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Abstract. The least squares twin support vector regression (LSTSVR) is a powerful
tool for regression estimation. LSTSVR implements faster than twin support vector re-
gression (TSVR) and fits for training large-scale data. However, LSTSVR is sensitive
to outliers. In this paper, we present an isolation forest-based least squares twin mar-
gin distribution support vector regression (IFLSTMDSVR). First, we utilize the isolation
forest approach to explicitly isolate the potential outliers and assign them with suitable
anomaly scores. Next, because the margin distribution information is closely related to
the generalization capability of regression model, we integrate it into the objective func-
tions of IFLSTMDSVR. Finally, we conduct extensive simulation experiments on UCI
benchmark datasets and synthetic test function. The results show that IFLSTMDSVR is
less sensitive to outliers and performs better than several state-of-the-art algorithms in
terms of generalization capability.
Keywords: Machine learning, Twin support vector regression (TSVR), Least squares,
Isolation forest, Margin distribution

1. Introduction. Support vector machine (SVM) is an effective machine learning tool
based on the theory of statistical learning [1-5]. The goal of SVM is to minimize the
structural risks by maximizing the margin between different classes. Therefore, the model
constructed by SVM is of good learning and generalization capabilities. In recent decades,
many variants of SVM have been developed and successfully applied in forest fires burned
area prediction [6], target tracking [7], pedestrian detection [8], stock price modeling [9],
and so on.

Recently, Jayadeva et al. investigated a new model for classification, called twin support
vector machine (TSVM) [10]. TSVM builds two non-parallel hyperplanes and reduces to
solve two small-scale quadratic programming problems (QPPs) rather than one large-
scale QPP. In theory, TSVM runs approximately four times faster than SVM. Hence,
TSVM has become a new hot topic. Inspired by TSVM, Peng developed a twin support
vector regression (TSVR). Experimental results show that TSVR is superior to support
vector regression (SVR) in both training time and generalization capability [11]. To
date, many variants of TSVR have been exploited, such as twin parametric insensitive
SVR (TPISVR) [12], ε-TSVR [13], Lagrangian TSVR [14], twin projection support vector
regression (TPSVR) [15], and weighted TSVR [16,17].

Although TSVR and its variants perform faster than SVR, it is inefficient when train-
ing large-scale dataset. Fortunately, the least squares approach provides an effective way
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to address this issue. Huang et al. designed a primal least squares twin support vector
regression (LSTSVR) [18]. Because the inequality constraints are replaced with equality
ones, LSTSVR is simplified to solve two linear equations in the primal space. Hence,
the training speed of LSTSVR is greatly accelerated. Therefore, LSTSVR is suitable for
training large-scale data. Next, Ding and Huang exploited a least squares twin paramet-
ric insensitive support vector regression (LSTPISVR) [19]. Extensive experimental results
indicate that LSTPISVR not only has faster training speed, but also has better general-
ization capability. Huang et al. proposed a novel regressor, i.e., sparse method for least
squares twin support vector regression [20]. The proposed regressor can yield very sparse
solutions. Zhang et al. developed a p-norm least square twin support vector regression,
termed as PLSTSVR [21]. The parameter p is adjustable in the range of 0 < p ≤ 2 and
can be automatically chosen by data. The results on UCI benchmark datasets and syn-
thetic datasets verified the efficacy of PLSTSVR. Recently, in order to further promote
the prediction performance of LSTSVR, Gu et al. investigated a least squares twin pro-
jection support vector regression, named LSTPSVR [22]. By minimizing the variance of
the projected data, LSTPSVR can find a suitable projection axis. The results of simula-
tion demonstrate that LSTPSVR performs better than several state-of-the-art regression
models.
In real scenarios, due to the influence of measuring instrument and environment, the

actual sampled data inevitably contains outliers, i.e., the sample points which seriously
deviate from other observed values in the sample set [23]. In general, outliers are those
sample points with larger loss. In LSTSVR, because all the training samples are support
vectors (SVs), outliers will involve in determining the decision function [24,25]. As a
result, the decision hyperplane will undoubtedly orient to the direction of outliers. This is
the reason why LSTSVR is sensitive to outliers. If there are potential outliers in training
data, the generalization capability of LSTSVR will be declined. In order to remove the
potential outliers, Ye et al. proposed a localized version of least squares twin support
vector machine (LSTSVM) classification via maximum one-class within-class variance,
called LMWSVM for short [26]. Based on the principle that the samples containing larger
noise should be assigned with smaller weights whereas the samples containing smaller
noise with larger weights, Mu et al. developed a classification with noise via weighted
LSTSVM. The simulation results disclose that the developed classification model lessens
the influence of noise to a certain extent [27]. Tanveer et al. investigated a robust energy-
based LSTSVM, and they employed energy parameters to reduce the effect of noise and
outliers [28]. However, all the aforementioned models ignore the influence of the margin
distribution information on regression. In fact, the margin distribution information is
critical to the generalization capability of regression model [29,30].
To conclude, for one thing, LSTSVR is sensitive to potential outliers in the sampled

data. For another, LSTSVR ignores the impact of the margin distribution information on
regression model. Therefore, it is of great significance to suppress the influence of outliers
and take the margin distribution information into account. In this paper, we investigate
an isolation forest-based least squares twin margin distribution support vector regression,
named IFLSTMDSVR for short. The main contributions of our work are summarized as
below.
1) In order to effectively remove the influence of potential outliers on regression, we first

adopt the isolation forest approach to explicitly isolate outliers instead of profile normal
samples, and then we construct a reasonable diagonal impact factor matrix based on the
anomaly scores.
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2) In order to further improve the generalization capability of LSTSVR, we integrate
the margin distribution information, which is characterized by the margin mean and the
margin variance, into the objective functions of our IFLSTMDSVR, respectively.

The rest of this paper is organized as follows. Section 2 briefly reviews the least squares
twin support vector regression (LSTSVR) in linear and nonlinear cases. Section 3 de-
scribes our work in detail. The experimental results and analyses are presented in Section
4. Section 5 draws the conclusion of our work.

2. Least Squares Twin Support Vector Regression. Suppose a training set is
represented by T = {(xi, yi)}ni=1, where xi ∈ Rm is the input with m attributions,
yi ∈ R is the output, and n is the number of the training sets. Then, for simplicity,
the input matrix and output vector are denoted as A = [x1,x2, . . . ,xn]

T ∈ Rn×m and

Y = [y1, y2, . . . , yn]
T ∈ Rn, respectively.

The aim of the least squares twin support vector regression (LSTSVR) is to search a
pair of non-parallel bound functions, i.e., the down-bound function f1(x) = ωT

1 x + b1
and the up-bound function f2(x) = ωT

2 x + b2, where ω1,ω2 ∈ Rm are weight vectors,
b1, b2 ∈ R are biases and T stands for transpose.

As for linear regression, the primal optimization problems are listed as follows [18]:

min
ω1,b1

1

2
||Y − ε1e− (Aω1 + b1e)||2 +

C1

2
ξTξ

s.t. Y − (Aω1 + b1e) = ε1e− ξ

(1)

and

min
ω2,b2

1

2
||Y + ε2e− (Aω2 + b2e)||2 +

C2

2
ηTη

s.t. (Aω2 + b2e)− Y = ε2e− η

(2)

where || · || stands for the 2-norm, ξ and η are non-negative slack vectors, C1, C2 > 0 are
penalty factors, ε1, ε2 > 0 are insensitive loss parameters, and e is a unit column vector
with proper dimensions.

The optimal solutions of Equations (1) and (2) are

u1 =
(
GTG

)−1
GTf (3)

and
u2 = (GTG)−1GTh (4)

whereG = [ A e ], f = Y −ε1e, h = Y +ε2e, u1 =
[
ωT

1 b1
]T

and u2 =
[
ωT

2 b2
]T
.

Further, to avoid the ill-conditioned matrix, a regularization term ϑI is intentionally
added to Equations (3) and (4), respectively.

Hence, we have

u1 =
(
GTG+ ϑI

)−1
GTf (5)

and
u2 =

(
GTG+ ϑI

)−1
GTh (6)

where ϑ = 10−6 and I is a unit matrix with proper dimensions.
Then, the regression function in linear case is estimated by

f(x) =
1

2
(ω1 + ω2)

Tx+
1

2
(b1 + b2) (7)

As for nonlinear regression, the training samples are mapped into a higher dimensional
(maybe infinite) feature space by the kernel function K(·, ·). In practice, the radial
basis function (RBF) kernel is widely used. In this case, the down-bound and up-bound
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functions transform into f1(x) = K
(
xT,AT

)
ω1 + b1 and f2(x) = K

(
xT,AT

)
ω2 + b2,

respectively.
Let G =

[
K
(
A,AT

)
e
]
, the optimal solutions can also be determined by Equations

(5) and (6). Finally, the regression function in nonlinear case is estimated by

f(x) =
1

2
K
(
xT,AT

)
(ω1 + ω2) +

1

2
(b1 + b2) (8)

3. Proposed Isolation Forest-Based Least Squares Twin Margin Distribution
Support Vector Regression. In this part, we first discuss how to separate potential
outliers and normal samples based on the isolation forest approach developed from Liu
et al. Then, we consider the impact of the margin distribution information on improving
the generalization capability of existing LSTSVR models. Finally, we present our work
in detail.

3.1. Isolation forest. Isolation forest (iForest) is an effective tool for detecting outliers.
Even if there are no outliers in the training set, iForest can also work well. Different from
most existing statistical approaches, iForest isolates outliers instead of profiling normal
samples.
By constructing isolation tree (iTree), each sample can be recursively partitioned. Be-

cause outliers are more susceptible to isolation than normal samples, they are isolated
closer to the root of iTree. The iForest approach only needs to select two parameters: the
number of trees t and the size of sub-sampling ψ [25].
The process of detecting outliers using iForest includes two different phases. The aim

of the first phase is to construct iTrees based on the sub-samples of the training set. In
the second phase, each sample is assigned with an anomaly score according to the iTrees
constructed in the first phase.
The anomaly score si of each sample xi is defined as follows [25]:

si = 2−E(h(xi))/c(n) (9)

where h(xi) is the path length of sample xi, E(h(xi)) is the mean of h(xi) in a group of
iTrees, and c(n) is the mean of h(xi) given n (n is the number of samples).
Here, c(n) is used to normalize h(xi), and it is defined as follows:

c(n) = 2H(n− 1)− 2(n− 1)

n
(10)

where the harmonic number H(n− 1) can be estimated by ln(n− 1) + 0.5772156649.
Based on Equation (9), we can make the following assessments: (a) if samples return si

very close to 1, then they are definitely outliers, (b) if samples have si much smaller than
0.5, then they are quite safe to be treated as normal samples, and (c) if all the samples
return si ≈ 0.5, then the entire sample does not really contain any distinct outlier [25].
Then, we define the following impact factor:

IF i = 1− si (11)

where IF i, i = 1, 2, . . . , n is the impact factor of sample xi.
The research of Liu et al. has proved that samples can be identified as outliers when

si ≥ 0.6 [25], because the greater anomaly score si than 0.5, the more likely it is an
outlier. Furthermore, in order to separate outliers and normal samples more efficiently,
in this paper, we set the critical anomaly score si as 0.65.
Finally, the diagonal impact factor matrix Σ is defined as follows:

Σ =

{
10−6, if si ≥ 0.65

IF i, otherwise
(12)
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3.2. Margin distribution. The research of Gao and Zhou [29] indicates that the mar-
gin distribution information greatly influences the generalization capability of regression
model. In general, the margin distribution information is characterized by the first-order
and second-order statistical properties of samples. In this paper, inspired by the work
of Cheng and Wang [30], we adopt the margin mean and margin variance to measure
the margin distribution information. The margin mean µ̄i and the margin variance µ̂i of
samples are measured as follows:

µ̄i =
1

n
Y T(Aωi + bie), i = 1, 2 (13)

µ̂i =
1

n2

[
n(Aωi + bie)

T(Aωi + bie)− (Aωi + bie)
TY Y T(Aωi + bie)

]
, i = 1, 2 (14)

Here, the meaning of symbols A, Y , e, n, ωi, bi, i = 1, 2 is the same as those in
Equations (1) and (2).

3.3. Our work. In this part, we present our isolation forest-based least squares twin
margin distribution support vector regression, i.e., IFLSTMDSVR, in linear and nonlinear
cases, respectively.

3.3.1. Linear case. In linear case, the primal optimization problems of IFLSTMDSVR
are constructed as follows:

min
ω1,b1

1

2
[Y − ε1e− (Aω1 + b1e)]

TΣ[Y − ε1e− (Aω1 + b1e)] +
λ1
2
µ̂1 − λ3µ̄1

+
1

2
C1ξ

Tξ

s.t. Y − (Aω1 + b1e) = ε1e− ξ

(15)

and

min
ω2,b2

1

2
[Y + ε2e− (Aω2 + b2e)]

TΣ[Y + ε2e− (Aω2 + b2e)] +
λ2
2
µ̂2 − λ4µ̄2

+
1

2
C2η

Tη

s.t. (Aω2 + b2e)− Y = ε2e− η

(16)

where Σ ∈ Rn×n is the diagonal impact factor matrix defined in Equation (12), µ̄i, µ̂i ∈ R,
i = 1, 2 are the margin mean and the margin variance defined in Equations (13) and (14),
λ1, λ2 > 0 and λ3, λ4 > 0 are penalty parameters used to counterbalance the margin
variance µ̂i and the margin mean µ̄i, respectively.

The first term in the objective function of Equations (15) and (16) is used to discrimi-
nate the influence of outliers and normal samples on regression, the second term and the
third term are employed to simultaneously minimize the margin variance and maximize
the margin mean.

Substituting the equality constraints into the objective function of Equation (15), we
can obtain the following Lagrangian function:

L(ω1, b1) =
1

2
[Y − ε1e− (Aω1 + b1e)]

T Σ [Y − ε1e− (Aω1 + b1e)]

+
λ1
2
µ̂1 − λ3µ̄1 +

1

2
C1||(Aω1 + b1e)− Y + ε1e||2

(17)
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Next, setting the partial derivatives with respect to ω1 and b1, we can obtain the
following Karush-Kuhn-Tucker (KKT) conditions:

∂L(ω1, b1)

∂ω1

= −ATΣ [Y − ε1e− (Aω1 + b1e)] +

(
λ1
n
AT − λ1

n2
ATY Y T

)
(Aω1

+ b1e)−
λ3
n
ATY + C1A

T [(Aω1 + b1e)− Y + ε1e] = 0

(18)

∂L(ω1, b1)

∂b1
= −eTΣ[Y − ε1e− (Aω1 + b1e)] +

(
λ1
n
eT − λ1

n2
eTY Y T

)
(Aω1

+ b1e)−
λ3
n
eTY + C1e

T[(Aω1 + b1e)− Y + ε1e] = 0

(19)

Further, combining Equations (18) and (19), we have

−
[
A
e

]T
Σ

(
(Y − ε1e)− [ A e ]

[
ω1

b1

])

+

(
λ1
n

[
A
e

]T
− λ1
n2

[
A
e

]T
Y Y T

)(
[ A e ]

[
ω1

b1

])
−λ3
n

[
A
e

]T
Y + C1

[
A
e

]T(
[ A e ]

[
ω1

b1

]
− (Y − ε1e)

)
= 0

(20)

Let G = [ A e ], f = Y − ε1e, u1 =
[
ωT

1 b1
]T
, Equation (20) is simplified into

the following matrix form:

−GTΣ(f−Gu1)+

(
λ1
n
GT − λ1

n2
GTY Y T

)
Gu1−

λ3
n
GTY +C1G

T (Gu1 − f) = 0 (21)

The solution of Equation (21) is

u1 =

[(
C1 +

λ1

n

)
GTG+GTΣG− λ1

n2
GTY Y TG

]−1 [(
GTΣ+ C1G

T
)
f +

λ3

n
GTY

]
(22)

Similarly, we can obtain

u2 =

[(
C2 +

λ2

n

)
GTG+GTΣG− λ2

n2
GTY Y TG

]−1 [(
GTΣ+ C2G

T
)
g +

λ4

n
GTY

]
(23)

where g = Y + ε2e and u2 =
[
ωT

2 b2
]T
.

Then, we can build the down-bound function f1(x) = ωT
1 x + b1 and the up-bound

function f2(x) = ωT
2 x+b2, respectively. Finally, the regression function of IFLSTMDSVR

in linear case can be estimated by Equation (7).

3.3.2. Nonlinear case. By introducing the kernel function K(·, ·), the proposed IFLST-
MDSVR can be easily extended to nonlinear case. In this case, the down-bound func-
tion and the up-bound function change into f1(x) = K

(
xT,AT

)
ω1 + b1 and f2(x) =

K
(
xT,AT

)
ω2 + b2, respectively.

In nonlinear case, the primal optimization problems of IFLSTMDSVR are constructed
as follows:

min
ω1,b1

1

2

[
Y − ε1e−

(
K(A,AT

)
ω1 + b1e)

]T
Σ
[
Y − ε1e−

(
K
(
A,AT

)
ω1

+b1e
)]

+
λ1
2
µ̂1 − λ3µ̄1 +

1

2
C1ξ

Tξ

s.t. Y −
(
K
(
A,AT

)
ω1 + b1e

)
= ε1e− ξ

(24)
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and

min
ω2,b2

1

2

[
Y + ε2e−

(
K
(
A,AT

)
ω2 + b2e

)]T
Σ
[
Y + ε2e−

(
K
(
A,AT

)
ω2

+ b2e
)]

+
λ2
2
µ̂2 − λ4µ̄2 +

1

2
C2η

Tη

s.t.
(
K
(
A,AT

)
ω2 + b2e

)
− Y = ε2e− η

(25)

Similar to the derivation of linear case, let G =
[
K
(
A,AT

)
e
]
, the optimal so-

lutions of Equations (24) and (25) can also be obtained by Equations (22) and (23),
respectively. Accordingly, the regression function can be estimated by Equation (8).

3.4. The pseudocode of IFLSTMDSVR. The whole process of the proposed IFLST-
MDSVR in linear case is summarized in Algorithm 1.

Algorithm 1 The procedure of IFLSTMDSVR in linear case: high-level summary
Input: the training set T
Output: the regression function f(x)
Step 1: Set the penalty factors C1, C2, the penalty parameters λ1, λ2, λ3, λ4, the
insensitive loss parameters ε1, ε2, the number of trees t and the size of sub-sampling
ψ;
Step 2: Compute the anomaly score si of each sample xi by Equation (9) and define
the diagonal impact factor matrix Σ as in Equation (12);
Step 3: Measure the margin mean µ̄i and the margin variance µ̂i as in Equations (13)
and (14), respectively;
Step 4: Construct the primal problems as in Equations (15) and (16), respectively;
Step 5: Compute the optimal solution u1 and u2 by Equations (22) and (23), respec-
tively;
Step 6: Estimate the regression function f(x) by Equation (7).

Algorithm 1 can be easily generalized to nonlinear case, which is omitted here.

4. Results and Analyses. In this part, we first describe the experimental design and
parameter setting. Then, we launch experiments on UCI benchmark datasets and syn-
thetic test function to demonstrate the superiorities of our work.

4.1. Experimental design. In order to show the strengths of the proposed IFLST-
MDSVR, we compared it with four state-of-the-art regression algorithms, i.e., weighted
least squares SVR (WLSSVR) [31], TSVR [11], LSTSVR [18] and LSTPISVR [19]. The
following three criteria, i.e., the root mean square error (RMSE), mean absolute error
(MAE) and ET, are adopted to comprehensively assess the prediction performance of all
algorithms:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)
2 (26)

MAE =
1

n

n∑
i=1

|yi − ŷi| (27)

ET =

∑n
i=1 (yi − ŷi)

2∑n
i=1 (yi − ȳ)2

(28)

where n is the number of samples, yi is the actual value, ŷi is the predicted value of yi,
and ȳ is the mean of yi given n.
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In general, the smaller RMSE, the better generalization capability; the smaller MAE,
the smaller prediction error; the smaller ET, the better consistency of predicted value
with actual value.
Furthermore, we also report the elapsed training time of all algorithms. All experiments

are carried out in the MATLAB R2015a platform on a PC with 3.40 GHz Intel R⃝CoreTMi5-
7500 CPU and 8GB RAM, and the results are averaged in 20 independent trials. In
addition, we adopt the 10-fold cross validation to guarantee that the results are more
reliable.

4.2. Parameter setting. It is well-known that parameter setting is closely related to
the performance of algorithms. Therefore, setting appropriate parameters is critical. In
our work, we adopt the grid search technique to determine the optimal parameters of all
algorithms.
For all algorithms, because the setting of insensitive loss parameters ε, ε1 and ε2 cannot

influence the generalization capability greatly [10-24,32], we set the insensitive parameters
as the same fixed values, i.e., ε = ε1 = ε2 = 0.1. In addition, to keep the comparison fair
and save time on parameter optimization, we set the same penalty factors C, C1, C2 and
they are selected from the same set {2i|i = −9, . . . , 0, . . . , 9} by grid search technique. For
the same reason, in LSTPISVR, we set the same parametric values (v1 = v2) and they are
selected from the same set as the penalty factor. Meanwhile, in our IFLSTMDSVR, we
set λ1 = λ2, λ3 = λ4 and they are also selected from the same set as the penalty factor.
Besides, we set the number of trees as t = 100 and the size of sub-sampling as ψ = 256,
respectively [25].
In addition, for nonlinear test, we adopt the RBF kernel and the width parameter σ is

selected from the set {2i|i = −4,−3,−2,−1, 0, 1, 2, 3, 4}.

4.3. Experiments on UCI benchmark datasets. Table 1 lists the seven UCI bench-
mark datasets used in our experiments and they can be accessed from UCI machine
learning repository. The scale of the dataset varies from 103 to 1503 and all the datasets
are linearly normalized to the closed interval within [0, 1].

Table 1. The UCI benchmark datasets used in our experiments

Dataset Number of training samples Attributions
Slump 103 8
Yacht 308 7
Stock 315 12
Boston 506 14

Enb 2012 768 7
Concrete 1030 9
Airfoil 1503 6

The average RMSE, MAE, ET and training time in 20 independent trials on UCI
benchmark datasets are summarized in Table 2. We indicate the best results with bold
for clarity.
Table 2 demonstrates that, on most benchmark datasets, the proposed IFLSTMDSVR

performs better than the other four algorithms in terms of RMSE, MAE and ET. This
can be explained by the fact that, for one thing, iTree isolates potential outliers closer
to the root of the tree as compared to normal samples, this unique characteristic allows
iForest to detect outliers effectively, and the strategy of assigning potential outliers with
tiny impact factors lightens their influences on regression; for another, the integration of
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Table 2. The results of RMSE, MAE, ET and training time on UCI bench-
mark datasets

Datasets Algorithms RMSE MAE ET Training time (s)

Slump

WLSSVR 7.5681 5.9780 0.7661 3.6369× 10−2

TSVR 7.8536 6.4740 0.6390 0.0401
LSTSVR 7.5417 6.4029 0.7130 0.1371× 10−3

LSTPISVR 7.7147 5.9678 0.6168 0.2725× 10−3

IFLSTMDSVR 7.1260 5.8378 0.7474 1.8240× 10−3

Yacht

WLSSVR 9.1784 6.8724 0.3585 0.3743
TSVR 9.1124 7.2665 0.3736 0.1872

LSTSVR 8.9466 7.3464 0.3815 0.2524× 10−3

LSTPISVR 8.7573 6.6778 0.3657 0.2141× 10−3

IFLSTMDSVR 8.6188 6.9471 0.3577 3.2350× 10−3

Stock

WLSSVR 0.1036 0.0887 0.7338 0.3841
TSVR 0.1140 0.0887 0.7555 0.1722

LSTSVR 0.1140 0.0883 0.7378 0.1704× 10−3

LSTPISVR 0.1176 0.0915 0.6737 0.1909× 10−3

IFLSTMDSVR 0.1121 0.0851 0.6162 3.4840× 10−3

Boston

WLSSVR 4.7352 3.2043 0.2953 1.1425
TSVR 4.7670 3.3984 0.2997 0.4545

LSTSVR 4.7334 3.3697 0.2884 0.3288× 10−3

LSTPISVR 4.9217 3.3323 0.2678 0.3237× 10−3

IFLSTMDSVR 4.7541 3.1894 0.2723 7.4940× 10−3

Enb 2012

WLSSVR 3.0429 2.0728 0.0844 4.2634
TSVR 2.9331 2.0780 0.0918 1.3626

LSTSVR 2.9599 2.0969 0.0838 0.2974× 10−3

LSTPISVR 2.8636 2.0583 0.0884 0.3390× 10−3

IFLSTMDSVR 2.8712 2.0346 0.0802 1.5227× 10−2

Concrete

WLSSVR 10.5856 8.0901 0.4049 12.9903
TSVR 10.5927 8.2907 0.3956 2.9822

LSTSVR 10.6183 8.3261 0.3869 0.3646× 10−3

LSTPISVR 10.3831 8.4270 0.3874 0.3341× 10−3

IFLSTMDSVR 10.2873 8.1053 0.3783 2.7626× 10−2

Airfoil

WLSSVR 4.7754 3.7410 0.4955 43.9760
TSVR 4.7795 3.7423 0.4942 6.2883

LSTSVR 4.7906 3.7668 0.4814 0.3797× 10−3

LSTPISVR 4.7952 3.6634 0.4787 0.5110× 10−3

IFLSTMDSVR 4.7295 3.6640 0.4723 6.3652× 10−2

the margin mean and the margin variance reflects the margin distribution information of
samples, which improves the generalization capability.

Table 2 also discloses that LSTSVR, LSTPISVR and IFLSTMDSVR run much faster
than WLSSVR and TSVR. This is because only simple linear equations need to be solved
in the primal space instead of dual problems. However, the training time of IFLSTMDSVR
is a little longer than LSTSVR and LSTPISVR. This is due to the fact that the integration
of diagonal impact factor matrix and margin distribution information slightly increases the
algorithmic complexity of solving linear equations. In short, except for the training speed,
our IFLSTMDSVR has better generalization capability than the other four algorithms.
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4.4. Experiments on synthetic test function. In this part, we carry out experiments
on synthetic test function to check the performance of different regression algorithms in
nonlinear case. We adopt the following synthetic test function:

yi = sinc(xi) + ni =
sin xi
xi

+ ni, xi ∈ [−3π,+3π] (29)

where xi is the input, yi is the output and ni is the noise.
In order to test the anti-interference capability, we add the following two different types

of noise in Equation (29), i.e., type A: ni = (0.5−|xi|/8π)× ζi, ζi ∼ U [−0.5, 0.5] and type
B: ni = (0.5−|xi|/8π)×ζi, ζi ∼ N

[
0, 0.252

]
, where ζi ∼ U [−0.5, 0.5] and ζi ∼ N

[
0, 0.252

]
means that the variables ζi are subjected to uniform distribution within the closed interval
[−0.5, 0.5] and normal distribution with zero mean and variance 0.252, respectively.
We randomly generate 37 training samples and 100 testing samples mixed with two

different types of noise. In addition, we artificially add three different outliers in Equation
(29). Table 3 provides the average RMSE, MAE, ET and training time in 20 independent
trials on synthetic test function. Once again, the best results are indicated with bold for
clarity.

Table 3. The results of RMSE, MAE, ET and training time on synthetic
test function

Noise type Algorithms RMSE MAE ET Training time (s)

type A

WLSSVR 0.0289 0.0152 0.0057 1.8677× 10−2

TSVR 0.0478 0.0407 0.0187 2.1497× 10−2

LSTSVR 0.0423 0.0354 0.0162 6.3200× 10−4

LSTPISVR 0.0389 0.0311 0.0141 2.6646× 10−3

IFLSTMDSVR 0.0270 0.0286 0.0072 2.9640× 10−3

type B

WLSSVR 0.0252 0.0200 0.0066 2.0330× 10−2

TSVR 0.0559 0.0416 0.0231 2.2066× 10−2

LSTSVR 0.0333 0.0337 0.0136 1.8250× 10−3

LSTPISVR 0.0476 0.0330 0.0127 2.5130× 10−3

IFLSTMDSVR 0.0245 0.0170 0.0062 2.9420× 10−3

We can see clearly from Table 3 that our IFLSTMDSVR has similar or better per-
formance compared with the other four algorithms, especially in the case of normally-
distributed noise. Therefore, the proposed IFLSTMDSVR has stronger anti-interference
capability and better generalization capability. This is ascribed to the tricks of using
the iForest approach to reduce the influence of anomalies and introducing the margin
distribution information of samples.
Furthermore, from Table 3, we can find that LSTSVR costs the least training time. The

underlying cause is that LSTSVR reduces to solve two small-scale linear equations, where-
as WLSSVR and TSVR should solve one large-scale linear equation and two small-scale
quadratic programming problems, respectively. However, because the diagonal impact
factor matrix and the margin distribution information are integrated into the objective
functions of the proposed IFLSTMDSVR, the training time of IFLSTMDSVR slightly
increases compared with LSTSVR and LSTPISVR.
Figures 1 and 2 depict the fitting curves estimated by different regression algorithms on

the synthetic test function disturbed by artificial outliers and different types of noise. We
can see clearly from Figures 1 and 2 that the fitting curve of IFLSTMDSVR approximates
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(a) WLSSVR (b) TSVR

(c) LSTSVR (d) LSTPISVR

(e) IFLSTMDSVR

Figure 1. Fitting capacity of different algorithms under uniformly-
distributed noise
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(a) WLSSVR (b) TSVR

(c) LSTSVR (d) LSTPISVR

(e) IFLSTMDSVR

Figure 2. Fitting capacity of different algorithms under normally-
distributed noise

to the real synthetic test function most, regardless of the noise distribution and location of
outliers. The reason is that our IFLSTMDSVR utilizes the iForest approach to remove the
influence of noise and potential outliers on regression. This guarantees that the proposed
IFLSTMDSVR is more robust to noise and outliers than other algorithms.
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(a) C versus RMSE (b) λ1 versus RMSE

(c) λ3 versus RMSE (d) C and λ1 versus RMSE

(e) C and λ3 versus RMSE (f) λ1 and λ3 versus RMSE

Figure 3. The relationship of different parameter settings versus RMSE
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In addition, because WLSSVR also selects appropriate weights for each sample, the
fitting result of WLSSVR is also satisfactory. By contrast, the fitting curves estimated by
TSVR, LSTSVR and LSTPISVR orient towards anomalies and get worse. This is because
anomalies involve in determining the decision hyperplane, which forces the fitting curve
toward the orientation of anomalies.
In our work, we set different penalty parameters λ for the margin variance and the

margin mean. Next, we briefly discuss the relationship of C and λ versus RMSE in the
case of normally-distributed noise and the results are illustrated in Figure 3 (Note that
the remaining parameters are fixed).
Figure 3 implies that the RMSE of the proposed IFLSTMDSVR stabilizes on the

premise of setting smaller or larger λ and C. The relationship of C and λ versus MAE
or ET is similar to RMSE, which is omitted here. Hence, setting appropriate C and λ is
critical to generalization capability.
To sum up, the IFLSTMDSVR developed in this paper has significant robustness to

noise and outliers, and it also improves generalization capability. Furthermore, our IFL-
STMDSVR stabilizes when given relatively small or large penalty parameters.

5. Conclusion. In this paper, we developed an isolation forest-based least squares twin
margin distribution support vector regression (IFLSTMDSVR). The strategy of assigning
potential outliers with tiny impact factors using the iForest approach effectively removes
their influences on regression, and the introduction of the margin distribution informa-
tion in the form of the margin mean and margin variance promotes the generalization
capability. The experimental results on several UCI benchmark datasets and synthetic
test function validate the superiorities of our IFLSTMDSVR in terms of generalization
capability and anomaly insensitivity.
However, the iForest approach may be not the best choice to remove anomalies, and the

critical anomaly score 0.65 may be not the best choice. Besides, the grid search technique
is inefficient. We hope these issues can be settled in our future work.
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