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Abstract. Educational Timetabling Problem (ETP) is a combinatorial problem, which
is known to be NP-complete and is defined as the assignment of a set of academic trans-
actions to resources (timeslots and rooms) subject to a set of constraints. Many attempts
have been reported to solve timetabling problems. They are, however, lack of generality,
where one solver is designed to solve one specific problem only. The focus of this paper
is to propose a framework that is general enough to be used in any ETP. It is shown
that in general, any ETP can be approached using the framework. In this context, two
main fundamental phases are deeply explored in the paper. The first one deals with pre-
processing steps, where the raw data is handled to output the stemmed form of an ETP.
Having represented in this way, a method designed to solve one problem can be reused to
solve another problem. The second one, as part of the framework, the paper also recom-
mends an enhanced simulated annealing-based search in finding the solution for an ETP.
The proposed framework is tested over some popular instances found in the literature,
including real instances collected from an Indonesian college. The framework is applied
to all tested instances and the qualities of the solutions are very competitive, validating
the significant contribution of the proposed framework.
Keywords: Heuristic, Metaheuristic, Simulated annealing, Local search, Timetabling,
Scheduling

1. Introduction. A special type of scheduling problem is known as Educational Time-
tabling Problem (ETP) [1,2]. This problem is usually faced by educational institutions
such as primary and secondary schools and tertiary educational institutions such as uni-
versities and colleges. An ETP coordinates large numbers of academic activities involving
many parties, students, and teachers and must satisfy several requirements. Because of
these, most of the timetabling problems are known to be NP-complete, meaning that
there is no algorithm to solve most of the problems efficiently.

Since the first publication by Gotlieb in 1963 [3], in which computer programming
was used to solve one of the problems found in an educational institution, researchers in
ETP have been rising significantly. There have been a huge number of research papers,
conferences, and workshops specially dedicated to ETP [4].

In general, ETPs are classified based on the type of educational institution for which the
methods are developed. Under this perspective, ETPs are divided into three sub-problems.

• Class-Teacher Timetabling Problems (CTTP) or School Timetabling is the
problem of assigning teachers and classes to timeslots. The inputs contain a set of
classes (a fixed number of students who are taking almost the same programs) and a
set of teachers. The assignment of teachers to classes presumably has already been

DOI: 10.24507/ijicic.17.02.613

613



614 T. MAURITSIUS, F. BINSAR AND N. LEGOWO

made in advance. It is not part of the problem. The problem is to assign each class
to a timeslot, such that no teacher is responsible for more than one class in the same
timeslot. In addition, no class should be taught by more than one teacher in any
given timeslot [5].
• University Course Timetabling Problem (UCTP). The inputs of this problem
comprise a set of courses, a set of rooms, and a set of timeslots. The objective is to
assign courses to rooms and timeslots avoiding some constraints. The assignment of
instructors to courses and students to courses are not parts of the problem. Unlike in
CTTP, in general, a UCTP does not recognize classes, i.e., a fixed group of students
who are taking the same courses and sharing the same rooms most of the time. Thus,
the number of students enrolled in each course can vary, and students may attend
courses in different buildings or even on different campuses [6,7].
• Examination Timetabling Problem (ExTP). ExTP is the assignment of exams
to timeslots and rooms, and the main requirement is that no students nor invigilators
should be assigned to more than one room at the same time. ExTP differs from
UCTP in two critical aspects. First, there is no repetition for an exam, and second,
a room can be used by two or more exams at the same time. There are two well-
known variants of ExTPs which are the un-capacitated and capacitated ones. In
the un-capacitated version, the number of students and exams in any time slot is
unlimited. Meanwhile, the capacitated version imposes limitations on the number
of students assigned to every timeslot [8].

Despite the huge number of publications in this area, it is unusual to find a paper that
deals with all the subproblems. Almost all authors tend to focus on a few specific ones
[6-17]. The model and solver that were developed for one problem are usually fitted for
the problem only.
The issue of unifying the ETPs has not been widely discussed. There is still no attempt

devoted to deeply analyzing the ETP problems from a broader perspective and revealing
the core elements of any ETP. Therefore, the main purpose of this paper is to present a
framework based on the authors’ experience and analysis that at its core any ETP contains
the same basic elements, which are usually hiding behind the various input formats. The
representation of an ETP in its basic elements is called the stemmed form. The benefit of
this representation is that an approach that is deployed to solve one ETP can be reused
to solve another type of ETP.
Despite the fact that there has been an enormous number of publications, many ETPs

are still unsolved to optimality. Therefore, the second objective of the paper, as part
of the framework, is to propose a general approach to solve the problem. The solution
strategies are developed on top of the output of stemming process. We present strategies
to solve two types of solutions – feasible and optimal, using some heuristics. In feasible
solution finding, a Constructive Heuristic (CH) is used taking the advantages provided
by the stemmed form of the problem. Meanwhile, in optimal solution finding, we de-
ploy enhanced Simulated Annealing (SA)-based approach, which we call Explorative and
Exploitative Simulated Annealing (E2SA). In this approach, a generic SA algorithm is
equipped with three different neighborhood structures which will improve the exploratory
and exploitative capability of the algorithm. Implementing the proposed framework, we
manage to solve many kinds of ETP, real and fabricated, giving very competitive solutions
compared to the state-of-the-art results.
The paper is organized as follows. Section 2 reviews the ETPs in more detail and

presents some related works. Section 3 presents the methodology and the steps of the
research. In Section 4 the proposed framework is presented in detail, and in Section
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5 computational results of the proposed approach on some well-known ETP instances
available in the literature are reported. Finally, Section 6 concludes the paper.

2. ETPs and the Related Works. Any educational institution has an obligation to
manage all academic activities efficiently and effectively. The involvement of all stake-
holders is key to achieve the institutional mission [18]. ETP is the problem of assigning
a set of objects called events to a set of other objects called resources in such a way that
no constraint is violated or kept to a minimum. This task is a part of the institutional
tasks to ensure that all the activities can be realized in the best convenient and effective
way for all parties.

Besides CTTP, UCTP, and ExTP, from a different perspective, ETP can also be catego-
rized as room-dependent and room-independent. In room-dependent timetabling, an event
requires a specific room to run [11,19,20]. In the case of room-independent timetabling,
there is no issue related to room availability [14,15,21]. This variant includes online class
timetable, class-teacher timetable, and examination timetable. It is also known as the
graph coloring problem of timetabling, as the problem can be reformulated as graph col-
oring problem [21] where nodes represent events, edges between two nodes represent a
relation between them. Color represents timeslot. One can color as many nodes as pos-
sible with the same color provided that there is no edge between them. The requirement
that two adjacent nodes should be assigned to different colors can be analogously applied
to a timetabling problem, where two conflicting events cannot be assigned to the same
timeslot.

Constraints play a crucial role in ETPs. If there is no constraint, then there will be no
ETP. Any additional constraint posed to the problem will increase the complexity of the
problem [22,23]. Modeling an ETP is very much related to model the constraints. We
recognize two types of constraints which are hard and soft.

1) Hard Constraints – are those requirements that must be satisfied. Any violation of
this type of constraint is not acceptable. In this paper, we introduce two types of hard
constraints which are Static Hard Constraint (SHC) and Dynamic Hard Constraint
(DHC). SHCs are requirements that must be fulfilled by a specific event. This con-
straint has no impact on other events. Meanwhile, DHCs are constraints that may
impact two or more events. SHC may include
• SHC1: An event should be assigned to one of the given resources that provide all
the required features.
• SHC2: Instructor or student availability.
• SHC3: Time and room availability.

Examples of DHC can be
• DHC1: Competition related constraints. Two events are in competition relation if
their domains share one or more resources. If an event is using a specific resource,
then the same resource must be made unavailable for its competitors. This prevents
a resource from being double-booked.
• DHC2: Distinct timeslot constraint. Two or more events should be scheduled at
different timeslots due to student conflicts or instructor conflicts.
• DHC3: Distinct day constraint. Two or more events should be assigned to different
days.
• DHC4: Parallel constraint. Two or more events should be scheduled at the same
timeslot.
• DHC5: Sequential constraint. An event should be scheduled before/after another
event.
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2) Soft Constraints (SCs) – are those constraints that are preferably fulfilled. These con-
straints can be violated, but the number of violations should be kept as low as possible.
Examples of this type of constraints may include
• (SC1) A student should not be assigned to the last timeslot of the day.
• (SC2) A student should not have more than two events in a row.
• (SC3) A student should not have only one event in a day.
• (SC4) Conflicting events should be spaced out as evenly as possible.

Based on these two types of constraints, we can divide ETPs also into two categories.
They are

1) Feasibility problem – the problem of finding a solution with no hard constraint violation,
that is a feasible solution.

2) Optimization problem – the problem of finding a feasible solution with the minimum
number of soft constraint violations.

There have been many ways to model an ETP found in the literature. In the case of
UCTP, Babaei et al. [19] proposed a mathematical based formulation for the problem. Bet-
tinelli et al. [11] discussed several models proposed for the curriculum-based timetabling
problem that was used in the second International Timetabling Competition. The first
one was proposed by Burke et al. [24], and the latter was proposed by Lach and Lübbecke
[20]. The integer linear programming approach was used to describe the problem.
Many other researchers choose to model the ETP in the form of a mathematical model

including IP and MIP [12,25,26]. In general, the problem is subsequently passed to some
special tool to find the solution.
Mostly, the above-mentioned formulations are created tightly fitted to the problem in

consideration. The models are only used to describe the specific problem precisely. They
cannot be applied to a distinct type of ETP. The generalization level is very low. Besides,
the formulation brings no ease for solution-seeking. To solve the problem represented in
this way, some specific tool such as C-plex is used. For a moderate size problem, it may
take days to solve.
In the effort to solve the ETPs, there has been an enormous number of publications,

ranging from deterministic approaches to stochastic approaches. We review some methods
devoted to solving the post-enrollment course timetabling problems, in particular the
ones posted by Socha et al. [27] and the Post Enrollment Track of the 2007 International
Timetabling Competition [28] (ITC-2007 PE). These two datasets will be used as the
main references to benchmark the performance of our approach.
Solvers on Socha’s Dataset. Obit et al. [17] used PSO based algorithm to solve the

problem. Aziz et al. [10] utilized a variable neighborhood search in combination with an
adaptive guided approach to choose the neighborhood. A hybrid swarm-based approach
was used by Fong et al. [29]. In 2014 Fong et al. [30] presented another approach based on
hybridization of some heuristics, on the same dataset. Abdullah et al. [31] used another
hybrid metaheuristic combining electromagnetic-like mechanism and the great deluge al-
gorithm. Ceschia et al. [32] used an SA-based algorithm with various parameter settings.
Abdullah et al. [33] used a randomized improvement algorithm with multi neighborhood
structures. In Rezaeipanah et al.’s paper [34], a hybrid approach between Genetic Al-
gorithm (GA) and Local Search (LS) is presented. This approach is named (IPGALS)
standing for “Improved Parallel Genetic Algorithm and Local Search” where LS is used
to strengthen the Genetic Algorithm (GA). Finally, the first results on the dataset were
published by Socha et al. [27]. They utilized random restart local search and MAX-MIN
ant system.
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Solvers on ITC-2007 PE Dataset. Ceschia et al. [32] used a metaheuristic approach
based on SA. The result is that a carefully engineered and tuned SA-based solver per-
forms exceptionally well on multiple instances. Lewis and Thompson [7] carried out a
mathematical analysis on the PE UCTP problem and presented a metaheuristic-based
two-stage algorithm to solve it.

In 2017, Goh et al. [35] combined various LS algorithms in a two-stage procedure. In
the first stage, Tabu Search which is equipped with Sampling and Perturbation (TSSP)
is used to produce a feasible solution. In the second stage, the authors propose an SA
repair variant, called Simulated Annealing with Reheating (SAR), to improve the quality
of the solution. In 2019 the same group of authors [36] used a two-stage problem-solving
approach; namely finding a feasible solution in the first stage, followed by optimization of
SC in the second stage. The researchers used a variant from SA which they called Sim-
ulated Annealing with Improved Reheating and Learning (SAIRL). Finally, Rezaeipanah
et al. [34], used the same hybrid approach as described previously to solve the ITC-2007
PE instances.

3. The Method. Figure 1 depicts the procedures used in this research. Drew on a series
of literature reviews, we found that most of the papers in ETP address a very specific
problem. The technique developed for such a problem, cannot be applied to another
problem. This is the main problem that we are addressing in this paper. Meanwhile,
based on some observations and experiences in solving many types of ETPs we come up
with a hypothesis that of the many variants of ETP, they actually have the same core
containing three elements: set of events, resources, and constraints.

Figure 1. Research procedures

Furthermore, the author goes on to develop some computer programs which will be
used as an instrument to prove the hypothesis. A cycle of problem identification, coding,
testing, and evaluation are carried out to develop the instrument. The instrument is
applied to many types of ETPs through a series of computational experiments. At the
end of the process, we propose a framework that leads to a more effective way of handling
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and solving the problem. A conclusion is drawn from this work that in most cases an ETP
consists of the same recurring elements: events, resources, and constraints. The main task
to be performed in an ETP is to assign resources to events taking consideration of the
constraints posed to them. The set of constraints is the main element that distinguishes
one ETP from another. The benefit of the framework becomes evidence where a solver
designed for one ETP can be applied to others with a minimum adjustment.

4. The Proposed Framework. In Figure 2, we depict the proposed framework, where
the ETP construction process is considered as a 4 layers mechanism. It started with the
uppermost layer where a timetable requirement is created, triggered by student enrollment
and/or instructor assignment in any courses. Layer 2 concerns with input reading, followed
by input handling in Layer 3, whereby the detailed implementation formats are created.
The output of Layer 3 is the instance’s presentation in a unique form which will be called
the stemmed form. Our main objective of the paper is to show that at the end, an ETP
can be transformed into this form. Finally, in the last layer, the timetabling construction
process is performed. Layer 1 to Layer 3 is called the Stemming Phase, and the last layer
is the Solution Finding Phase. In Subsection 4.4 we present a solution finding approach
that may be applied to any ETP instance once it has been transformed into the stemmed
form.

Figure 2. The high-level view of the proposed framework composed of four layers
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4.1. Layer 1: Events creation. Every educational institution has several sets of curric-
ula, containing courses or subjects to be offered to participants or students. A course may
induce one or more academic transactions whereas an academic transaction belongs to
one and only one course. It is these transactions that compose the set of main elements of
an ETP. This set may include course sessions, tutorials, lab activities, and exams. Apart
from exams, all academic transactions related to a course are assumed to be repeated,
say on a weekly basis. In this case, the timetable is constructed for one week only. In the
case of exam timetabling, there is usually no repetition; however, its construction process
is identical to any other ETPs with the possibly required a longer time period. An aca-
demic transaction, together with its assigned instructor(s) and student(s) that need to be
scheduled regularly, will be called an event. A unique event should then be identified from
those three elements: an academic transaction, a set of instructors, and a set of students.
Hereafter the symbol V will be used to denote the set of events.

4.2. Layer 2: Input reading (resource and constraint). This layer concerns how
an ETP’s instance is read into the application. We divide the inputs into three main
elements: events, resources, and constraints.

4.2.1. Events reading. Most of the ETP instances found in the literature describe the set
of events just as scalars representing the number of events. The event’s attributes are
usually presented as scalars or matrices. In many cases, the set of events is not presented
directly. These sets have to be extracted from other elements. For example, in CB-CT,
the set of events has to be derived from a set of courses.

4.2.2. Resources reading. An ETP must contain the set of resources composed of time and
places set. This set may be presented in many different forms. The set of resources must
be defined beforehand. The format is in general problem-dependent. In some problems,
it may contain the definition of days, time slot, period, rooms, and all the information
related to it. There is no single way to express these elements.

4.2.3. Constraints reading. Basically, any constraint restricts one or more events to be
assigned to some specific resources. Constraint expression is also problem-dependent.
It may be expressed directly and indirectly in many distinct ways. For example, the
requirement that two events must not be scheduled in the same timeslots may be presented
indirectly in the form of student enrolment. If two events are enrolled by the same student,
then they must be scheduled in two different timeslots.

Another example of representing constraint is as follows: each event is commonly as-
sociated with features representing requirements for the specific room and/or timeslot to
carry out the event effectively. An event may require a large room to accommodate the
number of students enrolled or an event may require specific teaching support equipment
in the room (data projector, computers, etc.). On the other hand, each resource will have
its own characteristics or features. All inputs related to the feature requirements and
feature provisions are assumed to be available prior to the timetabling construction.

Students’ enrollment and lecturers’ or instructors’ assignments play an important role
on the formation of the constraints. Many constraints are related to them. Curriculum,
the institutional policy, as well as resources, also contribute to the formation of constraints.
Timetabling becomes the task of assigning all events to resources such that the features
required by an event can be satisfied by the chosen resource. A good timetable must or
should have every event gets assigned to its best suitable resource.
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4.3. Layer 3: Input handling and refining. This layer performs a series of trans-
formations to extract some ingredients from the inputs to identify, classify and store the
room and time information as well as any object related to constraints in the stemmed
form representation.

4.3.1. Set of events and students. Identifying and defining the set of events is a very
crucial first step. In most cases, there is no need to extract the set of events from the
input, as it has been presented explicitly. In some cases, some procedures are carried out
to extract the events.
Students and instructors are crucial in the timetabling process, especially when deal-

ing with constraints. Together with events, this set becomes one of the main sources of
constraints. This set may be presented explicitly or implicitly.
We introduce a new term called GOSP (Group of Similar Participants) to represent a

group of students or instructors who participate in the same set of events.
The enrollment matrix (STUDENT-EVENT matrix) and the teacher assignment matrix

are the sources of information to construct the GOSP. In this approach, we combine these
two matrices into a new matrix called the PARTICIPANT-EVENT matrix.
To identify a GOSP, for any participant, collect the set of events taken by that partic-

ipant, collect all participants taking the same events, and put them in a group as that
GOSP. Notice that not all subsets of V can be a GOSP. This way, any participants will
be mapped to a single GOSP. A GOSP can then be considered as a compact form for
representing participants of an event. It is a mutually independent partition of the set of
participants. A GOSP will be associated with weights or size which represents the number
of participants. The creation of GOSP will shrink the size of the instance without chang-
ing the SHC. The benefit of using this representation is that it reduces the computational
resources when it comes to solution evaluation task, and thus reduces the computational
resources for the whole process. In the whole timetabling process it is more beneficial to
utilize the GOSP-EVENTS matrix rather than the STUDENT-EVENT matrix.

4.3.2. Set of resources. In general, we assume that any ETP includes a set of timeslots
or periods and rooms. In the case of a room-independent timetable, we create a virtual
room, where all events or exams can use it at any time. Providing that no conflict occurs,
any number of events or exams can be put in that room. However, in the case of the
examination timetable, the (virtual) room capacity may be posed to the problem. This
is to prevent examinees outnumber the (virtual) room’s capacity.
In the following, we introduce an approach for handling the set of rooms and timeslots.

Let the set of timeslots be denoted by W and the set of rooms be denoted by R. Let
B = R×W be a Cartesian product between the set of rooms and the weekly timeslots. The
members of this set are labelled by a number from 0 to |R×W |. By a simple calculation,
it is easy to find which room and timeslot a resource b ∈ B refers to. To illustrate the
idea, suppose that W = {0, 1, 2, . . . , 44} and R = {0, 1, . . . , 9} then B = {0, 1, . . . , 449}.
Let b = 17, and this number refers to resource 17 which is Room 0, and Timeslot 17.

4.3.3. Constraints handling. In this step, we describe the way in modeling the constraints.
It is important to notice that there is no unique way to represent the constraints in
the input file. Distinct timetable problems may have a very specific way to express the
constraints. Sometimes extra efforts are needed to recognize and extract the constraints
from their various input formats.
a) Hard Constraints Handling. Basically, any hard constraint posed to an event

restricts the resources that could be used by that event. As pointed out in Section 2, there
are two types of hard constraint, the first one called static hard constraint; defined as
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those that posed to events independently and cannot be changed during the timetabling
construction process, the second one called DHC defined as constraints that affect the
available resources of an event depending on the assignment made to other related events.
SHC restrict permanently the domain of some events by deleting some resources from its
domain from the beginning and during the assignment process. The deletion of one or
more values from the domain of an event does not depend on the assignment of other
events. DHC temporarily turns on or off some values from the domain set of an event
whenever one or more event(s) that have relation to that event have been assigned to a
new resource.

i) SHC Handling. Any static hard constraint posed to an event will reduce the num-
ber of resources that could be used by that event. Therefore, we create a set De which
contains all valid resources that could be used by the event e without violating any
of the SHC. This set is referred to as domain set of event e. Any additional static
hard constraint posed to an event will reduce the cardinality of De. For each event e,
there is a specific set De ⊆ B, which contains all candidate resources that could be
used by the event e without breaking any static constraint. In general, we also have
De 6= Dj for any two events e and j. Let D =

{

D1, D2, . . . , D|V |

}

. Hereafter D will
be called the domain set of the instance.

ii) Dynamic Hard Constraints (DHC). To include this type of HC in the timetab-
ling process, the so-called Constraints Graph is proposed in this paper. It is a weighted
graph and incorporates both directed and undirected edges if necessary.

Let V = {v1, v2, . . . , vn} be the set of events that have to be scheduled on a weekly basis.
Let G = (V,E) be a graph whose vertices are the set of V , and (vi, vj) ∈ E(G) if and only
if there is a relation between events vi and vj. The edges are weighed to indicate the type
of relationship that the two corresponding events have. Suppose (vi, vj) ∈ E(G) and let
w(vi, vj) represent the weight of the edge between vi and vj . As an example, w(vi, vj) = 1,
if events vi and vj have to be assigned into distinct timeslots (DHC 2d).

The constraint graph is implemented as a two-dimensional array and will be used to
control the assignment process. It acts as a source for consultation, when an event is being
assigned or updated, supplying the information on whether a change to the solution can
be carried out without breaking any hard constraints. This graph will play an important
role to monitor the hard constraint violations during and after the assignment process.
Any new event assignment has to be followed by a domain set adjustment.

b) SC Handling . The objective function is used to quantify the quality of a solution.
In timetabling problems, it usually measures the occurrence of SC violations. As there
are many constraints involved, an objective function is usually composed of a weighted
sum of some components, where the weight of each component reflects the importance of
the corresponding constraint.

4.3.4. Stemmed form of ETP instance. The discussion from the beginning of this sub-
section attests that it seems unnecessary to make any distinction between ETPs, based
solely on the type of institution it is dedicated to. At this point, an ETP is actually an
assignment problem involving three components V , B, and C where V is a finite set of
events, B is a finite set of resources and C is a set of constraints containing SHC, DHC,
and SC. The constraints are represented in the following forms:

i) Domain set D, where D =
{

D1, D2, . . . , D|V |

}

, and Di be set that contains all re-
sources that could be used by event i. The resources are represented by integers
where each integer refers to a specific room and timeslot.

ii) Constraint graph G of size |V | × |V |, which is implemented as a two-dimensional
array, where G[i][j] = 1, means that event i and event j are connected with weight 1,
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which means they must be assigned to two distinct timeslots. Meanwhile, G[i][j] = 0,
means that event i and event j have no connection, which means they can be assigned
to any timeslots.

iii) GOSP-based objective function f .

Thus, an ETP can be viewed as a 4-tuple < V,D,G, f >. Finding a feasible solution
can be mathematically formulated as finding an injection I from the vertices of a graph
to their domain set. That is to find an I : V → B satisfying the following conditions:

• For each vi ∈ V, I(vi) ∈ Bi (1)

• If (vi, vj) ∈ Ed(G) and qij = 1 then I(vi) mod |W | 6= I(vj) mod |W | (2)

• If i, j ∈ Ed(G) and qij = 4 then I(vi) mod |W | < I(vj) mod |W | (3)

• If i, j ∈ Ed(G) and qij = −4 then I(vi) mod |W | > I(vj) mod |W | (4)

Note that in this problem we assume that any kind of SHCs is represented by the set
B and only DHC1, DHC2, and DHC3 are posed to the problem. Any additional SHC
will change the set bi of related event I and additional DHC will add more equation that
is similar to that of Equations (2), (3), and (4).
If such an injection exists, then I =

{

I(v0), I(v1), . . . , I
(

v|E|−1

)}

must be one of the
feasible solutions to the problem for the following reasons:

1) I is an injection implying that all vertices must be mapped to their domain, meaning
that all events must be assigned to their appropriate resource.

2) Likewise, as I is an injection, then there will be no two or more events to be assigned
to the same resource. This guarantees that there will be no double-booked resources.

3) The condition in Equation (1) ensures that there is no violation of all SHC.
4) Equation (2) ensures there is no violation of the DHC that two conflicting events

cannot be assigned to the same timeslot.
5) Equations (3) and (4) related to the order relation of two events that one event must

be assigned to a timeslot before or after another event.

Note in the above formulation all SHC’s are represented in the set Bi and the DHC’s
are represented by Equations (2), (3), (4). In this case, we assume that only two dynamic
DHC’s are imposed to the problem which are DHC1 and DHC2. Distinct ETP will induce
distinct formulation. A solution is represented, as a one-dimensional array I. I[2] = 3,
for example, means that event 2 is assigned to resource 3. Meanwhile I[1] = −1 denotes
that event 1 is still unassigned.
The objective function is usually problem-dependent and model-dependent. It is worth

to note that the utilization of GOSP can significantly reduce the computational burden
for evaluating the quality of a solution. In the following equation, we present an example
of an objective function. We assume that SC1, SC2, and SC3 are posed to the problem.
Then the objective function is composed of the sum of all soft constraint violations over
all GOSPs. That is, for a given solution I, the objective function f is defined as follows.

f(I) =

|H|
∑

i=1

|X|
∑

j=1

θij(I) + σij(I) + ρij(I) (5)

where

• H = the set of days,
• X = the set of GOSPs,
• θij(I) = |GOSP j|, if GOSP j has to attend an event scheduled in the last timeslot of
day i and θij(I) = 0 otherwise,
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• σij(I) =



































|GOSP j|, if GOSP j has 3 consecutive events in day i
2|GOSP j|, if GOSP j has 4 consecutive events in day i
3|GOSP j|, if GOSP j has 5 consecutive events in day i
4|GOSP j|, if GOSP j has 6 consecutive events in day i
5|GOSP j|, if GOSP j has 7 consecutive events in day i
6|GOSP j|, if GOSP j has 8 consecutive events in day i
7|GOSP j|, if GOSP j has 9 consecutive events in day i

• ρij(I) = |GOSP j |, if GOSP j has only one event to attend in day i; ρij(I) = 0
otherwise.

4.4. Layer 4: Solution finder. The outcome of the processes from Layer 1 up to
Layer 3 mentioned before is an ETP instance that has been represented in stemmed form
containing a set of events V , resource set B, domain set d, constraint graph G, and its
corresponding objective function f . In the following, we will describe the approach for
finding the solution (feasible and optimum) based on the stemmed form of the instance.

The timetabling solution finding process is carried out in four stages. The first two
stages deal with the feasibility problems, i.e., the problems of finding a timetable with no
hard constraints violations, and the last two stages deal with the optimization problems,
i.e., the problem of minimizing the SC violations.

In this proposed method, the domain set and the constraint graph play as the inputs for
the feasible solution finder and together with the feasible solution, become the inputs in
the optimization process. We also introduce a new element called the adjusted domain set.
Initially, the adjusted domain set is equal to the domain set. Any new event assignment
will affect the domain set of an event and therefore it has to be adjusted.

The adjusted domain set of an event shows the remaining available resources that could
be used by the event. By using this method, a feasible timetable can be constructed by
assigning events one by one to its available resources. This is the essence of Stage 1 of
the approach proposed in this paper and will be referred to as CH.

Stage 1. Constructive Heuristic (CH). CH is one of the graph coloring techniques
that is not uncommon in finding a feasible solution in timetabling. It is the simplest way
to construct a timetable by picking events one by one and a resource is assigned to it.
CH selects events sequentially based on several criteria that reflect how difficult it is to
schedule the event. Various techniques commonly used in CH are presented below. An
event’s degree states the number of events that cannot be scheduled in the same timeslot
as that event.

• Largest Degree first (LD) – order the events descending according to their degree.
• Largest Weighted Degree first (LWD) – similar to LD, but the degree is weighed by
the number of students involved in the conflict.
• Least Saturation Degree first (LSD) – the next event to be assigned is the one that
has the minimum number of resources remaining.

Some of the sequential techniques mentioned above are quite effective in generating
initial solutions [8,23,37,38]. It was also concluded that the ability of a technique to
generate the initial solution will increase if it uses more than one CH. However, using one
or more heuristic combinations does not guarantee that feasible solutions can be found.
There is a situation that at some steps, no more resources left for an unsigned event.
Therefore, we enhance our construction strategy with other techniques as described in
[13] and [39] and will be briefly reviewed in the next discussion.

Stage 2. Relaxation Strategy. This stage is intended to handle the feasibility prob-
lem for some instances that Stage 1 fails to produce. The process is called a relaxation
strategy and has been described in detail in [39].
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This technique starts with running CH with an increasing number of periods starting
with the given periods + 1, until a “feasible” solution is found. A “feasible” solution,
in this case, is a solution with no hard constraint violations, possibly using some extra
periods. Thus, it is infeasible in reality. This solution is then passed to the next step in
order to eliminate the extra timeslot through an optimization process.
We develop SA based heuristic to minimize the number of events assigned to an extra

timeslot. We use the number of students of the corresponding event as the objective
function in our SA schema. The process is terminated if a global optimum solution is
found or if the time limit allocated to this stage is reached. A solution with zero objective
function value would be a real feasible solution.
Stage 3. Solution’s Quality Improvement. This stage is aimed to optimize the

SC violations that is to minimize the value of the objective function. An SA-based search
technique is implemented in this stage.
Simulated Annealing (SA). SA is a stochastic search method based on the use of

an LS. It was introduced by Kirkpatrick [40] in 1983, inspired by the annealing process of
solids in physics. An analogy with this process, the SA method seeks to find a solution by
moving from one solution to another. In any step, SA either moves to a better neighbor
solution if it finds one, or to a worse solution with a certain probability. It includes some
important parameters concerning the probability of accepting a deteriorating solution. If
the parameters are tuned properly then Hajek [42] proved that the mechanism will find
a global optimum solution with probability one.
A generic SA pseudocode for a problem P realizing the SA idea follows:

Pseudocode 1: A generic simulated annealing

1. Input: Incumbet solution I, maxItSA, isoIt
2. For k = 1 to maxItSA
3. Calculate tk
4. For j = 1 to isoIt
5. Generate ℵ(I) the neighborhood of I
6. Choose a solution S ′ from ℵ(I)
7. If ∆cost

(

I, I
′
)

≤ 0 then I ← I ′

8. Else
9. If rand[0, 1] < exp

(

−∆cost(I,I′)
tk

)

then I ← I ′

10. Endfor
11. Endfor

Note: ∆cost

(

I, I
′
)

= g
(

I
′
)

− g(I)

There are some parameters to be set, maxItSA called outer loop, isoIt called inner
loop, and tk the temperature for each outer loop. The maxItSA depends on the resources
(running time) availability, and isoIt is set such that the particles reach their equilibrium
state in particular temperature tk.
The higher the temperature, the higher the probability of accepting a worse solution. As

the search progresses, the probability of accepting a worse solution decreases. A cooling
schedule in SA is a general term used to manage the temperature during the SA process.
It includes the choice of the initial temperature, the rate of decrease of the temperature

and the number of trials at one temperature level. The whole SA process is proven to be
very sensitive to the choice of cooling schedule. Despite the fact that many authors have
investigated this aspect, it turned out that none of their recommendations was suitable
for our problem at hand. We then had to carry out some preliminary tests to tune in our
cooling schedule:
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1) Initial temperature: The initial temperature is chosen such that the probability of
accepting a worse solution is sufficiently high (±40%);

2) Cooling equation: We tested many cooling equations and found out that the best one
is similar to the one used by Kostuch [41], i.e., T = 1/((1/T ) + β) where β is chosen
between 0.001 and 0.0005;

3) Number of trials: The number of trials in each temperature level is set to a.|V | where
a is linearly increased. Initially, a is set to 10.

In order to save CPU time, some problem-specific knowledge is incorporated into the
search process. For instance, the cost calculation is done using delta evaluation (∆cost).
Therefore, given a new solution, its cost is not calculated from scratch. Instead, it incor-
porates some unchanged cost components from its predecessor. In addition, moving an
event using a simple neighborhood from an artificial timeslot to another artificial timeslot
will not change the cost. This also applies to swapping two events in the same artificial
timeslot and to the Kempe chain neighborhood.

Note that any SA-based algorithm requires the definition of the neighborhood structure.
A neighborhood structure defines a set of solutions that the algorithm can choose from to
move to its next state. We use three types of neighborhood structures as described next.

Simple, Swap and Kempe Chain Neighborhood Structures. A Simple neigh-
borhood structure contains solutions that can be obtained by simply changing the resource
of one randomly chosen event. Since the domain set stores valid unused resource(s) for
each event, by employing this set the neighborhood structure can be easily implement-
ed. However, this neighborhood structure involves some bias as there might be events
that do not have any valid resources left at one stage of the search. This might create a
disconnected search space. Henceforth, this neighborhood structure will be expressed by
N1.

A Swap neighborhood is created when the resources of two events are exchanged. A
simple checking procedure has to be carried out to make sure the new solution will be from
the feasible area. This has to be done in particular to deal with the time and room related
constraints. The neighborhood structure overcomes the disconnection of the search space
that might occur in the simple neighborhood. Henceforward, this neighborhood structure
will be expressed by N2.

Kempe chain neighborhood structure operates over two selected timeslots. It swaps
the timeslot of a subset of events in such a way that the feasibility is maintained. In the
present paper, we extend this type of neighborhood structure to increase the exploration
ability of the move. The modified one is called K-Pairwise Kempe Chain, whereK denotes
the number of timeslots pair involved in a move. When K = 1 then there will be only
1 pair of timeslots involved, and this is exactly the original Kempe chain as mentioned
above. Henceforth, this neighborhood structure will be expressed by N3.

Based on our experience and literature review, implementing this simple SA is less likely
to end up with a good quality solution f . Using a constant isoIt has a drawback that
in the low energy level state, the number of solutions with that level or below becomes
scarce. Therefore, at this level, an increased number of iterations is needed. The use of a
single neighborhood also lessens the ability of the algorithm to explore the solution space.
Therefore, the following algorithm which we call E2SA is proposed.

In Pseudocode 2 we use three types of neighborhood structure to enhance the explo-
ration and exploitation ability of the algorithm. The Simple (N1) and Swap (N2) neigh-
borhood structures are used to exploit the current search area, as they have little impact
on the current solution. Meanwhile, the Kempe chain neighborhood structure is used to
strengthen the exploration ability of the algorithm as it has the ability to move to another
solution that is significantly different from the current one.
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Pseudocode 2: The pseudocode of Explorative and Exploitative Simulated Annealing
(E2SA)
1. Input: Initial solution L
2. Initialize: maxItMNSA, T , #InnerIter, matrix D, time limit, #noimpr
3. For i = 0 to maxItMNSA
4. For j = 0 to #InnerIter
5. Choose an event randomly for N1 move
6. If spare resource is available
7. Choose one randomly
8. Calculate delta cost
9. If acceptable
10. Make the move
11. Update matrix D
12. Update best solution L
13. Endif
14. Else
15. Choose an exam for N2 move
16. Calculate delta cost
17. If acceptable
18. Make the move
19. Update matrix D
20. Update best solution L
21. Endif
22. Endif
23. Endfor
24. If (no better L is found in #noimpr iteration and time limit is not exceeded)
25. Perform N3 move
26. Recalculate T
27. Endif
28. Endfor

In addition to this feature, we also employ the idea of increasing the number of inner
iterations as the search process progressing. This technique is used to give more chances
for the algorithm to find a new better solution in the low-cost area. Finally, for some hard
instances, we rerun Pseudocode 2 on the best solution found with a very low constant
temperature to intensively exploit the area.

5. Validation: Experiments and Results Using the Proposed Framework. This
section aims to demonstrate how the proposed framework is deployed to various ETPs:
from the Stemming Phase to the Solution Finding Phase. First, we present some metadata
of the datasets; second, to justify the effectiveness of the proposed framework, we show
that in all instances the stemming process can be done effectively and efficiently. We
demonstrate diagrammatically the steps to transform the inputs into the stemmed forms
and report the time consumption to accomplish the steps. In the third part, we present
the effectiveness of the solver in finding feasible and optimal solutions using the stemmed
form and the E2SA.

5.1. The datasets. Five datasets are used in the experiments to validate the framework.
In Table 1 we present the dataset names, number of instances, the constraints, and the
links to the dataset.
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Table 1. Dataset name, number of instances, constraints and link

Dataset Dataset # of Hard Soft
Link

name type instances constraints constraints
SHC1, SHC2,

SC1, SC2, http://iridia.ulb.ac.be/supp/Iridia
Socha UCTP 11 SHC3, DHC1,

SC3 Supp2002-001/
DHC2.

STKIP UCTP 5

SHC1, SHC2,

NA
SHC3, DHC1, SC1, SC2,
DHC2, DHC3, SC3

DHC5.
SHC1, SHC2,

www.dcs.napier.ac.uk/benp/centre
Lewis UCTP 60 SHC3, DHC1, NA

/timetabling/harderinstances
DHC2.

ExTP
SHC2, SHC3, http://www.cs.nott.ac.uk/∼pszrq/

Carter and 13
DHC2.

SC4
data.htm

CTTP

ITC-2007
SHC1, SHC2,

SC1, SC2,
PE

UCTP 24 SHC3, DHC1,
SC3

www.cs.qub.ac.uk/itc2007
DHC2.

Furthermore, some details regarding each instance of the dataset are presented in Table
2. The datasets are categorized as small, medium, and big based on some parameters
which include the number of events, number of students, number of rooms, and number
of timeslots.

5.2. Stemming process. In Figure 3 to Figure 5 we present diagrammatically the flow
of the stemming process for each dataset. As shown in the diagrams, every dataset has
different input formats. Therefore, to conduct the stemming process we create a method
for each instance. Thus, the methods are problem-dependent. The methods are briefly
described next.

5.2.1. Socha’s dataset. Part of Socha’s dataset inputs are packed in .tim file. The file
contains the number of events and rooms, the number of students, and the number of
features. It also includes the information on which events are taken by each student (stored
as Student-Event matrix), which features are required by each event (Event Features
matrix), and which features are provided by each room (Room Features matrix). The
transformation process from the input files to the stemmed forms is depicted in Figure 3.
The inputs read from the file are drawn in a solid line box, whereas inputs that have to
be included directly in the source code (hard coding) are drawn in dashed line boxes.

Figure 3 shows the steps of transforming the inputs into stemmed form. The output of
this process contains three elements which are event domain matrix D (and adjusted event
domain), conflict matrix, and GOSP-based objective function f . The objective function in
this dataset has been described in Equation (5). Note that there is no penalty if a student
or GOSP has to attend two events that are scheduled in two consecutive timeslots in a
day.

5.2.2. STKIP dataset. The instances are collected from a medium-size Indonesian college
from the year 2014 to the year 2016. Instance’s name indicates which academic year and
semester it belongs to. The input file contains the event-duration matrix, event-lecturer
matrix, event-student matrix, event-feature matrix, day conflict matrix, and lecturer-day
instance. These matrices are the sources of HCs. There are altogether 5 instances. Apart
from some additional constraints, each instance is presented almost exactly in the same
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Figure 3. Transformation to stemmed form of Socha’s dataset

way as in Socha’s dataset. Therefore, the stemming process is identical to process in
Figure 3.

5.2.3. Lewis’ dataset. The dataset contains 60 instances and was created using an instance
generator. The problem is identical to that of Socha’s dataset. It contains the same hard
constraints, nonetheless without soft constraint. Therefore, the goal of this ETP is just
to find feasible solutions. The steps of transforming the inputs to the stemmed form are
exactly similar to Socha’s dataset as described in Figure 3.

5.2.4. Carter’s dataset. The dataset comprises university and high school ExTP. It con-
tains 13 instances and was introduced by Carter et al. [21] in 1996. The instances were
taken from eight Canadian academic institutions; from the King Fahd University of
Petroleum and Minerals in Dhahran; and from Purdue University, Indiana, USA. In
this dataset, there are no room-related restrictions involved. Hence, as long as no conflict
occurs, any number of events can be put into a timeslot. Unlike the previously mentioned
datasets, the inputs of this ETP are packed into two files, .crs and .stu.
Because of this, it takes some extra steps to extract the set of events, resources, domain

matrix, and constraint graph from the instances. The set of resources can be created by
assuming there is an artificial room with infinite capacity. All available real rooms will
be considered as one single artificial room. All events are permitted to be assigned into
this room.
The number of timeslots varies from instance to instance and is part of the original

requirements posed by the university. The domain matrix and the constraint graph can
then be constructed exactly in the same way as in the UCTP problem. The only difference
between the ExTP and the UCTP problems is that in this problem, a resource can be
used by more than one event, i.e., a resource may be still available for an event although
it has already been taken by others.
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Figure 4. Transformation to stemmed form of Carter’s dataset

There are two variants of problems posed on this dataset, which include

1) Find the minimum number of timeslots with which a feasible timetable can be con-
structed. This problem is better known as the graph coloring problem reduction of the
ExTP (see [21]).

2) Given a fixed number of timeslots, find a feasible timetable where the conflicting exams
are spaced out as evenly as possible. This problem is known as uncapacitated with
cost problem (see [21]). ‘Un-capacited’ refers to the fact that there is no limitation in
room capacity at any timeslot. The objective function for this problem is recognized
as a proximity cost and was posed by Carter et al. [21].

5.2.5. ITC-2007 PE dataset. The problem is recognized as Track Two of the 2007 Inter-
national Timetabling Competition. The problem allows students to enroll in any course
and the timetabling is created based on the enrolment information. There are five types
of hard constraints and three types of SC. Figure 5 shows the flow to extract the set of
events, set of rooms, set of timeslots, set of constraints from the instances.

The SC posed to the problem is similar to the Socha’s dataset, and therefore the same
objective function is used to handle the SC.

5.3. Stemming results and performance. Figure 3 to Figure 5 show the process of
transforming the raw input of each dataset to the stemmed form. To show the effectiveness
of the process, we conduct an experiment for all instances and record the time consumption
during the stemming process. The experiments are carried out on a PC Intel (Core) i3
3220 3.30 GHz running under Microsoft Windows 7 Professional. Each instance is run
only once. In Table 2 we present the average running time under the “Time” column
for each instance category measured in milliseconds (ms). Note that there is no category
for Carter’s dataset, as the dataset contains heterogeneous instances. The “Time Avail”
column presents the typical running time set by researchers to solve the corresponding
instance measured in seconds (s). There is no single benchmark time for each instance.
In addition, there are many papers that do not report the run time explicitly.
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Figure 5. Transformation to stemmed form of ITC-2007 post enrollment dataset

Table 2. Time consumption of the stemming process

Dataset Category
# of # of # of # of # of Time Time

instances events students rooms timeslots (ms) Avail (s)
Socha S Small 5 100 80 5 45 57.4 120
Socha M Medium 5 400 200 10 45 408.2 600
Large Large 1 400 400 10 45 750 1000
STKIP Small 5 120 600 11-15 35 517.2 600
Lewis S Small 20 200-225 200-1000 5-6 45 1321.85 180
Lewis M Medium 20 390-425 400-1000 10-11 45 1805 900
Lewis B Big 20 1000-1075 800-1200 25-28 45 7194.2 1200
Carter
Car91 Big 1 682 16925 N/A 35 30089 3600
Car92 Big 1 543 18419 N/A 32 24597 3600
Ear83 Small 1 190 1125 N/A 24 755 720
Hec92 Small 1 81 2823 N/A 18 745 420
Kfu93 Medium 1 461 5349 N/A 20 6366 3120
Lse91 Medium 1 381 2726 N/A 18 5758 2820
Pur93 Big 1 2419 30029 N/A 42 176354 111600
Rye92 Medium 1 482 11483 N/A 23 30414 3600
Sta83 Small 1 139 611 N/A 13 370 480
Tre92 Small 1 261 4360 N/A 23 2997 1080
Uta82 Big 1 622 21266 N/A 35 33324 3600
Ute82 Small 1 184 2750 N/A 10 1418 660
Yor83 Small 1 181 941 N/A 21 570 540
ITC-PE Medium 24 200-600 300-2000 10-20 45 2303.45 240-600

In Figure 6 we show the proportion of the running time of each instance to the whole
time that is dedicated to solving the instance.
In all instances, the method consumes very small proportions of resources that are

dedicated to the whole process of the timetable construction. As we can see from the
picture, the time consumption to carry out the stemming process is less than 1 percent.
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Figure 6. The proportion of the run time spent in the stemming process
to the whole available time

This shows that any solver built on the stemming form will not substantially sacrifice
the time during the solution-finding process. On the contrary, it will obtain many benefits
as demonstrated later in the paper.

5.4. Solution finding. The four stages approach as described in Subsection 4.4 is de-
ployed for all datasets. The least saturation degree CH is used to generate the initial
feasible solutions. Whenever it fails to produce a feasible solution within the number of
timeslots provided, we apply the relaxation strategy described in [39]. With the three
neighborhood structures at hand, we tested several scenarios to minimize the soft con-
straint violations. From some preliminary experiments, we found that E2SA is the most
promising scenario.

All computational tests were run on a PC Intel (Core) i3 3220 3.30 GHz running under
Microsoft Windows 7 Professional.

5.4.1. Socha’s dataset. Each instance is tested for 30 runs. In each run, the algorithm
spent no longer than 120, 600, and 1000 seconds for small, medium, and large instances,
respectively.

The CH was able to find feasible solutions for all instances, except for the large one.
Thus, we applied the strategy described in [39] to deal with it. This strategy was able
to quickly find a feasible solution. Then, we apply the E2SA heuristics, to finding the
optimal solution.

The Solvers in Table 3 are named after the dataset used for the performance test. The
following are the references to the corresponding solver.

• Socha1: Obit et al. (2017) [17] Socha2: Aziz et al. (2017) [10]
• Socha3: Fong et al. (2015) [29] Socha4: Fong et al. (2014) [30]
• Socha5: Abdullah et al. (2012) [31] Socha6: Ceschia et al. (2012) [32]
• Socha7: Abdullah et al. (2007) [33] Socha8: Socha et al. (2002) [27]
• Socha9: Rezaeipanah et al. (2020) [34] Us: E2SA (2020)

Table 3 clearly shows the effectiveness of the model and the solver. Our method (E2SA)
can find the global optimum solutions for all small instances, and significantly improve
the state-of-the-art results for the rests except Medium1 as an exception.
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Table 3. Comparison of the results reported in the literature. Each cell
shows the minimum cost and when available the average cost (in parenthe-
sis). The values marked in bold indicate the best cost in the corresponding
instance. The inf notation indicates that no feasible solution was found.

Instance Us Socha1 Socha2 Socha3 Socha4 Socha5 Socha6 Socha7 Socha8 Socha9
name (E2SA) (2017) (2017) (2015) (2014) (2012) (2012) (2007) (2002) (2020)

Small1 0(0) 0 0 0 0 0 0 0(0) (1) 0

Small2 0(0) 0 0 0 0 0 0 0(0) (3) 0

Small3 0(0) 0 0 0 0 0 0 0(0) (1) 0

Small4 0(0) 0 0 0 0 0 0 0(0) (1) 0

Small5 0(0) 0 0 0 0 0 0 0(0) (0) 0

Medium1 14(30.6) 20 27(33) 57(70) 52(70) 175 9(26) 242(245) (195) 84

Medium2 12(23.1) 19 41(48) 54(79) 45(79) 197 15(25) 161(162) (184) 99

Medium3 21(48) 53 62(69) 114(132) 96(132) 216 36(49) 265(267) (248) 142

Medium4 5(24) 11 30(38) 74(82) 52(82) 149 12(23) 181(183) (164) 84

Medium5 1(18) 22 18(23) 64(75) 56(75) 190 3(10) 151(152) (219) 112

Large 139(280) 460 399(405) 502(549) 461(503) 912 208(259) Inf (851) 516

Table 3 and Figure 7(a) and Figure 7(b) show the performance of E2SA as compared
to the other methods. The best results are highlighted in bold font. The best and average
results showed that the E2SA outperformed the other methods in all instances. The
results can be attributed to the implementation of the framework which contains two core
components: stemmed form and the E2SA solver.

5.4.2. The STKIP instances. The process of creating the elements of the stemmed form
is similar to that of Socha’s dataset. However, an additional weighting schema for the
constraint matrix is applied to accommodating the precedence relation and different day
relation between events.
In all instances, the CH is applied to generating the feasible timetable, and the E2SA

is used to minimize the SC violation. Instance information and the results are presented
in the following table.

Table 4. The results of STKIP instances. The parenthesis in the feasible
solution column indicates the minimum number of rooms required. The
best OF column presents the best cost found through the 4 stages approach.

Instance # of # of # of
# features

# of Feasible Best
name events students rooms timeslot solution OF
S20141 183 632 19 2 25 0 (17) 92
S20142 170 631 13 2 25 0 (12) 124
S20151 170 637 15 4 25 0 (13) 134
S20152 169 545 13 2 25 0 (12) 125
S20161 118 391 13 2 25 0 (10) 123

Table 4 demonstrates the effectiveness of the framework. In all instances, the stemmed
forms are easily extracted and based on this form the solver can be run smoothly. CH can
find the feasible solution for all instances in a few milliseconds. The “Feasible solution”
column shows that the CH bears another benefit to the management that it can reduce
the number of rooms to a minimum level. However, the best solutions found by this
solver are not the perfect ones. There are still some kinds of SC violations. We tried to
run more than a hundred times for each instance and still no perfect solution was found.
This may indicate that for all instances the global optimum solution simply does not
exist. From the management perspective, this problem is not a big deal. Implementing
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(a) The best (minimum) cost

(b) The average cost

Figure 7. Cost of 10 solvers in Socha’s dataset

this best solution in practice brings some kinds of inconvenience to some students. For
example, there may be classes that are scheduled in the last timeslot of the day.

5.4.3. Lewis’ dataset. In [39] the authors present a relaxed strategy to solve the problem.
It is shown that the proposed framework in combination with some heuristics can solve
more instances of the problem. Recently in [13] we try to solve the problem using Stage
2 Ver 1 and found new feasible solutions for 2 instances.
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5.4.4. Carter’s dataset. The model and the implementation approach described in this
paper are used to solve the problem. The results are very competitive, as it can find
better solutions for many instances of the problem [14].
The results and further details on the implementation of the proposed approach in

solving the problem can be found in [15].

5.4.5. International Timetabling Competition 2007 course timetable datasets. Post enrol-
ment university course timetabling problem. The combination of the stemming form and
the heuristics deployed in handling the problem, has made it possible to find the feasible
solutions for all instances with minimum SC violation. The results using this approach
along with results from other researchers are presented in Table 5.

Table 5. Comparison of the results found by our methods and the methods
used by other authors

Instance PE1 PE2 PE3 PE4 PE5 PE6 (Us)
name Min(Ave) Min(ave) Min(Ave) Min(Ave) Min(Ave) Min(Ave)

1 0(377) 59(3992) 0(307.6) 0(209.4) 409 0(356.4)
2 0(382.18) 0(142.2) 0(63.4) 0(10.01) 381 0(108.5)
3 122(181.76) 148(209.9) 163(199.4) 141(188.6) 195 93(172.2)
4 18(319.40) 25(349.6) 242(328.8) 192(320.9) 211 11(315.4)
5 0(7.52) 0(7.7) 0(2.7) 0(2.9) 0 0(3.2)
6 0(22.82) 0(8.6) 0(33.2) 0(54.7) 0 0(53.2)
7 0(5.45) 0(4.9) 5(18.0) 4(14.5) 0 0(2.5)
8 0(0.60) 0(1.5) 0(0.0) 0(1.6) 0 0(1.5)
9 0(514.37) 0(258.8) 0(100.7) 0(15.2) 0 0(387.3)
10 0(1202.41) 3(186.4) 0(65.3) 0(30.5) 476 0(125.4)
11 48(202.58) 142(269.5) 161(244.3) 136(201.6) 135 3(231.4)
12 0(340.22) 267(400) 0(318.2) 0(303.5) 153 0(328.7)
13 0(79.02) 1(120.0) 0(99.5) 0(90.4) 0 0(56.6)
14 0(0.53) 0(3.6) 0(0.2) 0(25.6) 0 0(9.2)
15 0(139.92) 0(48.0) 0(192.0) 0(12.5) 0 0(15.3)
16 0(105.16) 0(50.1) 10(105.8) 0(45.8) 0 0(23)
17 0(0.07) 0(0.0) 0(0.8) 0(0.5) 0 0(2.4)
18 0(2.16) 0(41.1) 0(12.5) 0(7.7) 0 0(6.7)
19 0(346.08) 0(951.5) 0(516.7) 0(11.0) 75 0(876.3)
20 557(724.54) 543(700.2) 586(650.7) 555(664.0) 295 474(657.8)
21 1(32.09) 5(35.9) 0(12.5) 0(25.7) 0 0(98.4)
22 4(1790.08) 5(19.9) 1(136.0) 0(5.8) 533 0(879.3)
23 0(514.13) 1292(1707.7) 11(504.4) 56(713.6) 856 0(786.2)
24 18(328.18) 0(105.3) 5(192.6) 0(77.5) 266 0(68.3)

The minimum (min) and/or the average (ave) cost found by the corresponding author(s)
is shown. The references of the solvers follow:

• PE1: Lewis and Thompson (2015) [7] PE2: Ceschia et al. (2012) [32]
• PE3: Goh et al. (2017) [35] PE4: Goh et al. (2019) [36]
• PE5: Rezaeipanah et al. (2020) [34] PE6 (Us): E2SA (2020)

The complete procedures of the framework are applied to this dataset. As shown in Ta-
ble 2 and Figure 6, all instances are easily transformed into their stemmed form. The CH
can find feasible solutions for all instances in a few milliseconds. Based on these feasible
solutions the E2SA was applied to minimizing the SC violations. The robustness of this
approach becomes evident as demonstrated by Table 5, and Figure 8(a). E2SA can find
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global optimum solutions for 20 out of 24 instances. Moreover, it improves the solution’s
quality of three instances. Table 5 and Figure 8(b) demonstrate another dimension of the
robustness of the algorithm. In many instances, E2SA shows a reliable performance as
the average costs are close to the best costs of the corresponding instances. It is, however,
there are big gaps between the best cost and the average cost for some instances. These
gaps may be attributed to the role of the last stage of the algorithm that it will intensify
the search in the low-cost region of the best solution for some instances. From a different
perspective, however, the gaps demonstrate the capability of the algorithm to intensively
exploit the promising region.

(a) The best (minimum) cost

(b) The average cost

Figure 8. The costs (a) and the average costs (b) found by some solvers
in the ITC-2007 PE dataset
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6. Conclusions. ETPs are highly constrained problems. Any small perturbation to an
input may bring a significant impact on the solution. In this context, the development of
efficient and effective input handling and solution finding is crucial.
This paper starts with an assumption that in its core an ETP contains the same basic

elements that are events, resources, and constraints.
Based on this assumption, a generic solver can be developed to solve the problem

through its core elements. An ETP that has been presented in the form of its core element
is referred to as a stemmed form.
To realize this idea, we propose a 4 layers model ranging from identifying the core

elements to solving the problem. The timetabling construction process involves the search
for the proper resource for each event, taking into consideration the constraints imposed
on the problem. The difference between ETPs relies on the constraints posed to them.
In the feasibility problem, several heuristics can be implemented straightforwardly by

simply using the approach. Moreover, they are very effective to keep the search in the
feasible subspace when it comes to the optimization process.
The application of the domain matrix and constraint graph support the optimization

process of the search in yet another way. By using the domain matrix, a neighborhood
structure can be defined immediately. This neighborhood structure is very effective in
exploiting a promising solution area.
To show the effectiveness of the approach, experiments are conducted on some ETPs

chosen from several publicly available datasets and a real dataset taken from an Indone-
sian college. The experiments confirm the assumption that by using this approach it is
possible to deploy the same solver for those problems. However, some tuning activities
are needed during the preprocessing stage and the solution finder stage. The results from
these experiments also demonstrate that the qualities of the solutions are comparable to
other results and in some cases improve some state-of-the-art results.
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Appendix A. List of Abbreviations.

• CH: Constructive Heuristic
• CTTP: Class-Teacher Timetabling Problems
• DHC: Dynamic Hard Constraints
• E2SA: Explorative and Exploitative Simulated Annealing
• ETP: Educational Timetabling Problem
• ExTP: Examination Timetabling Problems
• GA: Genetic Algorithm
• GOSP: Group of Similar Participants
• IPGALS: Improved Parallel Genetic Algorithm and Local Search
• ITC-2007 PE: Post Enrollment Track of the 2007 International Timetabling Com-
petition
• LD: Largest Degree
• LS: Local Search
• LSD: Least Saturation Degree
• LWD: Largest Weighted Degree
• SA: Simulated Annealing
• SAIRL: Simulated Annealing with Improved Reheating and Learning
• SAR: Simulated Annealing with Reheating
• SC: Soft Constraints
• SHC: Static Hard Constraints
• TSSP: Tabu Search which is equipped with Sampling and Perturbation
• UCTP: University Course Timetabling Problem


