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Abstract. This paper investigates the robust three-dimensional integrated guidance and
control law for the missile with the constraint of the input saturation and impact an-
gle. Based on the dynamic equation of the relative motion of missile-target in three-
dimensional plane, the integrated guidance and control law with the constraint of the
impact angle can deal with the external disturbances with unknown bounds by using the
adaptive control. To deal with the problem of the input saturation, an auxiliary system
is introduced to the integrated guidance and control. Finally, the effectiveness of the de-
signed law is verified through the Lyapunov theory and numerical simulations.
Keywords: Integrated guidance and control, Input saturation, Sliding mode control,
Adaptive control, Robust control

1. Introduction. In the traditional missile guidance and control methods, the guidance
and control systems are regarded as two different processes. The guidance system is
designed as an outer loop that generates an acceleration tracked by the inner loop autopilot
which is usually designed without considering the position and speed information between
the missile and target [1,2]. However, the relative distance between the missile and target
becoming smaller and the rapid change of the relative geometry may lead to the system
performance degradation, and even the failure of the separation design method. In order to
avoid these shortcomings, the integrated guidance and control design has been investigated
by domestic and international scholars [3,4]. The θ-D method [5], sliding mode control
[6,7], second-order sliding mode control [8], and dynamic surface control [9] have been
widely used in the design of the integrated guidance and control algorithm. To make the
missile achieve the all-round attack ability, Wang et al. [10] gave an integrated guidance
and control method with the impact angle constrained. To improve the damage ability to
the target, He et al. [11] designed an integrated guidance and control law with the impact
angle constraint to deal with the problem of intercepting unknown maneuvering targets.
To deal with actuator saturation constraints in real systems, Ma et al. [9] investigated an
integrated guidance and control law by using the dynamic surface control, backstepping
control and adaptive neural network.

The approaches mentioned above are to decouple the missile-target engagement dy-
namics into two mutually perpendicular planes, and then design the integrated guidance
and control law for the two planes respectively. However, the cross-coupling effects be-
tween the two planes are neglected in this simplified method, which will make the system
precision reduce. Therefore, in order to improve the performance of the missile system,
various integrated guidance and control techniques in three-dimensional space have been
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investigated, such as the dynamic surface control [12], back-stepping control [13], sliding
mode control [14], and high-order sliding mode control [15]. In modern war, it not only
requires the missile to hit the target with high accuracy, but also requires the missile
achieving the all-round attack ability to the target from different angles to improve the
damage ability to the target. To solve the problem, the three-dimensional integrated guid-
ance and control law with the impact angle constraint has been studied for the missile
system by numerous scholars [16-18]. Wang and Wang [16] designed a partial integrat-
ed guidance and control law for an interception with terminal impact angle constraints
and aerodynamic uncertainties. Liu et al. [17] proposed a three-dimensional integrated
guidance and control law for a class of bank-to-turn aircraft with fixed target and con-
strained terminal flight angles by using the dynamic surface control and back-stepping
method. Lai et al. [18] gave an adaptive finite-time dynamic surface control law with the
impact angle constrained for a surface-to-air skid-to-turn missile intercepting a head-on
maneuvering target.
It is obvious that the missile usually suffers from the input saturation problem which

may cause unacceptable performance degradation of the missile system [19-21]. In order
to deal with the physical constraints of actuators, anti-saturation integrated guidance and
control laws have been studied for the missile by numerous scholars. Liu et al. [22] de-
signed an integrated guidance and control law for missiles attacking manoeuvring target,
in which an auxiliary system was introduced to handle the input saturation. Zhou and
Xu [23] investigated an anti-saturation guidance law with autopilot dynamics by using
the block dynamic surface control. Wang et al. [24,25] gave an anti-saturation integrated
guidance and control law with the impact angle constraint by using the Nussbaum func-
tion and dynamic surface control. Liu et al. [26] proposed an anti-saturation integrated
guidance and control approach by using the dynamic surface control and barrier Lyapunov
function.
Though some integrated guidance and control laws can deal with the problem of input

saturation, it is still one of challenging problems to design the robust anti-saturation
three-dimensional integrated guidance and control laws for the missile system with the
impact angle constraint. To deal with the problem, this paper designs a robust anti-
saturation three-dimensional integrated guidance and control law by using the adaptive
control, sliding mode control and auxiliary system. The exact contributions of current
paper are concluded as follows.
i) The three-dimensional integrated guidance and control law can deal with the external

disturbances with unknown bounds by using the adaptive control.
ii) By using the auxiliary system, the three-dimensional integrated guidance and control

law can deal with the input saturation.
iii) The robust three-dimensional integrated guidance and control law is designed for

the missile system which can deal with the impact angle constraint and input saturation
simultaneously.
The rest of this paper is divided into the following sections. The integrated guidance

and control system model is given in Section 2. In Section 3, the robust integrated
guidance and control law and stability analysis are given. In Section 4, simulation results
are presented to validate the effectiveness of the law. Finally, it comes to the conclusions
of this paper.

2. Preliminaries. The relative motion between the missile and target in a three-dimen-
sional plane is shown in Figure 1 and Figure 2. The coordinate system Mxyz is parallel to
the reference inertial coordinate system. Mx4y4z4 is the line of sight coordinate system.
M and T represent the center of mass for the missile and target, respectively. The dynamic
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Figure 1. Geometry in a 3D space

Figure 2. Three-dimensional geometry of missile velocity relative to iner-
tial coordinate system

equation of the relative motion of missile-target in three-dimensional plane is given as

R̈−Rθ̇2L −Rϕ̇2
L cos

2 θ̇L = atR − amR (1)

Rθ̈L + 2Ṙθ̇L +Rϕ̇2
L sin θL cos θL = atθ − amθ (2)

−Rϕ̈L cos θL − 2Ṙϕ̇L cos θL + 2Rθ̇Lϕ̇L sin θL = atϕ − amϕ (3)

where R is the distance between the missile and target, θL and ϕL denote the line-of-
sight elevation angle and line-of-sight azimuth angle, respectively, aT = [atR, atθ, atϕ]

T

and aM = [amR, amθ, amϕ]
T are the target acceleration and missile acceleration along the

line of sight coordinate system, respectively.
Since the acceleration of the missile is usually provided by the aerodynamic force in

the terminal guidance segment, the relationship between the acceleration of the missile
and the aerodynamic force should be further considered. The aerodynamic force on the
missile in the velocity coordinate system can be obtained

amz =
Z

m
(4)

amy =
Y

m
(5)

Y = qS
(
cαyα + cβyβ + cδzy δz

)
(6)
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Z = qS
(
cαzα + cβzβ + cδyz δy

)
(7)

where amz and amy are the missile acceleration along the velocity coordinate system, m
denotes the mass of the missile, ρ is the air density, Y and Z are lift and side forces, Vm is
the velocity of the missile, q = 1

2
ρV 2

m denotes the dynamic pressure, S is the reference area
of the missile, α, β, δx, δy, δz are the angle of attack, angle of sideslip, aileron, rudder, and
elevator deflections, respectively, cαy , c

β
y , c

δz
y are the partial derivatives of lift coefficient,

and cαz , c
β
z , c

δy
z are the partial derivatives of the side force coefficient.

Combined with (2), (3), (6) and (7), it can get

θ̈L = −ϕ̇2
L sin θL cos θL − 2Ṙθ̇L

R
+M1mg cos θ −M1 (Y cos (γV )− Z sin (γV ))

− sin θL sin (ϕL − ϕc)

mR
(Y sin (γV )− Z cos (γV )) + dθL (8)

ϕ̈L = −2Ṙϕ̇L

R
+ 2θ̇Lϕ̇L tan θL +M2mg cos θ −M2 (Y cos (γV )− Z sin (γV ))

+
qScβz cos (ϕL − ϕc)

mR cos θL
(Y sin (γV )− Z cos (γV )) + dϕL (9)

M1 =
cos θ cos θL + sin θ sin θL cos (ϕL − ϕc)

mR
(10)

M2 =
sin θ sin (ϕL − ϕc)

mR cos θL
(11)

where dθL and dϕL are the interferences of the system, γV is the velocity bank angle, and
ϕc is the heading angle.
Kinematics equations of the flight path angle θ and heading angle ϕc are shown as

follows:

θ̇ =
Y cos γV − Z sin γV −mg cos θ

mVm

(12)

ϕ̇c =
−Y sin γV − Z cos γV

mVm cos θ
(13)

Next, the attitude kinematics equation of missile can be obtained as follows:

α̇ = −ωx tan β cosα + ωy tan β sinα + ωz −
Y

mVm cos β
+

g

Vm cos β
cos θ cos γV (14)

β̇ = ωx sinα + ωy cosα +
Z

mVm

+
g

Vm

cos θ sin γV (15)

γ̇V = cosα sec βωx − sinα sec βωy −
cos θ cos γV tan β

Vm

g

+
Y (tan θ sin γV + tan β) + Z tan θ cos γV

mVm

(16)

where g is the gravity acceleration, ωx, ωy, ωz are the velocities of roll, yaw and pitch
angle.
The attitude dynamics equation of missile can be obtained as follows:

ω̇x =
Jy − Jz

Jx
ωzωy +

Mx

Jx
(17)

ω̇y =
Jz − Jx

Jy
ωxωz +

My

Jy

(18)
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ω̇z =
Jx − Jy

Jz
ωyωx +

Mz

Jz
(19)

where Jx, Jy, Jz are the inertia moments in the direction of roll, yaw and pitch, respec-
tively. Mx, My and Mz can be obtained as follows:

Mx = qSL
(
mα

xα +mβ
xβ +mδx

x δx
)

(20)

My = qSL
(
mβ

yβ +mδy
y δy
)

(21)

Mz = qSL
(
mα

zα +mδz
z δz
)

(22)

where L is the length of the reference. mα
x , m

β
x, m

δx
x are partial derivatives of rolling

moment coefficient, mβ
y , m

δy
y are partial derivatives of yawing moment coefficient, and

mα
z , m

δz
z are partial derivatives of pitching moment coefficient.

Combined with (8) and (9) and (14)-(22), a three-dimensional guidance and control
integration model can be given as [27]

ẋ1 = f1 + b1x̄2 + d1 (23)

ẋ2 = f2 + b2x3 + d2 (24)

ẋ3 = f3 + b3sat(u) + d3 (25)

where x1 =
[
θ̇L ϕ̇L

]T
, x2 =

[
α β γV

]T
, x3 =

[
ωx ωy ωz

]T
, x̄2 =

[
α β

]T
,

u =
[
δx δy δz

]T
, d1, d2, d3 are the total interferences of the system. b1, b2, b3, f1,

f2 and f3 can be obtained as follows:

b1 =

 −M1qSc
α
y −qScβz sin θL sin(ϕL − ϕc)

mR

−M2qSc
α
y

qScβz cos(ϕL − ϕc)

mR cos θL

 (26)

b2 =

 − tan β cosα tan β sinα 1

sinα cosα 0

cosα sec β − sinα sec β 0

 (27)

b3 =



qSLmδx
x

Jx
0 0

0
qSLm

δy
y

Jy
0

0 0
qSLmδz

z

Jz


(28)

f1 =


−2Ṙ

R
θ̇L − ϕ̇2

L sin θL cos θL +M1mg cos θ

−2Ṙ

R
ϕ̇L + 2θ̇Lϕ̇L tan θL +M2mg cos θ

 (29)

f2 =


−
qS

(
cαyα+ cβyβ

)
mV cosβ

+
g

V cosβ
cos θ cos γV

qS
(
cαzα+ cβzβ

)
mV

+
g

V
cos θ sin γV

−cos θ cos γV tanβ

V
g +

(
qS

(
cαyα+ cβyβ

))
(tan θ sin γV + tanβ) +

(
qS

(
cαzα+ cβzβ

))
tan θ cos γV

mV


T

(30)
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f3 =



Jy − Jz
Jx

ωzωy +
qSL

(
mα

xα +mβ
xβ
)

Jx

Jz − Jx
Jy

ωxωz +
qSLmβ

yβ

Jy
Jx − Jy

Jz
ωyωx +

qSLmα
zα

Jz


(31)

Remark 2.1. Due to the limitation of the missile seeker itself and the size of the target
itself, R is not equal to zero when the missile hits its target. R satisfies R0 < R < R(0),
in which R0 is the minimum operating distance of the seeker and R(0) is the initial value
of R. In addition, θL = ±π

2
is a singular point, which can be avoided by selecting an

appropriate reference coordinate system in the terminal guidance segment. So, b1, b2 and
b3 are invertible matrix.

Control objective: This paper is working on integrated guidance and control for the
system (23)-(25). Assuming that θLf and ϕLf are the desired line-of-sight elevation angle

and line-of-sight azimuth angle, the design goals of this paper are θ̇L → 0, ϕ̇L → 0,
θL → θLf , ϕL → ϕLf when the system has actuator saturation and external disturbances.

3. Main Results. In this section, STT control is adopted, which means to maintain
the velocity inclination angle during the interception process γV = 0. To facilitate the
integrated guidance and control law design, the following assumption is given.

Assumption 3.1. The total interferences of the system d1, d2, d3 are satisfied ∥d1∥ ≤
d1max, ∥d2∥ ≤ d2max, ∥d3∥ ≤ d3max, where d1max, d2max, d3max are unknown positive
constants.

To illustrate the robust control procedures, the design of the integrated guidance and
control law is elaborated in detail.
Step 1: Designing the virtual controller for the system (23)
The system errors are defined as

e =
[
θL ϕL

]T −
[
θLf ϕLf

]T
(32)

x1 = ė (33)

The sliding mode surface S1 is designed as

S1 = x1 + k0e (34)

Taking the derivative of (34) with respect to time, it can get

Ṡ1 = f1 + b1x̄2 + d1 + k0x1 (35)

Ignoring the system disturbance d1 which is dealt with below, the virtual controller is
given as

Z2 = b−1
1 (−f1 − k1S1 − k0x1) (36)

where k1 is a positive constant. If Z2 = x̄2, substituting (36) into Equation (35) it can
get

Ṡ1 = −k1S1 + d1 (37)

Then it can get S1 → 0.
Step 2: Designing the virtual controller for the system (24)
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In order to realize Z2 tracking x̄2, the sliding mode surface is defined

S2 =

 s21
s22
s23

 = x2 −
[
Z2

0

]
(38)

Take the derivative of (38) with respect to time and get

Ṡ2 = f2 + b2x3 + d2 −
[
Ż2

0

]
(39)

Ignoring the system disturbance d2 which is dealt with below, the virtual controller is
given as

Z3 = b−1
2

(
−f2 −

[
bT1S1

0

]
− k2S2 +

[
Ż2

0

])
(40)

where k2 is a positive constant. If Z3 = x3, substituting (40) into Equation (39) it can
get

Ṡ2 = −
[
bT1S1

0

]
− k2S2 + d2 (41)

As S1 → 0, it can get that S2 → 0.
Step 3: Designing the virtual controller for the system (25)
In order to realize Z3 tracking of x3, the sliding mode surface is defined

S3 = x3 −Z3 (42)

Take the derivative of (42) with respect to time and get

Ṡ3 = f3 + b3sat(u) + d3 − Ż3 (43)

In order to deal with the input saturation, the saturation error is defined as

∆u = sat(u)− u (44)

The system (43) can be rearranged as

Ṡ3 = f3 + b3(∆u+ u) + d3 − Ż3 (45)

Combining the sliding mode control, adaptive control, and auxiliary system, the anti-
saturation controller is designed as (46)-(51), where r1, r2, r3, k3 and k4 are positive

numbers. D̂1, D̂2 and D̂3 are the estimated values of d1max d2max and d3max.

u = b−1
3

(
−f3 − bT2S2 − k3 (S3 − xe) + Ż3 −

S3

∥S3∥2
(
D̂1 ∥S1∥+ D̂2 ∥S2∥

)
− D̂3sgn(S3)

)
(46)

ẋe = −(1/τ)xe +∆u (47)

1/τ = k4 +
∥S3∥ ∥b3∥ ∥∆u∥+ ∥∆u∥2

∥xe∥2 + γ(xe)
(48)

˙̂
D1 = r1 ∥S1∥ (49)

˙̂
D2 = r2 ∥S2∥ (50)

˙̂
D3 = r3 ∥S3∥ (51)
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Substituting (46) into Equation (45) it can get

Ṡ3 = b3∆u+d3−bT2S2−k3 (S3 − xe)−
S3

∥S3∥2
(
D̂1 ∥S1∥+ D̂2 ∥S2∥

)
− D̂3sgn (S3) (52)

If ∆u = 0, S2 → 0, it can get that S3 → 0.
In conclusion, for the cascade system (23)-(25), the law (46) can be adopted to make

the system meet the tracking requirements x1 → x1d = 0.

Theorem 3.1. Considering the system (23)-(25) satisfying Assumption 3.1, if the ro-
bust three-dimensional saturated integrated guidance and control law is given as (46), the

system is asymptotically stable and θ̇L → 0, ϕ̇L → 0, θL → θLf , ϕL → ϕLf .

Remark 3.1. As the virtual control law (46) has one drawback that when ∥S3∥ → 0,
u → ∞, to deal with the problem, we improve the law (46) to be

u = b−1
3

(
−f3 − bT2S2 − k3 (S3 − xe)− D̂3sgn(S3) + Ż3

)

− b−1
3


S3

∥S3∥2
(
D̂1 ∥S1∥+ D̂2 ∥S2∥

)
, ∥S3∥2 > 0.001

S3

0.001

(
D̂1 ∥S1∥+ D̂2 ∥S2∥

)
, ∥S3∥2 ≤ 0.001

(53)

Remark 3.2. If the robust three-dimensional integrated guidance and control law is given
as (53), it can deal with the impact angle constraint and input saturation simultaneously.

Remark 3.3. When e = 0, it can get
[
θL ϕL

]T
=
[
θLf ϕLf

]T
. It means that the

robust three-dimensional saturated integrated guidance and control system implements the
impact angle constraint.

4. Numerical Examples. In this section, simulation results are presented to illustrate
the effectiveness and applicability of the proposed robust integrated guidance and control
law. In order to verify the robustness of the designed integrated guidance and control
law, the target maneuvering is given as atθ = 3 sin(10t) m/s2, atϕ = 3 cos(10t) m/s2. The
parameters in the guidance and control integration model are given in Table 1 [28]. The
initial scenario parameters of missile interception maneuver target are selected as shown
in Table 2 [28].

Table 1. Initial parameters of the missile

Variable

name

Variable

value

Variable

name

Variable

value

Variable

name

Variable

value

S 0.42 m2 mα
z −28.16 cαy 57.16

L 0.68 m mδz
z −27.92 cβy 0.08

m 1200 kg mβ
y −27.31 cδzy 5.74

ρ 1.1558 kg/m3 m
δy
y −26.57 cαz −56.31

Jx 100 kg · m2 mα
x 0.46 cβz −5.62

Jy 5700 kg · m2 mβ
x −0.37 c

δy
z 0.09

Jz 5600 kg · m2 mδx
x 2.12
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Table 2. Initial engagement parameters for the missile and target

Variable name Variable value Variable name Variable value
θ(0) 45π/180 rad zm(0) 0 m
ϕc(0) 0 rad Vm 1000 m/s
ωx 0.1 rad/s xt(0) 11136 m
ωy 0.1 rad/s yt(0) 8603 m
ωz 0.2 rad/s zt(0) 5192.8 m

xm(0) 0 m Vt 800 m/s
ym(0) 0 m

For the system (23)-(25), the initial system parameters are selected as the above tables.
The integrated guidance and control law is given as (53) where its parameters are selected
as follows k0 = 1, k1 = 1, k2 = 2, k3 = 2, k4 = 2, r1 = 0.01, r2 = 0.01 and r3 = 0.01. The
expected line-of-sight angles are given as θLf = 30◦ and ϕLf = −20◦. The upper limit of
the control input is um = 30◦.

The simulation results are shown in Figures 3-7. The distance between the missile and
target R is depicted in Figure 3, from which one can deduce that the missile can hit the
target with high accuracy. Figure 4 gives curves of α, β, and γV , from which it can get
that they can converge to a very small range of zero. Figure 5 presents curves of ωx, ωy,
and ωz. Figure 6 presents curves of θL and ϕL, from which one can deduce that the line
of sight angle can converge to the desired value. Figure 7 gives curves of δx, δy, and δz.
Clearly, the boundary of the control input is less than 30◦.

Figure 3. Curves of R

5. Conclusions. In this paper, the integrated guidance and control law for the missile
has been investigated. An auxiliary system is proposed to deal with the input saturation
for the missile. By using the adaptive control, the robust law can deal with the external
disturbances with unknown bounds. The Lyapunov stability theory is employed to show
the stability of the guidance laws. Finally, numerical simulations have been given to
demonstrate the effectiveness of the proposed integrated guidance and control law. In
the future, we will focus on the robust guidance law design considering the impact angle
constraint, input saturation and state constraints.
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Figure 4. Curves of α, β, and γV

Figure 5. Curves of ωx, ωy, and ωz

Figure 6. Curves of θL and ϕL
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Figure 7. Curves of δx, δy, and δz

Acknowledgment. This work was partially supported by the National Natural Science
Foundation of China under Grant No. 61573113. The authors also gratefully acknowledge
the helpful comments and suggestions of the reviewers.

REFERENCES

[1] K. W. Lee and S. N. Singh, Longitudinal nonlinear adaptive autopilot design for missiles with
control constraint, Proc. of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, vol.232, no.9, pp.1655-1670, 2018.

[2] M. Ma, K. Zhao and S. Song, Adaptive sliding mode guidance law with prescribed performance for
intercepting maneuvering target, International Journal of Innovative Computing, Information and
Control, vol.16, no.2, pp.631-648, 2020.

[3] T. Shima, M. Idan and O. M. Golan, Sliding-mode control for integrated missile autopilot guidance,
Journal of Guidance, Control, and Dynamics, vol.29, no.2, pp.250-260, 2006.

[4] M. Hou and G. Duan, Integrated guidance and control of homing missiles against ground fixed
targets, Chinese Journal of Aeronautics, vol.21, no.2, pp.162-168, 2008.

[5] M. Xin, S. N. Balakrishnan and E. J. Ohlmeyer, Integrated guidance and control of missiles with
θ-D method, IFAC Proceedings Volumes, vol.37, no.6, pp.629-634, 2004.

[6] J. Guo, Y. Xiong and J. Zhou, A new sliding mode control design for integrated missile guidance
and control system, Aerospace Science and Technology, vol.78, pp.54-61, 2018.

[7] Y. Guo, B. Huang and A. J. Li, Integral sliding mode control for Euler-Lagrange systems with input
saturation, International Journal of Robust and Nonlinear Control, vol.29, no.4, pp.1088-1100, 2019.

[8] Y. B. Shtessel, I. A. Shkolnikov and A. Levant, Guidance and control of missile interceptor using
second-order sliding modes, IEEE Trans. Aerospace and Electronic Systems, vol.45, no.1, pp.110-124,
2009.

[9] J. Ma, H. Guo and P. Li, Adaptive integrated guidance and control design for a missile with input
constraints, IFAC Proceedings Volumes, vol.46, no.20, pp.206-211, 2013.

[10] X. H. Wang, C. P. Tan and L. P. Cheng, Impact time and angle constrained integrated guidance
and control with application to salvo attack, Asian Journal of Control, 2019.

[11] S. He, T. Song and D. Lin, Impact angle constrained integrated guidance and control for maneuvering
target interception, Journal of Guidance, Control, and Dynamics, vol.40, no.10, pp.2653-2661, 2017.

[12] M. Hou, X. Liang and G. Duan, Adaptive block dynamic surface control for integrated missile
guidance and autopilot, Chinese Journal of Aeronautics, vol.26, no.3, pp.741-750, 2013.

[13] C. Bao, P. Wang and G. Tang, Integrated guidance and control for hypersonic morphing missile
based on variable span auxiliary control, International Journal of Aerospace Engineering, 2019.

[14] Z. Wang, J. Ma and J. Fu, Research on sliding mode method about three-dimensional integrated
guidance and control for air-to-ground missile, Journal of Aerospace Technology and Management,
2019.



592 H. QIAN AND T. LI

[15] R. Huo, X. Liu and X. Zeng, Integrated guidance and control based on high-order sliding mode
method, The 36th Chinese Control Conference (CCC), pp.6073-6078, 2017.

[16] X. Wang and J. Wang, Partial integrated guidance and control for missiles with three-dimensional
impact angle constraints, Journal of Guidance, Control, and Dynamics, vol.37, no.2, pp.644-657,
2014.

[17] X. Liu, W. Huang and L. Du, Three-dimensional integrated guidance and control for BTT aircraft
constrained by terminal flight angles, The 27th Chinese Control and Decision Conference, pp.107-
112, 2015.

[18] C. Lai, W. Wang and Z. Liu, Three-dimensional impact angle constrained partial integrated guidance
and control with finite-time convergence, IEEE Access, vol.6, pp.53833-53853, 2018.

[19] J. G. Sun, S. M. Song and H. T. Chen, Finite-time tracking control of hypersonic aircrafts with
input saturation, Proc. of the Institution of Mechanical Engineers, Part G: Journal of Aerospace
Engineering, vol.232, no.7, pp.1373-1389, 2018.

[20] Y. Guo, B. Huang and S. M. Song, Robust saturated finite-time attitude control for spacecraft using
integral sliding mode, Journal of Guidance, Control, and Dynamics, vol.24, no.2, pp.440-446, 2019.

[21] S. Huang, M. Huang, J. Mi, L. Ma, Z. Lu and H. Su, Fuzzy control for trajectory tracking in shield
tunneling, ICIC Express Letters, Part B: Applications, vol.10, no.7, pp.579-586, 2019.

[22] W. Liu, Y. Wei and G. R. Duan, Integrated guidance and control with input saturation and distur-
bance observer, Journal of Control and Decision, vol.5, no.3, pp.277-299, 2018.

[23] D. Zhou and B. Xu, Adaptive dynamic surface guidance law with input saturation constraint and
autopilot dynamics, Journal of Guidance, Control, and Dynamics, pp.1155-1162, 2016.

[24] S. Wang, W. Wang and S. Xiong, Impact angle constrained three-dimensional integrated guidance
and control for STT missile in the presence of input saturation, ISA Transactions, vol.64, pp.151-160,
2016.

[25] W. Wang, S. Xiong and S. Wang, Three dimensional impact angle constrained integrated guidance
and control for missiles with input saturation and actuator failure, Aerospace Science and Technology,
vol.53, pp.169-187, 2016.

[26] W. Liu, Y. Wei and G. Duan, Barrier Lyapunov function-based integrated guidance and control with
input saturation and state constraints, Aerospace Science and Technology, vol.84, pp.845-855, 2019.

[27] H. Yan and H. B. Ji, Guidance laws based on input-to-state stability and high-gain observers, IEEE
Trans. Aerospace and Electronic Systems, vol.48, no.3, pp.2518-2529, 2012.

[28] S. He, W. Wang and J. Wang, Three-dimensional multivariable integrated guidance and control de-
sign for maneuvering targets interception, Journal of the Franklin Institute, vol.353, no.16, pp.4330-
4350, 2016.

Appendix. The proof of Theorem 3.1
Proof: The Lyapunov function V is chosen as (54), where D̃i = Di − D̂i, (i = 1, 2, 3)

V =
1

2

3∑
i=1

ST
i Si +

1

2r1
D̃2

1 +
1

2r2
D̃2

2 +
1

2r3
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3 +
1

2
xT
e xe (54)

Taking the time derivative of V yields

V̇ = ST
1 Ṡ1 + ST

2 Ṡ2 + ST
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e ẋe

≤ − k1S
T
1 S1 − k2S

T
2 S2 − k3S

T
3 S3 + ∥S3∥ ∥b3∥ ∥∆u∥+ k3 ∥S3∥ ∥xe∥+ xT

e ẋe
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So, when V > 0, there is V̇ ≤ 0, and according to Lyapunov’s stability theory Si, D̃i

(i = 1, 2, 3) is bound, and then D̂i (i = 1, 2, 3) is bound.
Define k = min

{
k1, k2,

3k3
4

}
V̇ ≤ −k
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0

− V̇ (τ)dτ = V (0)− V (+∞) < +∞ (57)

According to Barbalat invariance principle Si → 0 and xe → 0.
Now, Theorem 3.1 has been proven.


