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Abstract. The primary objective of this study was to optimize the trajectory planning
and positioning error of a five-degree-of-freedom robotic manipulator. First, a multigroup
ant colony optimization (MACO) algorithm was used to determine the shortest trajectory
with obstacle avoidance. A quantum-behaved particle swarm optimization (QPSO) algo-
rithm was subsequently used to determine the optimal positioning error for each moving
point along the shortest trajectory. The simulation results revealed that compared with the
traditional ant colony optimization algorithm, the MACO algorithm reduced the number
of iterations by 66% and the path length by approximately 5%-7%. Moreover, the QP-
SO algorithm ensured that the robotic manipulator performed the least possible number
of joint movements. This algorithm also solved the inverse kinematics problem. The
optimal configuration had a positioning error of 10−3 mm. The current results can be
extensively used for designing and analyzing multiaxial robotic manipulators.
Keywords: Robotic manipulator, Multigroup ant colony optimization, QPSO algori-
thm, Positioning error

1. Introduction. In recent years, robotic manipulators have replaced manual labor to
ensure fast processing for improving the accuracy and stability of processes such as the
machining of small parts, assembly of electronic components, painting, fabrication of
integrated circuits, and welding. The accumulative errors of the operating mechanisms
of robotic manipulators directly affect the accuracy of the end product. Therefore, to
improve robotic manipulators’ operating efficiency in various processes, their trajectory
planning and positioning accuracy must be optimized. In general, robotic manipulator
trajectory planning involves determining the optimal trajectory from a starting point to a
target point while avoiding obstacles. During the movement of a robotic manipulator, the
position of the gripper end must be accurately calculated such that the optimal trajectory
is obtained from the predetermined motion and position of each motor-rotated joint angle.

Numerous researchers have reported on the optimization of the obstacle avoidance tra-
jectory and positioning error of robotic manipulators. Cai et al. [1] presented a method
for determining the structural and angular parameters in robot kinematics to compensate
for an error model; the authors effectively reduced the angle errors by using the robot
kinematics equation and Denavit-Hartenberg (D-H) algorithm for correcting and com-
pensating for the errors in the joint angles. Liu et al. [2] used equal grids to optimize a
robotic manipulator’s trajectory by using an ant colony algorithm in a two-dimensional
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environment; the authors analyzed the optimum operating mechanism of the ant colony
algorithm for alleviating the local optimization drawbacks and expediting the search.
Shukla et al. [3] used a variational principle to optimize the trajectories of serial ma-
nipulators and presented modified boundary conditions to search for feasible trajectories
under obstacle avoidance constraints. Finally, Fu et al. [4] developed an improved trajec-
tory planning algorithm that considers the obstacle crossing of given nodes and provided
a criterion for eliminating redundant nodes.
In recent research, the development of stochastic algorithms has been increasing, along

with their use for optimization. For instance, numerous researchers have applied methods
based on genetic algorithms (GAs), which are well-developed and bio-inspired, to handle
the obstacle avoidance trajectory inverse kinematics, and positioning error optimization
problem.
Jiang et al. [5] constructed a model of a four-degree-of-freedom (DOF) manipulator

and used a GA to solve the trajectory planning problem for robotic manipulators. The
fitness function adopted by the authors considers the maximum torque, path length, and
total distance of each joint. Zacharia et al. [6] used a modified GA involving special en-
coding to resolve the multiplicity of the robot inverse kinematics problem and analyzed
the collision-free motion plans and scheduled time-optimal routes along with a set of giv-
en task points. Menasri et al. [7] presented a bi-level GA for determining the optimal
joint angles and configurations that prevent the problems associated with the obstacles
and singularities of robotic manipulators. Kalra et al. [8] used a real-coded GA to solve
the multimodal inverse kinematics problem associated with industrial robots and deter-
mined the robot configuration closest to an existing robot configuration in a joint space to
achieve the required manipulator position. Tabandeh et al. [9] adopted a GA to solve the
inverse kinematics problem of a serial robotic manipulator and added a modified filtering
and clustering phase to the GA for obtaining the link parameters and joint variables of
the manipulator. El-Sherbiny et al. [10] compared the performance of several methods,
including algebraic, geometric, and iterative methods, and their adaptive neurofuzzy in-
ference systems for solving the inverse kinematics problem. Their results indicated that
a GA has superior positioning performance but requires a long time to achieve conver-
gence. Thus, in general, a GA’s convergence and performance depend on the shape of the
solution space, and its mechanism is fully stochastic and discrete such that the solutions
are difficult to converge to globally optimal solutions through its dynamics.
The particle swarm optimization (PSO) algorithm has a different evolutionary mecha-

nism that gives an optimal solution with a convergence circle that depends on the param-
eters of the algorithm. This algorithm has been used in different scenarios [11] and its
variant versions have also been proposed [12-14]. The use of a PSO algorithm for solving
the robotic manipulator optimizing problem has been discussed previously. For instance,
Huang et al. [15] presented a PSO algorithm for solving the redundant inverse kinematics
problem of seven-DOF robotic manipulators. Zhou et al. [16] employed neural networks
and a PSO algorithm to determine the absolute positioning accuracy of industrial robots
used in flexible automated assembly for aircraft. The authors constructed a precise error
model between neighborhoods of points to compensate for the precision error. Prasert-
taweelap et al. [17] applied a PSO algorithm to aiding trajectory planning with obstacle
avoidance for a real-life layout of hard disk manufacturer; the authors proposed a risk
function to define safety zones and combined the risk function and the path length into
a cost function. In their work, the PSO algorithm was used to construct a new data
point in an interpolated trajectory and to minimize a defined cost function. However,
the limitations of PSO include algorithm structure, whereby the particles follow certain
deterministic mechanism and easily converge into a locally optimal solution.
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Other related works have considered the use of artificial neural networks (ANNs), which
are composed of neurons, weightings and an optimization process; ANNs have been widely
applied in nonlinear mapping problems and related works. For instance, Pham et al. [18]
used the bees algorithm to train multilayer perceptron neural networks for modeling the
inverse kinematics of an articulated robotic manipulator and established that the bees
algorithm was robust in consistently training the neural networks to model kinematics
data with high accuracy. Mayorga and Sanongboon [19] used an ANN for the rapid com-
putation of the inverse kinematics problem and the effective prevention of the singularities
of redundant manipulators. In particular, the authors analyzed constrained geometrical
concepts to establish characterization matrices for preventing singularities and identify-
ing a safe trajectory. Hasan et al. [20] used an ANN to control a robotic manipulator’s
motion; this ANN was trained to learn the desired set of joint angle positions from a
given set of end-effector positions. Lin et al. [21] designed a convolutional neural network
(CNN)-based obstacle avoidance algorithm for unmanned underwater vehicles; to avoid
obstacles, this algorithm could adjust the dynamic parameter, yaw, and velocity.

Taken together, the reviewed literature indicates that the predictive effectiveness of
an ANN depends on the number of effective training samples and parameter adjustment;
moreover, the ANN training process is time-consuming, and collecting an effective amount
of samples, even for sample size determination, can be difficult [22-24]. Moreover, a GA can
easily lose favorable solutions during the optimization process. Furthermore, traditional
PSO algorithms have a limitation in that they cannot cover the entire solution space in a
feasible region. Nevertheless, some variants of aforementioned methods are proposed to
improve the convergence and solution quality.

Therefore, in the current study, two algorithms were applied for solving two subprob-
lems related to a robotic manipulator: 1) a multigroup ant colony optimization (MACO)
algorithm to determine the shortest trajectory under static obstacle avoidance conditions
and 2) the quantum-behaved PSO (QPSO) algorithm to calculate the angles of each joint
of the robotic manipulator, along with the positioning errors, by solving the inverse kine-
matics problem.

The remainder of this paper is organized as follows. Section 2 describes the kinematics
of the robotic manipulator. Section 3 presents the trajectory and positioning error prob-
lems. Section 4 describes the MACO algorithm-based solution for the optimal trajectory
subproblem of obstacle avoidance. Section 5 delineates the QPSO algorithm-based so-
lution of the inverse kinematics subproblem. Section 6 presents the study flow. Section
7 discusses the results for the two algorithms in detail. Finally, Section 8 concludes the
paper.

2. Manipulator Kinematics. The topography and joint motion of the five-DOF robot-
ic manipulator are displayed in Figures 1(a) and 1(b). In these figures, θ1, θ2, θ3, θ4, and
θ5 are the joint angles, which are the configuration parameters of the manipulator; xq,
yq, and zq are the spatial coordinates of the target position of the robotic manipulator;
and x0q, y0q, and z0q are the spatial coordinates of the determined position of the robotic
manipulator. The positioning error is affected by the configuration parameters and the
resolutions of the rotator encoder. Each joint of a five-DOF robotic manipulator with five
servo motor components has a certain angle with a limited motor rotation range. The ele-
mentary homogeneous transform matrices (iAi+1, i = 0, 1, 2, 3, 4) and the D-H coordinate
transformation were used to compute the matrix 0T i+1, which defines the transformation
between the X0Y0Z0 coordinate system attached to the base and the Xi+1Yi+1Zi+1 coordi-
nate system attached to the ith link. Equation (1) indicates that iAi+1 is a homogeneous
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(a) (b)

Figure 1. Schematics of a five-DOF robotic manipulator: (a) joint angle,
target trajectory, and actual trajectory and (b) coordinates of the parame-
ters and links

transformation matrix between the consecutive coordinate frames i and i + 1. The fol-
lowing definitions of the link parameters are valid: 1) ai is the distance from Zi to Zi+1

measured along Xi; 2) αi is the angle between Zi and Zi+1 measured about Xi; 3) di is
the distance from Xi to Xi+1 measured along Zi; 4) θi is the angle between Xi and Xi+1

measured about Zi.

iAi+1 = Rot(z, θi+1)× Trans(0, 0, di+1)× Trans(ai+1, 0, 0)×Rot(x, ai+1)

=


cos θi+1 − sin θi+1 0 0
sin θi+1 cos θi+1 0 0

0 0 1 0
0 0 0 1



1 0 0 0
0 1 0 0
0 0 1 di+1

0 0 0 1



1 0 0 ai+1

0 1 0 0
0 0 1 0
0 0 0 1



1 0 0 0
0 cosαi+1 − sinαi+1 0
0 sinαi+1 cosαi+1 0
0 0 0 1



=


cos θi+1 − sin θi+1 cosαi+1 sin θi+1 sinαi+1 αi+1 cos θi+1

sin θi+1 cos θi+1 cosαi+1 − cos θi+1 sinαi+1 αi+1 sin θi+1

0 sinαi+1 cosαi+1 di+1

0 0 0 1

 (1)

For an n-joint robotic manipulator, Equation (2) presents the transformation matrix
between the joints and links associated with the D-H parameters. The aforementioned
matrix is a 4× 4 matrix.

T5 =
0A1

1A2
2A3

3A4
4A5 (2)

3. Problem Description. The optimization problem is divided into two subproblems:
1) the temporary static trajectory problem of a robotic manipulator and 2) the inverse
kinematics problem of a robotic manipulator in a least movement condition. Both these
two subproblems are solved using MACO and QPSO, described in Section 4 and Section
5.

3.1. Trajectory and path length. The term “temporary static trajectory” indicates
that the target objects have no movement over a particular period. In most manufactur-
ing processes, semifinished products are processed station by station and then classified
by robotic manipulators. In a station, target objects can be placed at predefined tar-
get position. These objects can then be picked up using a trajectory formed by nodes
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connected in a certain permutation (Figure 1). The cost function is described as follows:

argmin
x

n∑
i=2

D(p(xi),p(xi−1)) =
n∑

i=2

√∑
(pj(xi)− pj(xi−1))2 (3)

x = [x1, x2, . . . , xn] ∈ Z
where p(xi) is the position vector of the xith node (where x is the solution vector, which is

the permutation of nodes) and
√∑

(pj(xi)− pj(xi−1))2 represents the distance between
nodes xi and xi−1. In addition, the distance is set as infinity if the connection of the
nodes between xi and xi−1 intersects the obstacle. The summation of the distances be-
tween nodes is referred to as the path length. The cost function is used for optimizing
a permutation such that the path length is minimized. Herein, the MACO algorithm is
used to solve the permutation problem with the least distance objective and obtain the
optimal trajectory.

3.2. Positioning error and least movement. The aims of manipulator control are
to ensure the precision of positioning and to minimize manipulator movements. A cost
function for determining an optimal positioning error is the function that minimizes the
distance between the final real position and the expected position of the end effector.
The joint angles θ1, θ2, θ3, θ4, and θ5 are the design variables (i.e., the configuration
parameters) of the five-DOF manipulator. The movements of these joint angles should be
minimized optimally to reduce the operation time. The D-H parameters of the simulated
robotic manipulator are presented in Table 1.

Table 1. Constraints of each joint of the five-DOF robotic manipulator

Joint θi di (mm) ai (mm) αi (deg)
1 θ1 60 0 90
2 θ2 0 200 0
3 θ3 0 120 0
4 θ4 0 60 0
5 θ5 0 50 90

The transformation T5 between the base and end-effector frames is expressed as follows:

T5 =


cos θ1 0 sin θ1 0
sin θ1 0 cos θ1 0
0 1 0 60
0 0 0 1




cos θ2 − sin θ2 0 200 cos θ2
sin θ2 cos θ2 0 200 sin θ2
0 0 1 0
0 0 0 1




cos θ3 − sin θ3 0 120 cos θ3
sin θ3 cos θ3 0 120 sin θ3
0 0 1 0
0 0 0 1




cos θ4 − sin θ4 0 60 cos θ4
sin θ4 cos θ4 0 60 sin θ4
0 0 1 0
0 0 0 1




cos θ5 0 sin θ5 50 cos θ5
sin θ5 0 cos θ5 50 sin θ5
0 1 0 0
0 0 0 1

 (4)

The constraints of the configuration parameters are as follows: −180◦ < θ1 < 180◦,
0◦ < θ2 < 150◦, −90◦ < θ3 < 90◦, −135◦ < θ4 < 135◦, and −80◦ < θ5 < 80◦. These initial
configuration parameters are denoted in the vector form as 0θ = [θ1, θ2, θ3, θ4, θ5]

T , and
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the determined parameters for the jth position are denoted as jθ. Therefore, the cost
function is defined as follows:

argminY (X) =
√
(xq − x0q)2 + (yq − y0q)2 + (zq − z0q)2 + 10×

∑
|∆θ| (5)

∆θ = iθ − i−1θ

where [ xq yq zq ]T represents the target position, whose coordinates are obtained using
the MACO algorithm. The position of the end effector relative to the base frame is
[ x0q y0q z0q 1 ] = T5[ 0 0 0 1 ]T . The configuration parameters [θ1, θ2, θ3, θ4, θ5]

T

are present in the D-H matrix T5 in Equation (2). The cost function Y (X) ensures
the positioning accuracy, and ∆θ is the angle change between the previous and present
configurations that ensures the least manipulator movements.

4. MACO Algorithm.

4.1. Ant colony system. The ant colony system (ACS) algorithm has the local and
global pheromone updating mechanisms used by ants [25]. The ACS algorithm is a
population-based algorithm in which several artificial ants search for optimal solutions.
This algorithm is based on the natural foraging behavior of ants, which use only pheromone
information for determining the shortest path between their nest and the food source.
Thus, a greater pheromone concentration on a path indicates a shorter path length. Ants
following a foraging path mainly depend on the pheromone concentration to select the
shortest path. Therefore, the pheromone update plays a crucial role in selecting the
shortest path. The updating formula is expressed as follows:

τt+1(i, j)← (1− ρ) · τt(i, j) +
|Tant |∑
k=1

∆τm(i, j)

∆τm , Q

Lm

(6)

In Equation (6), a pheromone can be defined as a discrete pheromone field between
nodes i, j and denoted as τ(i, j). For simplicity, the update operations are applied to the
same node index (i, j), which is omitted from τ . Tant and |Tant| represent a set of ants and
the total number of ants, respectively. Moreover, ρ ∈ (0, 1] is the evaporation rate, ∆τm
is the quantity of pheromone laid on the node (i, j) by the mth ant, Q is an arbitrarily
selected number, and Lm is the tour length of the mth ant.
When searching for optimal solutions, the ants in the ACS algorithm construct several

path candidates that follow a probabilistic decision rule. The transition probability of
the mth ant moving from the previously visited node a to the next candidate node k is
described as follows:

pm,t(k) ,


τ ζt (a, k) · η

β
t (a, k)∑

τ ζt (a, k)η
β
t (a, k)

, if k ∈ not visited node

0, otherwise

(7)

Fk(k) =
k∑

k=1

pm,t(k) (8)

ηβt (i, j) ,
(

1

d(i, j)

)β

(9)



OPTIMIZING THE OBSTACLE AVOIDANCE TRAJECTORY AND POSITIONING ERROR 601

Here, pm,t(k) represents the probability for the kth node selection and that the mth ant
has not yet visited at the tth iteration; Fk(k) is the cumulative probability of pm,t(k);
d(i, j) is the path length between nodes i and j; ζ and β determine the influence of the
pheromone and heuristic information, respectively. Moreover, the next visiting city is
determined by the roulette wheel selection:

argmax
l

Fk(l)− q (10)

where q is an auxiliary random variable uniformly distributed within the range [0, 1].
Because low pheromone values exist in the local pheromone update mechanism of the

ACS algorithm, the global pheromone update is executed at the end of each iteration.
The global pheromone update mechanism is executed only by the best ant. In particular,
only paths that were visited by the best ant are updated in the search process. The global
pheromone update mechanism is expressed as follows:

τt ← (1− ρ) · τt + ρ ·∆τbest (11)

∆τbest =


(

Q

Lbest

)
, (i, j) ∈ global best solution at iteration t

0, otherwise

where the parameter Lbest can be set to the length of the optimal path found in the current
iteration. Each ant in the ACS applies a probabilistic action choice rule, which is called
the pseudorandom proportional rule, to determine which of the neighboring nodes is to
be visited next.

4.2. MACO algorithm. The drawbacks of the traditional ant colony optimization
(ACO) algorithm are its tendency to be easily trapped into a local optimum and its
unnecessary computations. These drawbacks increase the computation time and complex-
ity of the algorithm and cause premature convergence. Therefore, an MACO algorithm
[26] is presented to overcome the disadvantages of the traditional ACO algorithm. The
ants in the MACO algorithm are divided equally into several partitions, which are also
called “groups”. The ants belonging to each group pass each node along their paths;
thus, the pheromone concentrations of each path between nodes are constrained in all the
groups. The MACO mechanism involves splitting the number of ants, forming their local
pheromones, and finally, sharing these pheromones with the global pheromone pool at the
end of ACS.

|Gd| =
|Tant |
g

(12)

τt+1 ← (1− ρ)τt + ρ g

√
∆τG1 ×∆τG2 × · · · ×∆τGg (13)

∆τGd
=


|Tant |∑
m=1

Q

Lm
ij

, if (i, j) belong to the best tour

0, otherwise

(14)

where ∆τGd
represents the pheromone increments for Gd, g is the number of groups (set

as 3 in this study), Gd represents the dth ant group subset, 1-norm |Gd| represents the
number of ants in the dth group, and Lm

ij represents the path length between the nodes i
and j visited by the mth ant of each group. The nodes of the optimal trajectory of each
group at the tth iteration perform a random exchange during the information exchange
process.

In addition, the number of groups is an empirical parameter, which depends on the
complexity of the solution space, and the ant size of each group determines the quality of
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convergence and optimal solution in a limited iteration. In this study, the related results
of convergence along with parameters ζ, ρ and g are discussed in Section 7.

5. QPSO Algorithm.

5.1. Overview of the traditional PSO algorithm. The standard PSO algorithm
[27] is an optimization technique that involves population-based stochastic optimization.
This algorithm is inspired by the movement and intelligence of swarms. Each particle
symbolizes a potential solution to the optimization problem in a search space. In the
search process, the mth particle possesses a position vector Xm,t and velocity vector
Vm,t in the current iteration t. The parameters pbestm and gbest represent the optimal
positions of the mth particle and all the particles, respectively. The mth particle updates
its velocity Vm,t+1 and position Xm,t+1 according to the following equations:

Vm,t+1 = ωVm,t + c1r1(pbestm −Xm,t) + c2r2(gbest−Xm,t) (15)

Xm,t+1 = Xm,t + Vm,t+1 (16)

where ω is the inertia weighting; r1 and r2 are uniformly distributed random numbers
within the range [0, 1]; c1 and c2 are the control parameters to balance the effects of the
velocity when updating pbestm and gbest.

5.2. QPSO algorithm. In the standard PSO algorithm, the current trajectory of each
particle in search space is always constrained in an area according to the previous move-
ment trajectories of the particle. Therefore, the standard PSO algorithm cannot ensure
convergence to a globally optimal solution. This study used a QPSO algorithm to over-
come the disadvantage of the standard PSO algorithm without losing its advantages. All
the particles in the QPSO algorithm exhibit quantum behavior during the search process
[28]. Only a control parameter α and the position vector for each particle are determined.
The probability for each particle at position x and time t is presented using the prob-
ability density function |Ψ(x, t)|2. Thus, the state of particle aggregation in the QPSO
algorithm is completely different from that in the standard PSO algorithm. Consequently,
the QPSO algorithm can search the entire feasible solution space. The particle movement
and position update are conducted according to the following iterative equations:

pm = ∅× pbestm + (1−∅)× gbestm (17)

mbest =
1

N

N∑
i=1

pbestm
N

(18)

Xm,t+1 = pm + α× |mbest−Xm,t| · ln
(
1

u

)
, if k = 0.5 (19)

Xm,t+1 = pm − α× |mbest−Xm,t| · ln
(
1

u

)
, if k < 0.5 (20)

where mbest is the mean of the optimal positions of all the particles, α is a contraction-
expansion coefficient that controls the convergent speed, Xm,t is the position of the mth
particle at the tth iteration, N is the total number of particles, and Xm,t+1 is the updated
position vector of the mth particle. Moreover, u, k, and ∅ are random numbers that are
distributed uniformly in the range [0, 1].

6. Research Method Framework. The framework of this study, displayed in Figure
2, illustrates the two algorithms being applied to solving the two subproblems of obstacle
avoidance. The first subproblem is the trajectory problem, where the sequence of target
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Figure 2. Research flowchart

positions is optimally ordered using the MACO algorithm. The second subproblem is
the least movements problem, where the QPSO algorithm is used to solve the defined
cost function which removes unnecessary movement of the manipulator’s joints. The
subsequent section discusses and compares the results of this framework.

7. Results and Analysis.

7.1. Optimal trajectory for the constraint conditions. For robotic manipulator
trajectory optimization in the real world, obstacles in the trajectory represent the practical
constraint conditions.

The main purpose of this study, therefore, was to determine the optimal trajectory of
the end effector of a robotic manipulator. In this study, the obstacles were assumed to be
cylinders for simulating a real-world situation. As displayed in Figure 3(a), two obstacle
models were constructed: 1) a cylinder centered at (150 mm, 210 mm) with a radius of
20 mm and height of 250 mm and 2) a cylinder centered at (250 mm, 100 mm) with
a radius of 20 mm and height of 200 mm. These two simulated obstacles block some
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Figure 3. Trajectory simulation results: (a) trajectory and (b) conver-
gence of the traditional ACO algorithm, (c) trajectory and (d) convergence
of the MACO algorithm for two groups, and (e) trajectory and (f) conver-
gence of the MACO algorithm for three groups

possible routing paths if the paths cross them. We randomly used 16 nodes to determine
the optimal path according to Equations (11)-(13).
The initial degenerating parameter of the pheromone ρ was set as 0.4, and ζ was

randomly set in the [0, 1] range per iteration. The parameter β was set as (1 − ζ). For
verification, the number of ants |Tant| was set as 120 and the number of iterations was set
to 1000. Figures 3(a), 3(c) and 3(e) display the trajectories of the traditional ACO and
MACO algorithms for two and three groups. These figures indicate that the ACO and
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MACO algorithms allow all the obstacles to be avoided and provide optimal trajectories.
Thus, the aforementioned algorithms provide routing and obstacle avoidance capabilities.
Figures 3(b), 3(d) and 3(f) display the convergence of the traditional ACO and MACO
algorithms (two and three groups). The ACO algorithm, MACO algorithm for two groups,
and MACO algorithm for three groups converged at 2188.8189, 2170.0261, and 2122.6391
mm, respectively. The results of the MACO algorithm were superior to those of the
traditional ACO algorithm after two obstacles were avoided.

In most practical applications, a reasonable number of iterations is 100-200. Therefore,
the slope of convergence and the optimal cost should be considered in the early iterations.
The optimal solution of the MACO algorithm was reached in the early iterations and was
superior to that of the ACO algorithm because the MACO algorithm involved pheromone
information sharing. At the 200th iteration, the optimal costs of the traditional ACO
algorithm, MACO algorithm for two groups, and MACO algorithm for three groups were
2291.7776, 2198.9859, and 2122.6391 mm, respectively. Compared with the traditional
ACO algorithm, the MACO algorithm (for two and three groups) required fewer iterations,
exhibited a 5%-7% smaller path length, and achieved its optimal solution earlier.

Furthermore, the stochastic setup was applied to verifying the MACO algorithm. The
values of MACO algorithm parameters such as ζ and ρ were randomly selected in each
execution. For verification, the number of groups was set as 1 and 3, and the MACO
algorithm was executed 1000 times to record the convergence tendency.

Figures 4(a) and 4(b) present the convergence tendencies of the MACO algorithms for
one group (equivalent to the traditional ACO algorithm) and three groups, respectively.
These tendencies are evaluated at each iteration based on the average values (µ) and
their standard deviation (σ), calculated from the cost values among 1000 executions. The
solid line denotes the average values, and the dash lines are the three standard deviation
interval (µ±3σ), which are considered as the convergence boundaries. As shown in Figure
4, the traditional ACO algorithm continuously converges to optimal solutions until the
iteration limitation is reached, whereas the MACO algorithm for three groups has a steeper
converging tendency, where the optimal costs are converged at almost 200 iterations. The
iteration limitation of the MACO algorithm when reduced to approximately 200 can
provide high performance without time-consuming.

As shown in Figure 5, the converged results of the traditional ACO algorithm are all
converged in a narrow range of 2100-2300 mm and reflected in a small standard deviation

Figure 4. Convergence tendency of (a) the traditional ACO algorithm
and (b) the MACO algorithm for three groups
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Figure 5. Histogram of converged results for (a) the traditional ACO
algorithm and (b) the MACO algorithm for three groups

Table 2. Joint angle solutions obtained with the QPSO algorithm

No. θ1 (deg) θ2 (deg) θ3 (deg) θ4 (deg) θ5 (deg)
Initial −80 30 −30 −45 −80

1 0.000 13.492 −11.141 −11.045 −49.557
∆θ 11.102 43.349 −56.290 −20.698 0.000
2 11.102 56.841 −67.431 −31.743 −49.557
∆θ 33.898 −19.697 56.290 −95.366 0.000
3 45.000 37.144 −11.141 −127.109 −49.557
∆θ 7.400 42.109 −61.970 25.428 0.000
4 52.400 79.253 −73.111 −101.681 −49.557
∆θ 21.225 −65.889 63.665 236.681 80.101
5 73.625 13.364 −9.446 135.000 30.544
∆θ −1.610 9.870 5.347 −32.906 −80.101
6 72.015 23.234 −4.099 102.094 −49.557
∆θ −12.979 19.249 −7.067 −113.570 −0.038
7 59.036 42.483 −11.166 −11.476 −49.595
∆θ −18.027 17.699 0.025 −30.946 0.038
8 41.009 60.182 −11.141 −42.422 −49.557
∆θ −13.744 −16.203 7.322 44.983 3.425
9 27.265 43.979 −3.819 2.561 −46.132
∆θ −11.533 −7.812 −2.987 −4.398 11.026
10 15.732 36.167 −6.806 −1.837 −35.106
∆θ −0.151 −25.995 −4.335 111.130 −14.451
11 15.581 10.172 −11.141 109.293 −49.557
∆θ 13.053 13.449 11.008 −111.730 9.219
12 28.634 23.621 −0.133 −2.437 −40.338
∆θ 13.134 4.688 −8.387 1.871 −9.183
13 41.768 28.309 −8.520 −0.566 −49.521
∆θ 5.310 7.725 −37.810 −11.375 −0.041
14 47.078 36.034 −46.330 −11.941 −49.562
∆θ 26.282 −11.194 35.189 −20.274 0.005
15 73.360 24.840 −11.141 −32.215 −49.557

due to the large population in the group. By contrast, for the MACO algorithm for three
groups, most of the converged results are in the range of 2100-2200 mm and reflected in a
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smaller modal value of 2122 mm. This means the MACO algorithm obtains a lower cost
value in most of the executions than does the traditional ACO algorithm. In general, only
a few unstable converged results were noted in the range of 2300-2400 mm. However, the
unstable converging may have been due to grouping; it can be improved by simply in-
creasing population size. Nevertheless, the verification results indicate that the converged
results are not impacted largely by these randomly selected parameters ζ and ρ, but the
number of groups g. The convergence results indicated the superior performance of the
MACO algorithm. The optimal solutions of the MACO algorithm were used to operate
the manipulator’s joints.

7.2. Optimal positioning error. After the optimal path of the end effector was deter-
mined using the MACO algorithm, the QPSO algorithm was executed to find the optimal
positioning error and joint angles of the manipulator for a given optimal trajectory. Based
on Equations (16)-(19), the number of iterations was set as 1000, the total number of par-
ticles was set as 100, and the contraction-expansion coefficient α was set as 0.5. Each
particle represents the combination of the joint angles θ1, θ2, θ3, θ4, and θ5. Figure 4
illustrates the cost function from a predefined start point to the end point (15th point)
calculated using the QPSO algorithm. Table 2 presents the joint angle solutions calcu-
lated using the QPSO algorithm. Table 3 presents a comparison of the target and actual
positions of the 15 points in Table 2.

Table 3. Comparison between the target and actual positions

No. Target position (mm) Actual position (mm) Err (mm)
Initial − −

1 400, 0, 60 400.0000, 0.0000, 59.9970 0.0030
2 265, 52, 115 265.0007, 52.0007, 114.9985 0.0018
3 150, 150, 150 149.9996, 149.0007, 150.0006 0.0014
4 67, 87, 181 66.9992, 87.0003, 181.0012 0.0014
5 62, 211, 163 62.0007, 211.0003, 162.9995 0.00095
6 87, 268, 277 87.0001, 267.9976, 277.0026 0.0035
7 180, 300, 253 180.0020, 300.0005, 252.9978 0.0030
8 207, 180, 297 207.0008, 180.0001, 296.9990 0.0013
9 293, 151, 314 292.9982, 151.0010, 314.0007 0.0022
10 355, 100, 258 355.0020, 100.0005, 257.9954 0.0050
11 312, 87, 193 311.9990, 87.0002, 193.0023 0.0025
12 348, 190, 193 347.9987, 190.0030, 193.0007 0.0034
13 290, 259, 190 290.0002, 258.9998, 190.0020 0.0024
14 239, 257, 86 239.0021, 256.9989, 86.0004 0.0024
15 107, 358, 107 106.9970, 358.0013, 106.9985 0.0036

The resolution of the commercial rotary encoder was specified as approximately 0.001◦.
Therefore, the QPSO algorithm was set to be terminated when the rotation angle diff-
erence between two iterations (θt+1 − θt) was smaller than the resolution or when a pre-
defined number of maximum iterations was reached. The actual positions corresponding
to the joint angles calculated with Equation (2) were determined using T5. Most of the
optimal positioning errors were within 10−3 mm. The results in Table 3 validate that
high-precision positioning control can be achieved for the five-DOF robotic manipulator
by using the MACO algorithm.

Figure 6(a) depicts the simulated manipulator and joint movements, and Figure 6(b)
displays the complete configurations of each target point. Figures 6(a) and 6(b) present



608 Y.-T. CHEN AND W.-J. CHEN

(a)

(b)

Figure 6. Robot configuration: (a) joint movement and (b) complete con-
figurations of each target point

the optimal configuration solution at each target point and the simulated manipulator
behavior for reference.
Obstacle avoidance was achieved using the MACO algorithm. The cost function, E-

quation (5), was minimized; the cost of each joint is presented in Figure 7.
The QPSO algorithm executed on each permutated target positions, and obtained the

optimal solutions. The plots in Figure 7 indicate the stability of the convergence. The
optimal solutions are almost converged within 200 iterations except for the 5th point.
The algorithm includes the stochastic mechanism, and therefore, the optimal solution
may not always be within a deterministic iteration; nevertheless, the optimal solutions
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Figure 7. Iterative convergent diagrams of the QPSO algorithm for each
position of the end effector
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of these 15 points are obtained before reaching the maximum iterations. In summary,
the QPSO algorithm optimizes the positioning error without time-consuming due to the
outperformed convergence.

8. Conclusion. This study achieved obstacle avoidance for a five-DOF robotic manip-
ulator in two stages. First, the MACO algorithm was used to search the shortest route
around the given points. The MACO algorithm (with two and three groups) could achieve
convergence in approximately 200 iterations. Compared with the traditional ACO algo-
rithm, the MACO algorithm required approximately 66% fewer iterations and it reduced
the optimal path length by approximately 5%-7%. Obstacle avoidance was considered
in the MACO algorithm, and a route was blocked if it crossed any obstacle. Second,
the configurations of the manipulator were determined using the QPSO algorithm, which
ensured that the end effector reached the target points. A cost function was adopted in
the aforementioned algorithm, which minimized the positioning error and movements of
the manipulator. The optimal configurations obtained using the QPSO algorithm had a
positioning error of 10−3 mm, which is suitable for industrial applications. The movement
minimization term of the aforementioned algorithm ensured the stability of the trajectory.
Finally, the manipulator was simulated to verify the optimal routes and configurations.
The results revealed that the predictive method used in this study effectively enhanced

the precision of the robotic manipulator. The proposed algorithm can be widely used to
predict the position of multi-axis robotic manipulators in the future.
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