
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2021 ISSN 1349-4198
Volume 17, Number 2, April 2021 pp. 461–472

OPTIMAL OFFLINE MPC DESIGN: OUTPUT FEEDBACK
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Abstract. The paper deals with a problem of model predictive controller design, with a
unique structure of output feedback (observer-computed state vector) and optimal
offline design. The obtained controller ensures the stability of the closed-loop system
with a guaranteed cost for the given prediction horizon. The model predictive control
strategy is based on calculating the offline output feedback controller gain and designing
the online plant observer to compute the system’s next state for predicted outputs and
inputs. Finally, a numerical example illustrates the effectiveness of the proposed method.
Keywords: Predictive control, Output feedback, Model based control

1. Introduction. Model predictive control (MPC) is desirable for discrete-time dynamic
systems. MPC is one of the most popular control methods at the moment. The predictive
algorithm computes the control variable by minimizing the quadratic cost function, while
considering the expected value of future errors along the given prediction horizon. Besides
the classical PID control, predictive control is declared as the second most accepted prac-
tical algorithm nowadays. It is mainly due to its ability to take all constraints directly
into the sample account. In MPC, the future control inputs are computed at each sam-
pling time by solving the optimization problem [1-11,16-18]. By using the discrete-time
process model, the future behavior of the process output is predicted. On the base of
control errors, the set of future input signals is calculated on-line at each step by min-
imizing the quadratic cost function, while assuming that there are constraints on the
control variables, as well as on the controlled ones. According to the receding horizon
predictive control strategy, only the first input variable of the sequence calculated at time
t is applied. Other input variables are used to calculate predictive output variables, this
procedure being repeated at each instant. Therefore, assuming the presence of accuracy
of the plant model, it is a necessary condition for MPC of any real system. The MPC
approach requires solving the constrained optimization problem in each sampling period
(which is significant) and limits this algorithm’s practical applicability to relatively slow
dynamics. The main criticism related to MPC could be used for slow dynamics to bring
the following design of the tube-based output feedback MPC [12]. The explicit MPC [1]
for all the types of constraints leads to an inappropriately high number of the control
regions. For the case of a second-order system, the resulting control algorithm is in more
than 189 regions. In this paper, by using a sequential model predictive controller design
procedure, all calculations of a control sequence minimizing an objective function with
the given constraints on the model predictive controller are set up offline sequentially and
only the predictive controller inputs are calculated online. Due to the definition of the
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Bellman-Lyapunov function, the stability robustness and performance of the closed-loop
system are guaranteed [13].
The paper is organized as follows. Section 2 presents the preliminaries and problem

formulation. Section 3 brings the main results of the optimal offline and output feedback
sequential MPC controller design procedure, and Section 4 shows the effectiveness of the
proposed method using a numerical example. The predictive controller design has been
performed using YALMIP with PENBMI solver [14]. The paper is closed by concluding
remarks in Section 5.
The following notation is used in this paper. A symmetric matrix Pk = P T

k > 0 (Pk ≥ 0)
denotes the positive definiteness (semi-definiteness) of the matrix. Given two symmetric
matrices Pk, Qk, the inequality Pk > Qk indicates that Pk−Qk > 0. In predictive control,
the notation x(t+k) will be used to define k-steps ahead-prediction of the system variable
x at the time t under specified initial state and input scenario. Notation y(t + k|t) for
k = 1, 2, . . ., will be used to define the expected value of predicted output with available
information at instant t. I denotes the identity matrix of corresponding dimensions.

2. Problem Formulation and Preliminaries. Consider a time-invariant linear dis-
crete-time system that is defined in the state-space domain

x(t+ 1) = Ax(t) +Bu(t)

y(t) = Cx(t)
(1)

where x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rl are state, control and output variables of the
system respectively, A, B, C are known constant matrices of corresponding dimensions,
and (A,B) is a controllable pair.
For the first step of sequential predictive controller design procedure, the cost function

to be minimized is

J1 =
∞∑
t=0

J1(t)

J1(t) = x(t)TQ1x(t) + u(t)TR1u(t)

(2)

where Q1 ≥ 0, R1 > 0 are weighting matrices of the respective dimensions.
This paper aims to design a model predictive controller for the given control Nu and

prediction N horizons (Nu = N). The control algorithm is in the form

u(t+ k − 1) =
k+1∑
i=1

Fkiy(t+ i− 1) (3)

where Fki ∈ Rm×l and k is the given prediction horizon. The matrix Fki is output (state)
feedback gain matrix to be determined by minimization of the cost function (2). For
sequential design in the first step (k = 1), one starts with the following control algorithm

u(t) = F11y(t) + F12y(t+ 1) (4)

or

u(t) = (I − F12CB)−1(F11C + F12CA)x(t) = K1x(t) (5)

where F11 and F12 are output (state) feedback gain matrices to be determined in such a
way that the cost function (2) is optimal with respect to system variables.
Substitution of the control algorithm (4) to (1) for the first step of design procedure

gives

x(t+ 1) = Ax(t) +B(F11Cx(t) + F12Cx(t+ 1)) (6)
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which leads to

M1x(t+ 1)− Ac1x(t) = 0

x(t+ 1) = M−1
1 Ac1x(t) = D1x(t)

(7)

with

M1 = I −BF12C

Ac1 = A+BF11C

The first step design procedure requires calculation of the controller gain matrices F11,
F12 by minimizing the cost function (2). Considering the above results, let us introduce
the following Bellman-Lyapunov equation.

Lemma 2.1. Consider the system (1) with control algorithm (4). The control algorithm
(4) is the guaranteed cost control law for the closed-loop system if and only if there exists
Lyapunov function V1(t) = x(t)TP1x(t) such that for its first difference ∆V1(t) holds

Be1 = min
u(t)

{∆V1(t) + J1(t) < 0} (8)

Note that for chosen designer Lyapunov function iff might be reduced to if.

3. Sequential Model Predictive Controller Design. In this section, the new MPC
design procedure is obtained in the form of sequential mode. At each step of MPC de-
sign procedure k = 1, 2, . . . , N under the given quadratic cost function constraints and
Bellman-Lyapunov function, the predictive controller gains are obtained. The obtained
results are guaranteed the optimal value of the closed-loop system performance and sta-
bility for k = 1, 2, . . . , N . The detail of output feedback MPC sequential design procedure
is given as follows.

3.1. First step. In this section, the new BMI design procedure is given, in order to cal-
culate the gain controllers F11, F12. Let Lyapunov function in (8) be V1(t) = x(t)TP1x(t),
and its first difference is given as

∆V1(t) =
[
x(t+ 1)T x(t)T

] [P1 0
0 −P1

] [
x(t+ 1)

x(t)

]
(9)

If (9) with the closed-loop system (7) is negative definite, the closed-loop system will be
stable.

Let us assume that the Lyapunov matrix from system matrices can be split as follows[
x(t+ 1)T x(t)T

] [ 2NT
11

2NT
21

] [
M1 −Ac1

] [x(t+ 1)

x(t)

]
= 0 (10)

where two auxiliary matrices N11, N21 ∈ Rn×n are included. For the sake of achieving of
the required performance (2), the following formula will be obtained

J1(t) =
[
x(t+ 1)T x(t)T

] [ CTF T
12R1F12C CTF T

12R1F11C

CTF T
11R1F12C Q1 + CTF T

11R1F11C

] [
x(t+ 1)

x(t)

]
v1(t)

T =
[
x(t+ 1)T x(t)T

] (11)

where (4) is substituted to (2) and (11) is obtained after small manipulation.
Summarizing (9) and (10) with the obtained results and substituting (11) to (8) lead

to

Be1 = v1(t)
TW1v1(t) < 0 (12)
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where W1 = {w1ij}2×2 and

w111 = P1 +NT
11M1 +MT

1 N11 + CTF T
12R1F12C

w112 = −NT
11Ac1 +MT

1 N21 + CTF T
12R1F11C

w122 = −P1 −NT
21Ac1 − AT

c1N21 +Q1 + CTF T
11R1F11C

Note that the following condition should apply for the sake of obtaining optimal controller
parameters: the trace of matrix P1 must be the minimum value. From (12) the results
are obtained for the controller parameter (4) for k = 1.

3.2. Second step. The second step (k = 2) of design procedure leads to

x(t+ 2) = Ax(t+ 1) +Bu(t+ 1) (13)

From (3) will be obtained

u(t+ 1) = F21y(t) + F22y(t+ 1) + F23y(t+ 2)

= F21Cx(t) + F22CD1x(t) + F23Cx(t+ 2)
(14)

Then, the closed-loop system is

x(t+ 2) = AD1x(t) +B(F21Cx(t) + F22CD1x(t) + F23Cx(t+ 2)) (15)

or

M2x(t+ 2)− Ac2x(t) = 0

where

M2 = I −BF23C

Ac2 = AD1 +B(F21C + F22CD1)

The quadratic cost function for the second step is

J2(t) = x(t)TQ2x(t) + u(t+ 1)TR2u(t+ 1)

Substituting control algorithm from (14) will be obtained

J2(t) =
[
x(t+ 2)T x(t)T

] [ P T
e21R2Pe21 P T

e21R2Pe22

P T
e22R2Pe21 Q2 + P T

e22R2Pe22

] [
x(t+ 2)
x(t)

]
(16)

where

Pe21 = F23C

Pe22 = F21C + F22CD1

Using the same argument as for (9), (10) leads to

v2(t)
T =

[
x(t+ 2)T x(t)T

]
v2(t)

T

[
2NT

12

2NT
22

] [
M2 −Ac2

]
v2(t) = 0 (17)

and the first difference of V2 can be written as

∆V2(t) = v2(t)
T

[
P2 0
0 −P2

]
v2(t) = 0 (18)

When substituting the obtained results to the Bellman-Lyapunov equation for the second
step, the following inequality is obtained

Be2 = v2(t)
TW2v2(t) < 0 (19)
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where W2 = {w2ij}2×2 and

w211 = P2 +NT
12M2 +MT

2 N12 + P T
e21R2Pe21

w212 = −NT
12Ac2 +MT

2 N22 + P T
e21R2Pe22

w222 = Q2 + P T
e22R2Pe22 −DT

1 P2D1

The following matrices are calculated in the second step: three control gain matrices
F21, F22, F23, matrices N12, N22 and P2 > 0.

The following results are obtained for the control law

u(t+ 1) = (I − F23CB)−1(F21C + F22CD1 + F23CAD1)x(t) = K2x(t) (20)

and the closed-loop system is

x(t+ 2) = (AD1 +BK2)x(t) = D2x(t)

For the next developments we assume that input and output prediction horizon is
k = 1, 2, . . . , N . Using the same idea as for the first and second steps, the following
results for the quadratic cost function are obtained:

Jk(t) = x(t)TQkx(t) + u(t+ k − 1)TRku(t+ k − 1)

vk(t) =

[
x(t+ k)

x(t)

]
or

Jk(t) = vk(t)
T

[
P T
ek1RkPek1 P T

ek1RkPek2

P T
ek2RkPek1 Qk + P T

ek2RkPek2

]
vk(t) (21)

where

Pek1 = Fkk+1C

Pek2 =
k∑

l=1

FklCDl−1, D0 = I

The control algorithm is

u(t+ k − 1) =
[
Pek1 Pek2

]
vk(t) (22)

and the closed-loop system is in the form

Mkx(t+ k)− Ackx(t) = 0 (23)

where

Mk = I −BPek1

Ack = ADk−1 +BPek2

Dk = M−1
k Ack

The Lyapunov function for k steps and the first difference of Lyapunov function are

Vk(t) = x(t+ k − 1)TPkx(t+ k − 1)

∆Vk(t) = x(t+ k)TPkx(t+ k)− x(t+ k − 1)TPkx(t+ k − 1)

∆Vk(t) = vk(t)
T

[
Pk 0
0 −Dk−1PkDk−1

]
vk(t) (24)

Now, new auxiliary matrices N1k, N2k will be introduced for the same argument as follows:
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vk(t)
T

[
2NT

1k

2NT
2k

] [
Mk −Ack

]
vk(t) = 0 (25)

After substituting all obtained results to the Bellman-Lyapunov equation, the following
results will be obtained for the k step design procedure:

Bek = vk(t)
TWkvk(t) < 0 (26)

where Wk = {wkij}2×2 and

wk11 = Pk +NT
1kMk +MT

k N1k + P T
ek1RkPek1

wk12 = −NT
1kAck +MT

k N2k + P T
ek1RkPek2

wk22 = −NT
2kAck − AT

ckN2k −DT
k−1PkDk−1

Note that the following condition should apply for the sake of obtaining optimal controller
parameters: trace(Pk) → min.
Equations (16), (21), (26) imply that if matrices Dk (for k = 1, 2, . . . , N) are stable,

then the closed-loop system with predictive control algorithm (3) ensures meeting of the
following conditions:

• quadratic stability of the closed-loop system;
• the cost is guaranteed;
• the minimal value of the cost functions is defined for each step k = 1, 2, . . . , N .

Due to control strategy, at each step Bellman-Lyapunov function is used to obtain
the optimal MPC controller with output feedback. The optimal MPC controller might
ensure some level of the closed-loop system’s robustness properties, which proves the
following example. Using the control algorithm (3) for each k = 1, 2, . . . , N , it is possible
to calculate offline the all controller gain matrices from the original size of the system.

4. Case Study and Simulation Results. The application considered involves an iso-
thermal reactor in which the Van Vusse reaction kinetic scheme is carried out [15]. In the
following analysis, A is the feed product arriving at the reactor, B is the desired product,
C and D are unwanted byproducts

A
k1−→ B

k2−→ C

2A
k3−→ D

(27)

From the perspective of design, the objective is to make k2 and k3 small in comparison to
k1, namely by appropriate choice of catalyst and reaction conditions. The concentration
of B in the product may be controlled by manipulating of the inlet flow rate and/or the
reaction temperature. The educt flow contains only cyclopentadiene in low concentration,
CAf . Assuming constant density and an ideal residence time distribution within the reac-
tor, the mass balance equations for the relevant concentrations of cyclopentadiene and of
the desired product cyclopentanol, CA and CB, are as follows:

ĊA = −k1CA − k3C
2
A +

F

V
(CAf − CA)

ĊB = k1CA − k2CB +
F

V
CB

y = CB

(28)

Kinetic parameters of the chemical reactor are given in Table 1. This example has
been considered by a number of researchers as a benchmark problem for evaluating the
nonlinear process control algorithm.
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Table 1. Kinetic parameters

k1 50 h−1

k2 100 h−1

k3 10 l mol−1 h−1

CAf 10 mol l−1

V 1 l

By normalizing the process variables around the following operating point and substi-
tuting the values for the physical constants, the process model becomes

ẋ1(t) = −50x1(t)− 10x2
1(t) + u(10− x1(t))

ẋ2(t) = 50x1(t)− 100x2(t) + u(−x2(t))

y(t) = x2(t)

where the deviation variable for the concentration of component A is denoted by x1, the
concentration of component B at the outlet of the reactor and in the interior by x2,
and the inlet flow rate by u. Using Taylor’s first order approximation in environs of the
operating point: CB0 = 1 mol/l, F = 25 l/h the following form of a transfer function is
obtained

G(s) =
b1s+ b0

a2s2 + a1s+ a0
=

−s+ 500

s2 + 250s+ 15625
(29)

For a sampling time of 0.01 h, the following discrete-time state-space equations are ob-
tained by discretizing the continuous-time equations of the system

A =

[
−0.0716 −0.3497
0.3667 0.6446

]
B =

[
0.0057
0.0058

]
C =

[
−0.5 0.9766

]
Taking parameters ρ = 1000 (Pk < ρI), prediction and control horizons N = 10, Nu =

10, performance matrices Rk = 0.1I, Qk = 10I, (where k = 1, 2, . . . , N), the follow-
ing results are obtained using the proposed sequential design approach (3). The model
is used for a sequential design approach to obtain gain matrices so that robust stability
and guaranteed cost are ensured for the respective closed loop. Approach constraints on
system variables can be also implemented in the proposed design. The effectiveness of
the proposed design procedure is illustrated in the example. Figure 1 shows the scheme
of sequential MPC, where w, u, y, x̂ are the reference signal, controller, measured output,
estimated state variables, respectively. The numerical solution has been carried out by

Figure 1. The structure of sequential MPC
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Table 2. Results for the sequential MPC

k Fkl Eig (CL)

1 F11 = −0.0332; F12 = 0.0062 0.2865± 0.0138i
2 F21 = −0.0331; F22 = −0.0437; F23 = −0.0447 0.0817± 0.0143i
3 F31 = 0.0068; F32 = 0.0214; F33 = 0.0161; F34 = 0.0102 0.0234± 0.0018i

4
F41 = 0.0058; F42 = 0.0084; F43 = 0.0081; F44 = 0.0082;

0.0046; 0.0089
F45 = 0.0102

5
F51 = −0.0017; F52 = 0.0002; F53 = −0.0041; F54 = −0.0132;

0.0019± 0.0001i
F55 = −0.0129; F56 = 0.0087

6
F61 = 0.0043; F62 = 0.0067; F63 = 0.0026; F64 = −0.0061; −0.0001; 0.0012

F65 = −0.0059; F66 = −0.0069; F67 = 0.0109
F71 = −0.0078; F72 = −2.4976; F73 = −0.0098;

7 F74 = −0.0181; F75 = −0.0212; F76 = −0.0152; −0.0009; −0.0161
F77 = −0.0125; F78 = −0.0276

F81 = −0.0218; F82 = −2.4942; F83 = −0.0223;
8 F84 = −0.0283; F85 = −0.0311; F86 = −0.0281; −0.0002; −0.0265

F87 = −0.0270; F88 = −0.0261; F89 = −0.0288
F91 = −0.0090; F92 = −2.4778; F93 = −0.0077;

9
F94 = −0.0138; F95 = −0.0150; F96 = −0.0141; −0.0001; −0.0306

F97 = −0.0137; F98 = −0.0134;
F99 = −0.0075; F910 = −0.0018

F101 = 0.0011; F102 = −2.4767; F103 = 0.0034;

10
F104 = −0.0037; F105 = −0.0047; F106 = −0.0043; −0.0001; −0.0319
F107 = −0.0042; F108 = −0.0041; F109 = 0.0025;

F1010 = −0.0040; F1011 = 0.0077

MATLAB using YALMIP [14]. The simulations have been done using Simulink (in MAT-
LAB). Summarized in Table 2, the results are obtained for different values of prediction.
The calculation of eigenvalues for the closed-loop (Eig (CL) in Table 2) for optimal

and sequential MPC confirms that the closed-loop system is stable. Simulation results
(Figure 2 and Figure 3) using sequential MPC are compared with standard MPC. In
the simulations w, CB, F are the reference signal, measured output, controller output,
respectively. The solid lines denote the closed-loop system with the proposed sequential
MPC algorithm. The dotted lines represent the closed-loop system with the classic MPC
algorithm. The standard MPC has the same predictive control parameters (Rk, Qk, N)
and also the quadratic cost function Jk (21) as the sequential approach.

Robustness. Model uncertainties of the described reactor (28) follow from several facts.
At first, there are three parameters, which can change their values around the nominal
values as it is shown in Table 3.

Table 3. Uncertain parameters of the reactor

Variable Minimal value Maximal value

k1 [h−1] 47.5 52.5

k2 [h−1] 95 105

k3 [h−1] 9.5 10.5
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Figure 2. Simulation results for time responses of reference and output
variables using sequential (SEQ) and standard (CLS) MPC

Figure 3. Simulation results for time responses of controller output using
sequential (SEQ) and standard (CLS) MPC
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So the parametric uncertainties are in our system. The controlled system also includes
dynamic uncertainties. They correspond to the values of the uncertain parameters under
operating conditions. They result in linearized models of the reactor with different values
of matrix coefficients in the state space description.
The dynamic uncertainties also include the gap between linearized models and the

original nonlinear model or the true physical system. Then for (29) the parameters are
b1 = −1, b0 ∈

[
b−0 , b

+
0

]
= [476.25, 523.75], a2 = 1, a1 ∈

[
a−1 , a

+
1

]
= [240, 260], a0 ∈

[
a−0 , a

+
0

]
= [14400, 16900].
Then eight transfer functions are obtained (all possible combinations of minimal and

maximal values of three parameters k1, k2, k3 in Table 3). The optimal design procedure
to calculate controller gains which are shown in Table 2 is applied for all transfer functions
(30). Transfer functions are

k1min
, k2min

, k3min
: G1(s) =

−s+ 476.25

s2 + 240s+ 14400

k1min
, k2min

, k3max : G2(s) =
−s+ 481.25

s2 + 245s+ 15000

k1min
, k2max , k3max : G3(s) =

−s+ 481.25

s2 + 255s+ 16250

k1min
, k2max , k3min

: G4(s) =
−s+ 476.25

s2 + 250s+ 15600

k1max , k2min
, k3min

: G5(s) =
−s+ 518.75

s2 + 245s+ 15000

k1max , k2min
, k3max : G6(s) =

−s+ 523.75

s2 + 250s+ 15600

k1max , k2max , k3max : G7(s) =
−s+ 523.75

s2 + 260s+ 16900

k1max , k2max , k3min
: G8(s) =

−s+ 518.75

s2 + 255s+ 16250

(30)

The calculation of eigenvalues for the closed-loop (Eig (CL) for each transfer function
(30) are shown in Table 4) for optimal and sequential MPC. The results of this design
confirm that the closed-loop system is stable and robust.

5. Conclusions. This paper deals with the novel method for the MPC algorithm. The
proposed optimal sequential approach with output feedback ensures the closed-loop stabil-
ity guaranteed cost. Due to the optimal design procedure to calculate controller gains the
robustness properties are ensured. All results are illustrated on the example (model of the
isothermal reactor). The obtained results show the new proposed method’s effectiveness
and performance, as well as its comparability with standard MPC. The main advantage
of the optimal sequential MPC is the offline computation of the optimal control gains and
inputs for N steps ahead. In the standard MPC algorithm, a plan for N steps ahead is
determined, and only the first element of the control output vector is applied. Then in
the next step, the optimization procedure with new measurement is repeated. Standard
MPC is time-consuming. The other disadvantage of standard MPC with using the cost
function Jk (21) is the existence of a steady-state offset.
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Scientific Grant Agency. The authors also gratefully acknowledge the helpful comments
and suggestions of the reviewers, which have improved the presentation.
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Table 4. Eigenvalues for the closed-loop with transfer functions

k G1(s) G2(s) G3(s) G4(s) G5(s) G6(s) G7(s) G8(s)

1
0.2875 0.2784 0.2646 0.2673 0.2775 0.2670 0.2591 0.2643
0.3151 0.3094 0.2946 0.3065 0.3104 0.3069 0.2861 0.2949

2
0.0848 0.0793 0.0717 0.0727 0.0789 0.0726 0.0691 0.0851
0.0969 0.0938 0.0849 0.0925 0.0942 0.0927 0.0797 0.0715

3
0.0251 0.0226 0.0194 0.0197 0.0224 0.0197 0.0184 0.0194
0.0297 0.0284 0.0245 0.0279 0.0285 0.0280 0.0222 0.0245

4
0.0081 0.0068 0.0056 0.0056 0.0068 0.0056 0.0055 0.0056
0.0085 0.0083 0.0067 0.0082 0.0083 0.0082 0.0055 0.0067

5
0.0024 0.0019 0.0015 0.0015 0.0019 0.0015 0.0015 0.0015
0.0026 0.0025 0.0019 0.0025 0.0025 0.0025 0.0015 0.0019

6
0.0006 0.0005 0.0004 0.0004 0.0005 0.0004 0.0003 0.0004
0.0008 0.0007 0.0006 0.0007 0.0008 0.0007 0.0004 0.0006

7
−0.0011 −0.0009 −0.0006 −0.0008 −0.0009 −0.0008 −0.0005 −0.0006
−0.0302 −0.0297 −0.0282 −0.0287 −0.0356 −0.0314 −0.0297 −0.0303

8
−0.0003 −0.0002 −0.0002 −0.0002 −0.0002 −0.0002 −0.0001 −0.0002
−0.0485 −0.0471 0.0436 −0.0449 −0.0559 −0.0489 −0.0452 −0.0466

9
−0.00001 −0.00004 −0.00002 −0.00001 −0.00001 −0.00001 0.00001 0.00002
0.0565 −0.0545 −0.0498 −0.0517 −0.0646 −0.0562 −0.0513 −0.0532

10
−0.0001 −0.00005 −0.00004 −0.00004 −0.00005 −0.00004 −0.00004 −0.00004
−0.0595 0.0572 −0.0520 −0.0541 −0.0678 −0.0589 −0.0534 −0.0555
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[10] Q. T. Nguyen, V. Veselý and D. Rosinová, Design of robust model predictive control with input
constraints, International Journal of Systems Science, vol.44, no.5, pp.896-907, 2013.
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