 0

∗ ∗ ∗ ∗ ∗ ∗ −γ2I
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

π1 π2 π3 π4 π5
π6 π7 π8 π9 π10
0 0 0 0 0
π11 π12 π13 π14 0

π15 π16 π17 π18 0

0 0 0 0 0
π19 π20 π21 π22 π23
−Z1 0 0 0 0

∗ −Z2 0 0 0

∗ ∗ −Gh 0 0

∗ ∗ ∗ −Gv 0

∗ ∗ ∗ ∗ −I



< 0



328 M. OUBAIDI, Z. CHALH AND M. ALFIDI

with

π1 =

[ √
d1A

T
11(α)Z1 −

√
d1Z1

0

]
, π2 =

[ √
d2A

T
21(α)Z2

0

]
π3 =

[
AT

11(α)L
T
11 + CT

1 (α)B
T
f1(α) AT

11(α)L
T
21 + CT

1 (α)B
T
f1(α)

AT
f11(α) AT

f11(α)

]
π4 =

[
AT

21(α)J
T
11 + CT

1 (α)B
T
f2(α) AT

21(α)J
T
21 + CT

1 (α)B
T
f2(α)

AT
f21(α) AT

f21(α)

]
π5 =

[
ET

1 (α)− CT
1 (α)D

T
f (α)

−CT
f1(α)

]
, π6 =

[ √
d1A

T
12(α)Z1

0

]
π7 =

[ √
d2A

T
22(α)Z2 −

√
d2Z2

0

]
π8 =

[
AT

12(α)L
T
11 + CT

2 (α)B
T
f1(α) AT

12(α)L
T
21 + CT

2 (α)B
T
f1(α)

AT
f11 AT

f11

]
π9 =

[
AT

22(α)J
T
11 + CT

2 (α)B
T
f2(α) AT

22(α)J
T
21 + CT

2 (α)B
T
f2(α)

AT
f11(α) AT

f11(α)

]
π10 =

[
ET

2 (α)− CT
2 (α)D

T
f (α)

−CT
f2(α)

]
π11 =

[ √
d1A

T
d11(α)Z1

0

]
, π12 =

[ √
d2A

T
d21(α)Z2

0

]
π13 =

[
AT

d11(α)L
T
11

0

]
π14 =

[
AT

d11(α)L
T
21

0

]
π15 =

[
AT

d21(α)J
T
11

0

]
, π16 =

[
AT

d21(α)J
T
21

0

]
π17 =

[ √
d1A

T
d12(α)Z1

0

]
, π18 =

[ √
d2A

T
d22(α)Z2

0

]
π19 =

[
AT

d12(α)L
T
11

0

]
, π20 =

[
AT

d12(α)L
T
21

0

]
π21 =

[
AT

d22(α)J
T
11

0

]
, π22 =

[
AT

d22(α)J
T
21

0

]
π23 =

[√
d1B

T
1 (α)Z1

]
Remark 4.1. Compared to 1-D systems, the analyses of 2-D systems are not easy due
to their complex structures for which the dynamics depend on two independent variables.
Theorem 3.1 gives a sufficient condition for H∞ performance of uncertain 2-D discrete
systems described by the Roesser model. Note that if system (1) reduces to a 1-D system
with polytopic uncertainty, Theorem 3.1 coincides with H∞ performance for 1-D systems.
Thus, Theorem 3.1 can be viewed as an extension of existing results on the H∞ perfor-
mance and filtering for 1-D systems to the 2-D case.

Remark 4.2. The study of the uncertain 2-D discrete systems has shown a powerful
ability to represent plenty of real systems. In the numerical examples section, we will
consider a real process (thermal processes) to clarify the importance of our results.
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5. Numerical Example. In this section, two numerical examples are considered to show
the less conservatism and the efficiency of the proposed approaches. Example 5.1 will
be presented to consider the H∞ filtering problem of a system without uncertainty. And
Example 5.2 will be provided to consider theH∞ filtering problem of the thermal processes
in the presence of uncertainty.

Example 5.1. Let us consider a Roesser state system with the following matrices:

A =

[
0 1

0.25 0.75

]
, Ad =

[
0 0

−0.003 −0.004

]
B =

[
1 0
0 0

]
, C =

[
0.05 1

]
, D =

[
0 1

]
E =

[
0 1

]
, F =

[
0 1

]
Given d1 = 1, d2 = 1 by solving the LMIs, the minimun H∞ norm bound for this

example is γ = 0.07 and filter matrices are as follows: Af11 Af12 Bf1

Af21 Af22 Bf2

Cf1 Cf2 Df

 =

 −0.0017 0.0113 −0.0032
0.0049 0.0030 −0.009
0.8187 −0.0091 0.9978


The transfer function of the filtering system is shown as Figure 1.
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Figure 1. Transfer function

As shown in the example upward the solution of the method is feasible with mild results.

Example 5.2. Consider the thermal processes [20, 21] in chemical reactors, heat exchang-
ers, and pipe furnaces shown in Figure 2, which can be expressed in the partial differential
equation with uncertainty and time delays:

∂T (x, t)

∂x
= −∂T (x, t)

∂t
− a0(σ + 1)∂T (x, t)− a1(σ + 1)∂T (x− xd, t)

− a2(σ + 1)∂T (x, t− τ) + b(σ + 1)u(x, t) (11)
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where T (x, t) is usually the temperature at x (space) ∈ [0, xf ] and t (time) ∈ [0,∞], u(x, t)
is a given force function, a0, a1 and a2, b are real coefficients, σ is unknown real time
invariant parameter satisfying |σ| ≤ σ̄, τ and xd representing the time delay and the space
delay respectively.

Figure 2. Exchanger

Denote xh(i, j) = T (i−1, j), xv(i, j) = T (i, j), d1 = int(xd/∆x) and d2 = int(τ/∆t+1)
(where int(.) is the integer function) and define

c(α) = σ = α1σ̄ − α2σ̄

It is easy to verify that Equation (11) can be converted into the Roesser model (1) with
parameter matrices:

A(α) =

[
0 1
∆t

∆x
1− ∆t

∆x
− a0(1 + c(α))∆t

]

Ad(α) =

[
0 0

−a1(1 + c(α))∆t −a2(1 + c(α))∆t

]
Let ∆t = 0.2, ∆x = 0.4, a0 = 1, a1 = 0.3, a2 = 0.4, b = 1. By considering the problem of
H∞ disturbance attenuation, the thermal process is modeled in the form (1) with

B(α) =

[
1 0
0 0

]
, C(α) =

[
0.05 1

]
, D(α) =

[
0 1

]
E(α) =

[
0 1

]
, F =

[
0 1

]
Now, assume that σ̄ = 0.9, the system can be modeled as a polytope with two vertices:

A1 =

[
0 1
0.5 0.12

]
, A2 =

[
0 1
0.5 0.48

]
Ad1 =

[
0 0

−0.114 −0.152

]
, Ad2 =

[
0 0

−0.006 −0.008

]
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B =

[
1 0
0 0

]
, C =

[
0.05 1

]
, D =

[
0 1

]
E =

[
0 2.5

]
, F =

[
0 1

]
Applying Theorem 4.2, we can obtain the minimum attenuation level γmin = 1.5109 with
d1 = d2 = 3.

The filter matrices for the first vertex are as follows: Af11 Af12 Bf1

Af21 Af22 Bf2

Cf1 Cf2 Df

 =

 −0.0084 0.0648 −0.3718
0.3420 0.0053 −0.1861
0.0792 −0.1253 2.2333


and for the second vertex Af11 Af12 Bf1

Af21 Af22 Bf2

Cf1 Cf2 Df

 =

 0.0023 0.0295 −0.2978
0.1042 0.0126 −0.1904
0.0204 −0.1270 2.2633


Based on Theorem 4.2, the actual H∞ performances obtained at the vertices is shown

in Figure 3, which is below the guaranteed value 1.5109.
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Figure 3. Transfer function example 2

6. Conclusion. The problem of robust H∞ filtering has been considered in this paper
for 2-D state delay systems described by the Roesser model with polytopic parameter
uncertainty. The robust filters have been designed in terms of a feasible LMI, which
guarantees the filtering error system to be asymptotically stable with a prescribed H∞
performance for all admissible parameter uncertainties. An optimal filter design problem
is also provided by optimizing the filtering performances. Numerical examples are given
to illustrate the effectiveness of the proposed results.

Acknowledgment. The authors would like to thank the editor and anonymous reviewers
for their many helpful comments and suggestions to improve the quality of this paper.
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Uncertainties, Birkhäuser, Boston, MA, 1999.

[6] A. Elsayed and M. J. Grimble, A new approach to the H∞ design of optimal digital linear filters,
IMA Journal of Mathematical Control and Information, vol.6, no.2, pp.233-251, 1989.

[7] S. F. Chen and I. K. Fong, Delay-dependent robust H∞ filtering for uncertain 2-D state-delayed
systems, Signal Processing, vol.87, pp.2659-2672, 2007.

[8] J. C. Geromel, M. C. de Oliveira and J. Bernussou, Robust filtering of discrete-time linear systems
with parameter dependent Lyapunov functions, SIAM J. Control Optim., vol.41, pp.700-711, 2002.

[9] R. M. Palhares, C. E. de Souza and P. D. Peres, Robust /spl Hscr//sub /spl infin// filtering for
uncertain discrete-time state-delayed systems, IEEE Transactions on Signal Processing, vol.49, no.8,
pp.1696-1703, 2001.

[10] X. M. Zhang and Q. L. Han, Delay-dependent robustH∞ filtering for uncertain discrete-time systems
with time-varying delay based on a finite sum inequality, IEEE Transactions on Circuits and Systems
II: Express Briefs, vol.53, no.12, pp.1466-1470, 2006.

[11] M. Basin, S. Elvira-Ceja and E. N. Sanchez, Mean-square H∞ filtering for stochastic systems: Ap-
plication to a 2DOF helicopter, Signal Processing, vol.92, no.3, pp.801-806, 2012.

[12] E. N. Goncalves, R. M. Palhares and R. H. Takahashi, H/sub 2//H/sub /spl infin// filter design for
systems with polytope-bounded uncertainty, IEEE Transactions on Signal Processing, vol.54, no.9,
pp.3620-3626, 2006.

[13] Z. Wang, Y. Liu and X. Liu, H∞ filtering for uncertain stochastic time-delay systems with sector-
bounded nonlineaities, Automatica, vol.44, pp.1268-1277, 2008.

[14] T. Ooba, On stability analysis of 2-D systems based on 2-D Lyapunov matrix inequalities, IEEE
Transactions on Circuits and Systems I, vol.47, pp.1263-1265, 2000.

[15] R. Roesser, A discrete state-space model for linear image processing, IEEE Transactions on Auto-
matic Control, vol.20, no.1, pp.1-10, 1975.

[16] K. Badie, M. Alfidi and Z. Chalh, Improved delay-dependent stability criteria for 2-D discrete state
delayed systems, International Conference on Intelligent Systems and Computer Vision (ISCV),
pp.1-6, 2018.

[17] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear Matrix Inequalities in System and
Control Theory, SIAM, Philadelphia, 1994.

[18] K. Badie, M. Alfidi and Z. Chalh, Robust H∞ control for 2-D discrete state delayed systems with
polytopic uncertainties, Multidimensional Systems and Signal Processing, vol.30, no.3, pp.1327-1343,
2019.

[19] J. Chen, J. Gao and D. Li, Estimation in semi-parametric regression with non-stationary regressors,
Bernoulli, vol.18, no.2, pp.678-702, 2012.

[20] C. Du, L. Xie and Y. C. Soh, H∞ filtering of 2-D discrete systems, IEEE Transactions on Signal
Processing, vol.48, no.6, pp.1760-1768, 2000.

[21] C. El-Kasri, A. Hmamed, E. H. Tissir and F. Tadeo, Robust H∞ filtering for uncertain two-
dimensional continuous systems with time-varying delays, Multidimensional Systems and Signal
Processing, vol.24, no.4, pp.685-706, 2013.

[22] K. Badie, M. Alfidi and Z. Chalh, New relaxed stability conditions for uncertain two-dimensional
discrete systems, Journal of Control, Automation and Electrical Systems, vol.29, no.6, pp.661-669,
2018.

[23] K. Badie, M. Alfidi, Z. Chalh and F. Tadeo, Delay-dependent stability and H∞ performance of 2-D
continuous systems with delays, Circuits, Systems, and Signal Processing, vol.37, no.12, pp.5333-
5350, 2018.



H∞ PERFORMANCE AND FILTERING 333

[24] C. El-Kasri, A. Hmamed, T. Alvarez and F. Tadeo, Uncertain 2D continuous systems with state
delay: Filter design using an H∞ polynomial approach, International Journal of Computer Applica-
tions, vol.44, no.18, pp.13-21, 2012.

[25] K. Gu, V. L. Kharitonov and J. Chen, Stability of Time-delay Systems, Birkhauser, Boston, 2003.
[26] Y. He, G. P. Liu, D. Rees and M. Wu, H∞ filtering for discrete-time systems with time-varying

delay, Signal Processing, vol.89, no.3, pp.275-282, 2009.
[27] D. Peng and X. Guan, H∞ filtering of 2-D discrete state-delayed systems, Multidimensional Systems

and Signal Processing, vol.20, no.3, pp.265-284, 2009.
[28] J. Richard, Time-delay systems: An overview of some recent advances and open problems, Auto-

matica, vol.39, pp.1667-1694, 2003.
[29] H. Xu and Y. Zou, Robust H∞ filtering for uncertain two-dimensional discrete systems with state-

varying delays, International Journal of Control, Automation and Systems, vol.8, no.4, pp.720-726,
2010.

[30] A. Zabari, E. H. Tissir and F. Tadeo, Delay-dependent robust H∞ filtering with lossy measurements
for discrete-time systems, Arabian Journal for Science and Engineering, vol.42, no.12, pp.5263-5273,
2017.

[31] Y. Xie, J. Liu and L. Wang, H∞ Filtering design for Takagi-Sugeno fuzzy model with immeasurable
premise variables by applying a switching method, ICIC Express Letters, vol.14, no.3, pp.257-264,
2020.


