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Abstract. This paper conducts analysis on the human beings’ radial artery natural vi-
bration in a micro scale. The radial artery is one important organ in the arterial system.
In order to analyze the radial artery vessel, we undertake a three-dimensional modal
analysis of the coupled radial-blood system. The radial artery consists of three layers:
intima, media, and adventitia. We deduced the theoretical expression of the radial artery
mechanical model, and then conducted the theoretical analysis and simulation of radial
artery vibration. We considered the normal condition and the varicose condition respec-
tively of the radial artery vascular, comparing the two conditions from both deduction
and vibration simulation by finite element method. Lastly the vibration frequencies and
vibration mode shapes for each condition were represented for medial analytical applica-
tions and solutions. Finally the theoretical simulation is compared with the experimental
results obtained from stenosis subjects in order to reveal the inherent relationship. The
theoretical analysis and hemodynamics analysis could provide guidance for medical in-
strument development.
Keywords: Modal analysis, Radial arterial wall, Stenosis analysis, Waveform analysis

1. Introduction. In decades, the study of cardiovascular research became increasingly
meaningful in the research of cardiovascular diseases. There have been several kinds of
research about cardiovascular system, including the aortic-radial waveform signal analy-
sis, the mechanical modeling of aortic-radial vascular system, and hemodynamics monitor
analysis. In the macro level analysis, the radial artery waveforms can be easily obtained
by an applanation tonometry instrument, applying an Omron HEM-7012 on the radial
artery of the left arm. Based on this medical sensor we could conduct much research
in cardiovascular field, such as waveform morphology analysis and transfer function con-
struction. The most classic one is radial-carotid transfer function modeling, as both time
domain methods or frequency techniques could be used for estimation [1]. The techniques
of fast Fourier transformation could be able to provide more accurate estimation for the
radial-aortic calculation [2]. The other kind is the biomechanics analysis for blood ves-
sels or capillaries. For mechanical modeling, we consider the radial vascular vessel as a
single hollow micro-cylindrical tube, with blood flowing inside the channel. The highest
fluid pressure in the channel is the systolic pressure of the blood as it flows through the
radial artery. The lowest pressure of this same blood is the diastolic pressure during one
cycle. Although there are some numerical techniques efficient for solving complex partial
equations such as element free methods [3], we deduce the explicit formulation of the
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relationship between blood pressure and vascular elasticity from present simple hemody-
namic model [4]. Fluid-structure interaction is also necessary for mechanical simulation
when analyzing the effects of blood pressure on the radial vascular vessel. Ansys software
is applicable for this fluid-structure simulation.
Varicose veins have become one ordinary vascular disease for elderly people, as pre-

vious studies reported that varicose veins affect approximately 25 percent of the adult
population, and complications arising from them leading to a significant cause of patient
morbidity and health service expense [5]. From the micro level mechanism, the vari-
cose veins are veins becoming enlarged and twisted [6]. The varicose veins case usually
happens in the legs and lower limbs of the patients [7], while in our study in order to con-
duct our research in a small range, we choose the radial artery for varicose veins study.
In our biomechanics study, we conducted the radial vessel mechanical model derivation,
comparing the two models between the normal condition and the varicose veins condi-
tion. Secondly, the varicose veins’ influence was represented in vibration analysis, within
the blood-radial vascular interaction on the coupled natural frequencies [8]. Analytical
method, based on the modal decomposition, and numerical method, was based on the
finite element method [9]. For this purpose, analytical solutions of the problem were ob-
tained and the sensitivity of these natural frequencies and mode shapes were investigated
with regards of the layer distribution [10]. The blood was assumed compressible. The
vibration frequencies at each mode were demonstrated in a comparison of the normal and
the varicose veins conditions. In order to obtain the inherent relationship between radial
vascular vibrations with stenosis, we also conducted experiments for a group of subjects
including stenosis subjects. We analyzed the realistic pulse waveforms of both stenosis
subjects and normal subjects, and summarized the theoretical deduction by the assistance
of experimental results.
In summary, in this paper we conducted theoretical analysis for radial vascular mod-

eling of stenosis subjects and normal subjects respectively. The vibration mode analysis
and the experimental waveform comparisons are methods and means for theoretical induc-
tion to understand vascular stenosis. For practical significance, the theoretical analysis
and hemodynamics analysis could provide guidance for developing medical instruments
including arterial stiffness detector and hematology analyzer.

2. Radial Vessel Mechanical Model and Vibration Mode Analysis. To analyze
the theoretical relationship between blood pressure and radial artery viscocity-elasticity
strain/stress, it is necessary to examine the radial artery mechanical model. If we consider
the blood behavior in a radial segment of a human artery as a one-dimensional, Newtonian,
incompressible fluid flow inside an elastic tube, we can deduce the flow quantity expression
from a continuity equation:

∂Q

∂z
+
∂A

∂t
= 0 (1)

where A is the cross-sectional area, Q is a flow (volume/time) through the elastic tube,
and z is the axial direction. According to Bergman et al. [11], the pulsatile flow of an
incompressible fluid in a rigid, straight circular cylinder is considered a system of the
Cauchy equation of motion reduction:

ρ
∂u

∂t
= −∂P

∂z
+

1

r

∂(rT )

∂r
(2)

In this equation, ρ is the fluid density, u is the axial velocity of the flowing fluid, P is
the dynamic pressure of the flowing fluid, r and z are the radial and axial coordinates
respectively, t is the calculus time for computing physical variables’ changes over time,
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Table 1. The mechanical parameters of the three-layer radial vessel model

E (Pa) ρ (kg/m3) ν R (m)

Fluid 1000 0.0105

Intima 385643 1150 0.45 0.0107

Media 1156928 1150 0.45 0.0119

Adventitia 385643 1150 0.45 0.0125

and T is the shear stress in the axial direction. And the parameters of the radial vascular
vessel are listed in Table 1.

In Table 1, the aorta is composed of three morphologically distinct layers: the intima,
media, and adventitia, separated by internal and external elastic laminae. Adventitia is
the outer layer of a blood vessel. Media is the middle layer of a blood vessel, and intima
is the inner layer or lining of a blood vessel. E, R, ν and ρ stand for Young modulus,
radius, poison ratio and density of each layer.

For expressing the shear stress in a rheological model, T is a function of the strain rate
in a Newtonian model, and the viscosity µ is therefore regarded as the absolute viscosity,
so T can be deduced in (3):

T = µ
∂u

∂r
(3)

We use Equation (3) to replace the T in Equation (2), and the linearized momentum
equation is given in (4):

ρ
∂u

∂t
= −∂P

∂z
+ µ

(
∂2u

∂r2
+

1

r

∂u

∂r

)
(4)

If the model is under the condition where the radial and tangential motion of fluid is
neglected, the pressure gradient can be expressed as the form in Equation (5):

−∂P
∂z

= P0 · eiωt (5)

Combining the three Equations (1), (2), and (5) into a joining equation, we obtain the
solution, which is already represented in Womersley’s paper [12], and is shown in (6):

u = u(r, z, t) =
A

iωρ

[
1− J1 (i

1.5αy)

J0 (i1.5α)

]
eiωt (6)

In this solution α = (ωρ/µ)0.5r0, y = r/r0, r0 is the internal arterial radius, J0 and J1 are
zero and first order, respectively, from the Bessel functions of the first kind. Following
the above formula derivation, we can create a schematic diagram for the radial artery
configuration, shown in Figure 1. Figure 1 represents the model of radial artery vascular,
the red cylinder inside stands for the blood flowing in the vessel, and the grey cylinder
outside stands for the artery wall. Figure 1 also marks the radial coordinate r and the
axial coordinate z, which is used in Equation (2). This figure could be able to describe the
rigid model of the radial artery mechanical modeling. This model is an ideal model for
radial artery mechanical analysis. However, if we want to consider the blood as flowing
stream, the model needs to be modified as a fluid-structure model. In the latter part of
this chapter, we would discuss the fluid model.

Considering the fluid model in the bloodstream, the flow in this study is assumed to
be laminar Newtonian, viscous, and incompressible. The blood flow is governed by the
Navier-Stokes equations of incompressible flow blood on a moving domain [13]. Combining
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Figure 1. The schematic diagram for radial artery configuration

the Navier-Stokes equations and the continuity equations, the governing equations are
shown in Equations (7) and (8):

∂
−→
V

∂t
+
−→
V ·

−→
∇
−→
V +

−→
∇P
ρ

− 2
η

ρ

−→
∇ ·D =

−→
0 (7)

∇ ·
−→
V = 0 (8)

where V is the fluid velocity, P is fluid pressure, ρ is density, η is dynamic viscosity,
−→
∇ is

the gradient operator and D is the fluid rate of deformation tensor. In that case, in order
to analyze the longitudinal vibration and the torsional vibration, the scalar components
of the displacements vector u could be expressed by

u(i)r =
∂ϕi
∂r

+
n

r
ψi − kz

∂χi
∂r

(9)

u
(i)
θ =

nkz
r
χi −

n

r
ϕi −

∂ψi
∂r

(10)

u(i)z = kzϕi + k2ψi
χi (11)

In Equation (9), Equation (10) and Equation (11), the radial wave number (kϕi , kψi
) are

related to the axial wave number kz by k2ϕi = ω2/c2Li
− k2z , k

2
ψi

= ω2/c2Ti − k2z . ω denotes
the angular frequency.
The stress tensor in the arterial layers is given by Hooke’s law in terms of potentials as

σ(i)
rr = 2µi

{
∂2ϕi
∂r2

− λiω
2

2µic2Li

ϕ2 +
n

r2

(
r
∂ψi
∂r

− ψi

)
− kz

∂2χi
∂r2

}
(12)

σ
(i)
rθ = 2µi

{
n

r2

(
ϕi − r

∂ψi
∂r

)
− ∂2ψi

∂r2
−
k2ψi

2
ψi +

nkz
r2

(
r
∂χ

∂r
− χi

)}
(13)

σ(i)
rz = 2µi

{
2kz

∂ϕi
∂r

+
nkz
r
ψi +

(
k2ψi

− k2z
) ∂χi
∂r

}
(14)

where ∇2 = ∂2

∂r2
+ 1

r
∂
∂r

+ 1
r2

∂2

∂θ2
+ ∂2

∂z2
, time dependence has the form exp(jωt) and cLi

=√
λi+2µi
ρi

and cTi =
√

µi
ρi

are the compressional and shear wave velocities in the solids,

respectively. Applying the method of separation of variables, the solution of the equations
for potentials, associated with an axial wave number kz, radial wave number (kϕi , kψi

) and
circumferential mode parameter n.
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For the torsion mode, the scalar components of the displacement are shown as below,
giving the non-vanishing components of displacement and stresses:

u
(i)
θ = −∂ψi

∂r
, σ

(i)
rθ = −2µi

{
∂2ψi
∂r2

+
k2ψi

2
ψi

}
(15)

ψi = [CiJ0(kψi
r) +DiY0(kψi

r)] sin(kzz) exp(jωt) (16)

While in Equation (15) and Equation (16), the scalar potentials ψi and kψi
are known as

the Helmholtz decomposition. Under that case the boundary conditions become:

σ
(1)
rθ (r, z) = 0,

u
(1)
θ (r, z) = u

(2)
θ (r, z), σ

(1)
rθ (r, z) = σ

(2)
rθ (r, z),

u
(2)
θ (r, z) = u

(3)
θ (r, z), σ

(2)
rθ (r, z) = σ

(3)
rθ (r, z),

σ
(3)
rθ (r, z) = 0 (17)

Thus the vibration equation [M]{x} = {0} becomes [T]{x} = {0}, whereas [T] is a 7× 7
matrix whose components are calculated respectively. In Equation (17), the circumfer-

ential displacement u
(i)
θ is independent of θ. σ(1) stands for the normal components of

the intima stresses, σ(2) stands for the normal stress components between the intima and
the media, and σ(3) stands for the normal stress components between the media and the
adventicia.

The other simple kind vibration is longitudinal mode vibration, and under this vibration
the motion is confined to the plane perpendicular to the z-axis, which could move, expand
and contract within their planes. The solution for the displacement and stress vector is
shown as below:

u(i)r =
∂ϕi
∂r

− kz
∂χi
∂r

(18)

u(i)z = kzϕi + k2ψ2
χi (19)

σ(i)
rr = µi

{
2
∂2ϕi
∂r2

− λiω
2

µic2Li

ϕi − 2kz
∂2χi
∂r2

}
(20)

σ(i)
rz = µi

{
2kz

∂ϕi
∂r

+
(
k2ψi

− k2z
) ∂χi
∂r

}
(21)

ϕi = [AiJ0 (kϕir) +BiY0 (kϕir)] sin(kzz) exp(jωt) (22)

χi = [EiJ0 (kψi
r) + FiY0 (kψi

r)] cos(kzz) exp(jωt) (23)

Under that case the boundary conditions become:

∂p(r, z)

∂r
= ρfω

2u(1)r (r, z),

σ(1)
rr (r, z) = −p(r, z), σ(1)

rz (r, z) = 0,

u(1)rr (r, z) = u(2)r (r, z), u(1)z (r, z) = u(2)z (r, z),

σ(1)
rr (r, z) = σ(2)

rr (r, z), σ
(1)
rz (r, z) = σ(2)

rz (r, z),

u(2)rr (r, z) = u(3)r (r, z), u(2)z (r, z) = u(3)z (r, z),

σ(2)
rr (r, z) = σ(3)

rr (r, z), σ
(2)
rz (r, z) = σ(3)

rz (r, z),

σ(3)
rr (r, z) = σ(3)

rz (r, z) = 0 (24)

Thus the vibration equation [M]{x} = {0} becomes [L]{x} = {0}, whereas [L] is a 13×13
matrix whose components are calculated respectively. We conducted the simulation based
on the above theoretical derivations. The simulation environment was Ansys 16.0, and the
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simulation of the normal condition and the varicose veins conditions of the radial vascular
vessel were compared and analyzed. In our simulation, the models of normal condition
and the varicose veins condition were shown in Figure 2 and Figure 3 respectively. In
our simulation modeling for Figure 2 and Figure 3, the geometrical model consists of a
three-dimensional axisymmetric tube with a length of L, an inner diameter of R and a wall
thickness. We also set E, ν and ρ standing for Young modulus, poison ratio and density.
For the boundary condition, we set the outlet pressure as ∆p(t) = p(t)− p(t−∆t) which
is calculated from subjects’ SBP and DBP values. After we conducted the statistical data
arrangement for normal subjects and stenosis subjects, we entered the different data of
normal blood pressure and stenosis blood pressure for Figure 2 and Figure 3 respectively.
And some other data such as inner diameter and density were also adjusted for stenosis
groups in Figure 3.

Figure 2. The Ansys modeling for radial artery in normal condition

Figure 3. The Ansys modeling for radial artery in varicose veins condition
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3. Vibration Analysis. After we constructed the two models and input all the related
parameters, we conducted the vibration modal analysis inside Ansys 16.0, and in our
analysis we focused on the first five orders of the normal condition and the varicose veins
condition respectively. So we displayed the vibration frequencies and the vibration mode
of the first five orders for both conditions. For example, the first to fifth order vibration
mode contours of the normal condition are listed in Figure 4, and the vibration frequencies
of these five contours are listed in Table 2.

Table 2. The vibration frequency of the 1st to 5th vibration mode for
normal condition

Number Vibration Mode Frequency (Hz)
1 The first-order mode 101.65
2 The second-order mode 103.73
3 The third-order mode 142.12
4 The fourth-order mode 176.19
5 The fifth-order mode 187.99

Similar to the normal condition, we also conducted the first five orders vibration cal-
culation for the varicose veins condition. The first to fifth order vibration contours of
the varicose veins condition are shown in Figure 5, and the vibration frequencies of these
orders are listed in Table 3.

Table 3. The vibration frequency of the 1st to 5th vibration mode for
varicose veins

Number Vibration Mode Frequency (Hz)
1 The first-order mode 53.166
2 The second-order mode 84.587
3 The third-order mode 105.87
4 The fourth-order mode 122.33
5 The fifth-order mode 125.00

Combining the vibration frequencies of both groups together, we could observe the
comparative frequency curves, which are shown in Figure 6. From this comparative
curve we could find the vibration frequency of the varicose veins is lower than that of
the normal condition at each vibration order. Under the varicose veins condition, the
vibration frequency at the 4th or 5th order tends to be stable.

In order to compare with the theoretical analysis, we also conduct experiments for
radial artery signals acquisition. A population of 72 subjects between 25 to 85 years
old was recruited from a health screen center, and initially measured. All the patients’
waveforms were measured and recorded in the exercise intervention clinic of Chinese PLA
hospital. These patients mainly came from the north provinces of China, such as Beijing,
Shandong, and Shanxi. Subjects with irregular heart rhythm, heart failure, and significant
cardiovascular disease were excluded according to the questionnaire. Hypertension is
defined as a systolic blood pressure ≥ 140 mmHg, or diastolic blood pressure ≥ 90 mmHg.
Our experiment sample included hypertension patients, and details are given in Table
4. Our study focuses on circumstances where varying systolic blood pressure leads to
specific radial waveforms characteristics. The systolic blood pressure of the chosen sample
therefore ranges widely, with small variations of other factors, such as age, heart rate,
and diastolic blood pressure. The hypertension population are all of the condition where
systolic blood pressure ≥ 140 mmHg.
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(a) (b)

(c) (d)

(e)

Figure 4. The mode contour of radial vascular in normal condition for
each vibration mode, the first-order mode (a), the second-order mode (b),
the third-order mode (c), the fourth-order mode (d), and the fifth-order
mode (e)

All measurements were performed in air-conditioned environments (22-26◦C). Each
subject rested for at least 10 minutes before measurements. Measurements were taken
in a temperature-controlled room between 8:30 and 11:00 AM. All measurements were
obtained after 12 h fasting. No consumption of alcohol was allowed for 24 h, and no
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(a) (b)

(c) (d)

(e)

Figure 5. The mode contour of radial vascular in varicose veins condition
for each vibration mode, the first-order mode (a), the second-order mode
(b), the third-order mode (c), the fourth-order mode (d), and the fifth-order
mode (e)

tea, coffee, or smoking for 8 h before the examination. For each patient, systolic blood
pressure (SBP) and diastolic blood pressure (DBP) were measured three times on the
left arm with an Omron HEM-7012 (Omron Healthcare, Japan). Mean arterial pressure
was calculated as one third of pulse pressure added to DBP. All measurements were
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Figure 6. The comparative frequency curves for the normal condition and
the varicose veins condition for the first five vibration orders. The dotted
line stands for the normal condition, and the solid line stands for the varicose
veins condition.

Table 4. Characteristics of the study populations (n = 72)

Characteristics Mean ± SD Range
Male 31 (43.1%)

Hypertension 16 (22.2%)
Age (years) 51±2.6 24-84
Height (cm) 162.6±7.1 150-180
Weight (kg) 62.6±9.7 40-84
SBP (mmHg) 127.1±23.0 105-158
DBP (mmHg) 73.9±8.4 60-95
HR (beats/min) 70.4±3.8 65-73

performed by the same operator and conducted in the supine position, and recorded by
Hu et al. as the measurement reference [14]. Based on the methods and techniques
established in the study, we developed arterial stiffness detector (BX-CFTI-200) and
noninvasive central arterial pressure analyzer (BX-CAP-100), and demonstrated them in
the exercise intervention clinic of Chinese PLA hospital. BX-CAP-100 records radial pulse
waveform using applanation tonometry and obtains central arterial pressure waveform
by the transformation of GTF. Pulse wave analysis was then applied to extracting a
number of hemodynamic indexes [15], including central SBP, AI and SEVR [16]. This
equipment has cheap cost and easy to operate, satisfying the requirement of patient
waveforms obtainment [17]. After our selection, the initial group was divided into one
stenosis group (15 subjects) and the other one control group (57 subjects).
According to the corresponding reference, the complete arterial pulse can be described

by 10 harmonics at most, and over 95% of the signal energy could be described in the
first 5 to 9 harmonics [18]. The first 4 have been found to reliably estimate central blood
pressure signals [19], so we selected this for the transfer function, and found that within
the 1-4th to 1-10th harmonics was appropriate. From this transfer function we obtained
the matching function of the radial artery waveform, and after residual calculation the
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Figure 7. The selected average radial waveform of pulse waves within one
cycle for stenosis group

Figure 8. The selected average radial waveform of pulse waves within one
cycle for the control group

function is confirmed as the combination of 10 harmonics shared with the least residual,
shown in Equation (25):

PG1 = P0 + P0C
(
eωkt + e2ωkt + e3ωkt + · · ·+ e8ωkt + e9ωkt + e10ωkt

)
(25)

For the fitting function precision calculation, we first calculated the precision for fitting
function within different harmonics numbers [20], and then adjusted the fitting parameters
C and k, attempting to obtain the most appropriate parameter with the least residual for
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Table 5. The comparison of fitting parameter values for the stenosis group
and control group

SBP C k
Stenosis Group 155 2.98 0.59
Control Group 135 1.16 0.43

both the stenosis group and the control group. After we conduct the statistical analysis,
we could compare the two values between the stenosis group and the control group, which
are shown in Table 5.
Above all, we could summarize the main points from the comparison between the steno-

sis subjects and the control group subjects for both waveforms and parameters. Although
the representative waveforms we chose for the stenosis and the control stand for case,
we could find that the stenosis affects the waveform shape and leads to larger width of
high SBP within one cycle. And the waveform parameters get increased compared to the
control group. The experimental results could provide evidence for our former simulation
study for stenosis condition. The theoretical vascular vibration analysis provided one im-
portant method for revealing the intrinsic implications under the radial pulse waveforms
of different subjects [21,22]. Compared to the previous work, our study group developed
our specific medical instrument arterial stiffness detector (BX-CFTI-200) and noninva-
sive central arterial pressure analyzer (BX-CAP-100), and our instrument could obtain
the radial waveforms more precisely. Our instrument design conducted waveforms acqui-
sition with the corresponding medical parameters exactly and efficiently. Our cooperation
hospital Chinese PLA hospital also provided excellent experimental conditions for us to
collect actual waveforms of stenosis groups and normal groups. Our theoretical work also
involved the vascular vibration modal analysis and hemodynamics analysis.

4. Conclusions. This paper has conducted the vibration frequency analysis and the
hemodynamics analysis of a radial artery vascular under the normal condition and the
arterial stenosis condition respectively. We used analytic and numerical methods for
understanding the mechanism of radial vascular vibration and blood flow inside the vas-
cular vessel. We conducted the mathematical derivations of the radial artery vascular
mechanics modeling for vibration analysis and hemodynamics analysis respectively. We
conducted the Ansys simulation about vibration frequencies’ change along the first five
orders from both the normal condition and the arterial stenosis condition, and the fre-
quencies tendencies of two conditions were recorded. The Fluent simulation represented
the hemodynamics status considering blood flow for stenosis. We could find the arterial
stenosis condition has a higher vibration frequency compared to the normal condition, and
the arterial stenosis condition’s vibration frequency tends to be stable from the fourth vi-
bration order. The hemodynamics analysis demonstrated that stenosis leads to a radically
changing flow velocity and pressure, which coincides with the actually measured radial
waveform of the representative stenosis subject. Moreover the experimental results could
also give evidence to support the theoretical simulation, as stenosis affects the waveform
and leads to enlarged waveform parameters. The stenosis’ influences on waveforms have
the inherent relationship with the theoretical analysis of vascular mechanical property.
In future research the study could be designed to analyze and investigate influences of
different diseases on arterial wall and blood-aorta interaction. The theoretical vibration
analysis could provide guidance for developing more optimized medical instruments, in-
cluding arterial stiffness detector and hematology analyzer. On the other side, the more
advanced medical instruments would also promote the theoretical field progress of medical
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science research. Furthermore, the study would tend to focus on more complex parametric
modeling of hemodynamics analysis of vascular artery in future research.
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