International Journal of Innovative
Computing, Information and Control ICIC International (©)2021 ISSN 1349-4198
Volume 17, Number 2, April 2021 pp. 473-482

STEREO MATCHING APPROACH USING ZOOMING IMAGES

Bo-YaNG Zauo'?, HUEI-YUNG LiN'2 AND CHIN-CHEN CHANG?*

I'Department of Electrical Engineering
2 Advanced Institute of Manufacturing with High-Tech Innovations
National Chung Cheng University
No. 168, Sec. 1, University Road, Minhsiung, Chiayi 621, Taiwan
ipopo520@gmail.com; lin@ee.ccu.edu.tw

3Department of Computer Science and Information Engineering
National United University
No. 2, Lienda Road, Miaoli 360, Taiwan
*Corresponding author: chinchen.chang@gmail.com

Received November 2020; revised February 2021

ABSTRACT. In this paper, we present a movel stereo matching approach using zooming
images. In previous approaches, a pair of stereo images (left and right images) is used
for correspondence matching. In the proposed approach, we used two zoom lens cameras
to acquire multiple pairs of stereo images with zoom changes. By using the acquired stereo
image sequences, we can obtain accurate results for stereo matching algorithms. By defin-
ing the relationship between the left and right images of a stereo image pair, the proposed
approach renders the rectified images compliant with the zoom characteristics. Moreover,
the proposed approach can be integrated with existing stereo matching algorithms. The re-
sults revealed that our approach can improve disparity computation for stereo matching.
Keywords: Stereo matching, Zooming, Disparity, Optical zoom

1. Introduction. Stereo vision is used in many applications such as depth perception
and 3D model reconstruction. Stereo vision is a vital research topic in computer vision.
Developing techniques for superimposing images based on stereo vision with other infor-
mation have been comprehensively studied.

Stereo vision for machine perception is critical because it enables machine vision systems
to simulate the human visual system. When an object is closer to the observer, the dispari-
ty between the eyes becomes larger. Therefore, the stereo vision problem can be simplified
by computing the corresponding points within a pair of stereo images. The disparity maps
can be obtained using the depth computation of 3D scenes or objects. Computer vision
researchers have extensively studied stereo matching techniques [4,7-9,11,16-19]. Based on
the Middlebury stereo data sets [14] and public benchmarks, several algorithms have been
proposed and evaluated for decreasing the mismatching rate. However, most approaches
use standard rectified image pairs as inputs and do not consider the image acquisition
process of a real camera system. Chen et al. [3] proposed a framework for stereo match-
ing approach. Their approach took two or more stereo image pairs with different focal
lengths. An initial disparity map is first computed by the stereo image pair with the same
focal length. A process is introduced to identify the point correspondences among these
stereo images. The cost aggregation is then performed to refine the disparity map.

In this paper, a stereo matching approach is presented based on zooming images. We
use a pair of zoom lens cameras to capture stereo images with various focal length settings.
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In particular, a zoom rectification method is introduced to reduce the zoom image cor-
respondence search range. We aggregate the matching cost of stereo and zoomed images
to mitigate unreliable matching. The proposed approach can improve the correspondence
search results with the additional zooming constraint and provide a robust disparity reli-
ability check.

2. Related Works. A stereo image pair captured using a conventional stereo vision sys-
tem consists of two images captured from two cameras. This imaging model forms the
two-view geometry and the point correspondence relationship between the two images is
restricted by the epipolar constraint [6]. For convenience, the image pairs are commonly
rectified and the epipolar lines are parallel to the image scanlines. Stereo matching can
then be performed efficiently along the one-dimensional image scanlines at the cost of
rectification computation and image warping. Because most existing stereo matching al-
gorithms use rectified image pairs and do not consider the image rectification step, studies
are commonly focused on the matching cost rather than the development and evaluation
of the overall stereo vision system.

In general, stereo matching algorithms involve the following four steps: cost initial-
ization, cost aggregation, disparity selection and refinement. The cost initialization is a
process to calculate the similarity at the pixel level, such as the absolute difference or
cross correlation. Because the cost calculated by a pixel is not reliable, cost aggregation
considering a specific region was performed to increase the robustness. Hosni et al. [7]
presented a fast algorithm for stereo matching. They used a filter to filter the cost volume.
Hence, the computational cost of their approach is independent of the size of a window for
stereo matching. The disparity selection typically adopts the winner-takes-all strategy,
which determines the lowest cost for the result. Alternatively, Chang and Maruyama [2]
proposed an image scaling approach with multi-block matching and sub-pixel estimation
can be used to reduce the error rate. The refinement process aims to improve the relia-
bility through techniques such as the left-right consistency, matching confidence, median
filter, speckle filter, and ground control points. However, the accuracy and computational
cost are limited by the memory size.

The stereo vision research is divided into two categories, namely the speed-oriented and
precision-oriented approaches. The speed-oriented techniques concern the computational
efficiency and consider the porting to hardware-dependent platforms such as FPGA and
GPU [2]. Park and Yoon [13] introduced a method to compute disparity maps. Their ap-
proach divided the stereo matching into initial disparity map estimation, plane hypotheses
generation, and global optimization. The results revealed that their method can deal with
ambiguous regions. The precision-oriented techniques aim to increase the correctness of
stereo matching results. In some studies, possible surface structures are used to improve
accuracy. Kim and Kim [11] presented a stereo matching approach which used the texture
and edge information as the smoothness constraints. Their approach can provide good
stereo matching performance and obtain desired results. Batsos et al. [1] combined various
input scales, masks, and cost calculation methods to make the algorithms more robust.
Moreover, considerable progress has been achieved in learning-based techniques for stereo
matching. Zbontar and LeCun [18] proposed a technique to learn a similarity measure on
small image patches using the convolutional neural network and evaluate the similarity
on KITTI and Middlebury data sets. Results show that their approach outperforms other
approaches. Seki and Pollefeys [15] presented a learning-based penalties estimation tech-
nique to derive the parameters of the semi-global matching algorithm. They introduced a
loss function to train the networks with learned penalties for semi-global matching. Cheng
and Lin [4] presented a matching technique based on image bit-plane slicing and fusion.
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The bit-plane slices were used to determine stereo correspondences and then combined
for the final disparity map. These techniques have effectively reduced the correspondence
matching error but require sophisticated hardware.

3. Proposed Approach. Figure 1 displays the flow of the proposed approach. We first
extracted two or more stereo image pairs with various zoom factors and various focal
length settings. Then, we performed an initial disparity computation using the stereo
image pair acquired with the same focal length. A series of zoom images captured from
the same camera is used for zoom matching, which is a process to identify the point cor-
respondences among the zoom images. Finally, cost aggregation combining the matching
from stereo and zoom is then performed to refine the disparity map.

Input
stereo images
Reliable points?

Getting stereo Remain stereo
matching results matching results

Zoom matching

Cost aggregation

QOutput
disparity map

FiGURE 1. Flowchart of the proposed approach

3.1. Zoom-stereo framework. The scale of a scene or an object appearing in an image
can be determined using the focal length of the camera or the zoom factor. A vector
defined by the image center and a specific point can be used to illustrate the phenomenon
when the focal length is changed. An ideal zoom model can be described as follows:

ol _ Jv]

fi
where v; and v; are the zoom vectors originating from the principal point, and A is the
focal length ratio f;/f;.

Zooming images are of two types: one derived from digital zoom and the other acquired
with an optical zoom. Digital zoom is synthesized through up- or down-sampling the
original image with interpolation and thus no additional information is generated when
magnified. The optical zoom involves the actual lens movement, and the zooming images
are captured with independent samples. In the proposed approach, the focus length is
changed to acquire the zoom images for stereo matching. A difficulty of optical zoom is
the change of the principle point along with the change of the focus length. The zoom
vectors do not converge to a single point due to the non-ideal lens movement of a real
camera system with optical zoom.

and v; = A - v, (1)
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In a conventional stereo vision system, the distance z of a scene point is obtained using
the following expression:

b

Z:fa

where f is the focal length of the camera, b is the stereo baseline, and d is the stereo
disparity. The stereo baseline and focal length can be obtained by camera calibration
and used to check the disparity reliability using the left-right consistency [9]. A pair of
zoom lens cameras was used in our system, and several stereo image pairs are captured
at a fixed location. Because the distance between the camera and the scene does not
change, additional geometric constraints can be constructed for the image pairs. In a real
camera system, the principal point changes due to zooming. Thus, we should consider
the baseline change for cooperative stereo and zoom matching. For a conventional stereo
system setting, the disparity is proportional to the stereo baseline. The restriction can be

expressed by
d; b
B 2
4, b (2)

where ¢ and j represent various zoom positions for image acquisition.

3.2. Disparity reliability. For reliable stereo matching results, identification of the error
correspondences (also called unreliable points) in the disparity map before the calcula-
tion of matching cost aggregation is critical. Because the error correspondences typically
appear near the image edges due to the depth discontinuity [19], Canny edge detection
is first used on the image, followed by morphological dilation to determine the unreliable
points. The matching confidence also considers the pixel location difference between the
smallest cost and the second smallest cost. In the proposed approach, Equation (2) is
used to identify the unreliable points. Notably, Equation (2) is given in the same world
coordinate system for ¢ and 7, instead of the image coordinates. Thus, the zoom cor-
respondence matching should be performed to align the image coordinate frames. The
disparity maps derived from various zooms are then subtracted to obtain the unreliable
point map. Finally, we combined the matching confidence R, [z, y], edge discontinuity
Regge|x,y], and zooming R.,om [, y] to derive the error correspondences Rz, y| as follows:

1st
1 z,y

Rcon[x’y] — ’ ('2nd <7 (3)

I7y
0, otherwise

and

R[w, y] = Rcon[xv y] U Redge[% y] U Rzoom[% 9]7 (4)
where 7 is a user parameter. It is not easy to adequately determine the user parameter
7. In the experiments, 7 was set as 0.2 for the best performance, heuristically.

Figure 2 displays an example of the image “Adirondack” in the Middlebury data set
processed by the proposed disparity reliability check method. We used the percentage
of error correspondences marked as unreliable points to evaluate the results, and the
values of Reon[2, Y], Reon|®, Y] U Reage[z,y] and R[z,y| are 46.87%, 59.47%, and 71.88%,
respectively.

3.3. Disparity candidates. When calculating the disparity map, we typically provide a
maximum disparity . The parameter D is determined by the stereo vision system setup
because it has to be smaller than the disparity corresponding to the closest scene distance
perceivable by both cameras. If all possibilities are considered for stereo matching with
various zooming images, the time complexity will become O(D?). Thus, it is necessary to
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FIGURE 2. The disparity reliability check on the image “Adirondack”: (a)
original left image, (b) disparity map, (c) error point, (d) Reen|z,y] U
Reggelz,y], (e) resulting image with edges, and (f) resulting image with
zoom

select only some specific disparities as candidates to reduce the computation time. The
candidates can typically be selected by the matching cost. However, these techniques may
not be appropriate for some algorithms such as semi-global block matching (SGBM) and
the local minimum is used for the candidates instead. In this case, block matching (BM)
provides the more stable result compared to SGBM.

3.4. Zoom correspondence. After the main geometric construction and the matching
between the stereo image pair, the next problem involves determining the correspondences
among various zoom images. For the digital zoom, the correspondence can be obtained
directly by the image scale change. However, it is not a trivial task for the optical zoom.

The images captured by a camera with various zooms can be assumed as acquired by
multiple cameras. Then, the multiple view geometry can be considered. The most vital
relationship between the images is the epipolar constraint. FExcept for some special cases,
the stereo matching search range can be reduced from the 2D plane to a 1D line. We
used homography to determine the correspondences directly for planar objects because
the camera translation is zero. It is a special case of the epipolar constraints, and can be
expressed as follows:

t
sq =K' (R—i—anT) Kq— sq = Hq, (5)
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where q and ¢’ are in homogeneous coordinates, R and t are the rotation and translation
between the cameras, n and d are the normal vector and distance of the object with
respect to the first camera respectively, and s is the scale factor.

To address the problem of the zooming property changed by image rectification, we
used camera calibration to establish the relationship between various zooming images.
Because this image rectification only involved a rotation transformation, it can be com-
puted easily through homography. However, the zoom property only holds under certain
circumstances. Thus, some constraints, such as the position of the principal point and
the fixed aspect ratio, are added.

When the calibration was performed with additional constraints, the calibration error
indicated by the re-projection error was magnified, as indicated in Table 1. The idea zoom
model assumes that two zoom images have the same principal points. The field-of-view
changes along the optical axis. Our calibration result is with a little difference in rotation:
(—0.05°, —1.18°,—0.08°) and translation: (—0.7,2.7, —1.88). This should be neglected in
most common situations [10]. For more precise results, we adopted the SIFT features [12]
and RANSAC [5] for the correspondence matching to calculate a new zoom center.

TABLE 1. Calibration performed under various constraints

Condition Focal X | Focal Y | Principal point | Reprojection error
Common 2209 2190 (988, 887) (0.19,0.25)
No distortion 2962 2884 (1307,414) (0.33,0.32)
Aspect = 1 2166 2166 (1003, 928) (0.19,0.25)
Principal point fixed | 2243 2243 | (1023.5,767.5) (0.20,0.25)

3.5. Cost aggregation. To combine the information of two zooming image pairs, it is
necessary to study how their relationship can be used. Figure 3 displays the concept and
schematic of the proposed approach.

Stereo
|:zoom1 |‘ Sterec |rzooml
Our Approach
Zoom Matching Our Approach
|l,zoom2 |m >tereo |r,zo0m2
Matching

FIGURE 3. Relationship between two zooming image pairs

Here, we defined a new cost function:

Disparity = argmin a (C°™ + C20°™) + B(Cpun), 1<n <3, 1<m <3, (6)

where v and [ are user-defined parameters; C), is the matching cost between left and
right images with the same focal length given by
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C,, = Cost(i, j,dn(i,7)), 1<n<3, (7)

where d,(i,7) is the disparity of the candidate pixel (i,j); C, is the matching cost
between the zoom images given by

Omn - COSt(ZIR<i - dn(Z7]>7]>7 ZQR(i/ - dm<i,7j/>7j,))
4 Cost(Zig(i — duliy §),§), Zon(i', 7)), 1<n<3, 1<m<3,  (8)

where Z1g, Zog and Zyp, are the zoom1 left image, the zoom2 right image and the zoom?2
left image, respectively.

We only considered the pairs produced by the disparity candidates, and Cost is a
similarity metric such as the sum of squared differences (SSD), census transform (CT), or
normalized cross correlation (NCC). Here, CZ°™ and C?°°™2 can be replaced by the cost
given in the stereo matching algorithms. Equation (6) is based on the texture information.
In the reliability check, we use the disparity as a constraint. The correspondence pairs
produced by zoom images are in the same place. Therefore, their distances to the camera
are the same. Thus, the cost function can incorporate the disparity constraint and is
expressed as follows:

n m

Final Disparity = arg min « (Ciooml + Cfnoom) +p (Dz’sparityzooml — Dispam’tyzwm) ,
1<n<3, 1<m<s3, (9)

where o and (8 are user defined parameters as the previous equations.

4. Experimental Results. The proposed approach was evaluated on the Middlebury
stereo data sets and our own data set. Because Middlebury data sets do not contain zoom-
ing images, we manually synthesize the zoom images by resizing. They are used to verify
the proposed approach in the cost function evaluation. The stereo matching algorithms
adopted in our system for performance comparison are BM, SGBM, and matching cost
convolutional neural network (MC-CNN). BM and SGBM run with the window size of
13 x 13, and P, and P, are 18 and 32, respectively. MC-CNN uses the fast model trained
by KITTI data sets. The parameter « is fixed as 1 and S is 20, 10 and 0.5 for SGBM, BM,
and MC-CNN, respectively. We selected the “Q” Middlebury data set as the input. The
bad pixel rate (BPR) representing the percentage of bad pixels in an image is employed
as an objective performance measure. In the experiments, the evaluation method was
BPR1.0.

The results from various methods are displayed in Table 2. From the results, the perfor-
mance of zoom calibration is more prominent for most cases. However, the performance
of original method is better for some cases. This is because when calculating these data
sets, they do not provide correct information and may even produce misleading results.
For example, the performance for the toy brick data of BM + Equation (9) is better than
that of other approaches.

In the cost function Equation (6), we only tested CT and NCC because the image
intensity was shifted by the camera lens change and auto-exposure. The results from our
approach were not significant when adopted to the MC-CNN. This phenomenon could be
because of the design of the cost function for MC-CNN training. If only the best solution
is considered during training, it will not provide the best correspondence candidates for
the algorithm, and the normal MC-CNN has a similar process such as SGBM. Figure 4
displays the results with or without the SGBM process. Clear differences were observed
mainly because the basic algorithm cannot provide the suitable candidates. Figure 5 dis-
plays resulting images of optical zooming for doll. From the results, for disparity matching,
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TABLE 2. The results from various methods

Epipole Zoom
geometry | calibration
SGBM + Equation (9) | 19.6503 | 15.2552 | 15.5919 | 15.801
doll BM + Equation (9) | 25.5569 | 22.3145 | 22.3699 | 23.0199
MC-CNN + Equation (9) | 22.3460 | 20.2321 | 21.0419 | 20.4651

SGBM + BEquation (9) | 14.5528 | 13.3947 | 13.6271 | 13.3372
toy brick | BM + BEquation (9) | 15.1138 | 15.7080 | 15.7333 | 15.5487
MC-CNN + Equation (9) | 18.9041 | 25.8092 | 21.7056 | 24.3230

SGBM + BEquation (9) | 9.8251 9.2016 9.5835 | 9.0291

BM + Equation (9) 12797 | 121638 | 11.7294 | 12.1277
and Cup VTECONN T Equation (0) | 11.8306 | 12.9873 12.8016 | 12.9491
SGBM + Equation (9) | 19.6457 | 17.6351 17.5975 | 17.804

BM + Equation (9) | 26.4771 | 25.8682 | 25.2747 | 25.6311

and lamp NECENN T Equation (9) | 23.2376 | 22.8388 | 22.4940 | 22.9996

Original | Homography

toy brick

toy brick

Cost
© =4 N w & o o ~N ® ©
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Dispari
sparity (a)
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FIGURE 4. (color online) MC-CNN with various processes. The improve-
ment is denoted in red, and the green part indicates the incorrect change
region: (a) MC-CNN + SGBM and resulting image, and (b) MC-CNN and
resulting image.

some parts of the disparity values were directly modified. For NCC, the original disparity
map was used to do filling and minor changes.

Finally, we used zoom lens cameras to construct a new data set with the ground truth.
The evaluation method using our data set was changed to BPR2.0 because the manual
labeling of the ground truth is not precise. We tested the zoom correspondence methods



STEREO MATCHING APPROACH USING ZOOMING IMAGES 481

()

FIGURE 5. Resulting images of optical zooming: (a) doll + SBGM (origi-
nal), (b) doll + SBGM (disparity matching), and (c) doll + SBGM (NCC)

mentioned previously, and tested the effect of the candidate quantity. The toy brick+BM
result is noticeably different from other results. When we calculate the BPR with zoom2
disparity map in BM, its value was nearly 80%. Thus, the two initial disparity maps must
have a certain level of correctness.

5. Conclusions. We have proposed a stereo matching approach using zooming images.
With zoom image pairs, the proposed approach can reduce the error and the uncertain
region in the disparity map. Compared with the existing stereo matching algorithms, the
proposed approach can improve the disparity results with less computation. The proposed
approach can be adapted to the existing local and global methods for stereo matching.
In the future studies, more investigation will be performed to aggregate the information
for machine learning methods and the cost computation.
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International Conference on Computer Vision Theory and Applications (VISAPP 2020),
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