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Abstract. This paper addresses the problem of fault estimation (FE) for a class of time
delay fuzzy singular perturbed systems with actuator fault, sensor faults and external dis-
turbances simultaneously. By taking the system fault as auxiliary disturbance signal, a
proportional multiple-integral (PMI) FE observer under H∞ constraint is constructed.
Then, the less conservative sufficient conditions for the existence of observer are explic-
itly provided. The resulted estimator can guarantee that the error dynamic systems are
asymptotically stable ω(t) = 0 and satisfy H∞ performance for sufficiently small pertur-
bation parameter ε. Compared with the existing results, the gains of estimator are solved
directly by a set of ε-independent LMIs, and the proposed estimator can better describe
the shape and size of system faults. Meanwhile, the design scheme is with less conserva-
tive and a wilder application range. Finally, the simulation results show the effectiveness
of the proposed approach.
Keywords: Fault estimation, Singular perturbation, State time delays, Asymptotically
stable, Proportional multiple-integral observer, Linear matrix inequalities (LMIs)

1. Introduction. Recently, due to an increasing demand for higher safety and reliability,
the fault estimation (FE) problem of a practical system has been an active field of research.
Under the T-S fuzzy model framework, lots of research into FE for T-S fuzzy systems has
been carried out and various methods have been proposed in [13, 16, 17]. It should be
noted that most physical systems and processes inherently contain small perturbation
parameters, which makes FE of T-S fuzzy systems become stiff and unwieldy. Moreover,
the existence of small parameter brings forth ill-conditioning and high dimension problems
in system analysis and synthesis. Therefore, many researchers have been seeking effective
approaches to estimate singular perturbed system fault.

Time delays are frequently encountered in various engineering and communication sys-
tems, and a time delay in dynamical system is often a primary source of instability and
performance degradation. As a result, there are some recent controller design results
[31, 32] and FE results [3, 7, 8, 10, 15] for T-S fuzzy system with time delays. In [8], the
adaptive fault estimation problem is studied for a class of T-S fuzzy stochastic Markovian
jumping systems with time delays and nonlinear parameters. Based on the (k−1)th fault
estimation information, a k-step fault estimation observer is proposed to estimate the
actuator fault of time delay T-S fuzzy systems in [7]. In [15], a fuzzy descriptor learning
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observer is constructed to achieve simultaneous reconstruction of system states and actu-
ator faults for T-S fuzzy descriptor systems with time delays. A fault estimation filtering
is designed for discrete-time T-S fuzzy systems with low-frequency faults, which satisfy
two finite frequency H∞ performance indices simultaneously in [29]. In [10], sufficient
conditions for observer based fault tolerant saturated control design for discrete-time T-S
fuzzy systems with delay are developed. However, in practice, when the external distur-
bances are involved in nonlinear plant or the output of system is affected by the sensor
fault and disturbance simultaneously, the existing method will fail. It means that the
above-mentioned results can only deal with actuator fault or sensor fault individually.
Simultaneous estimation of actuator fault and sensor fault under the condition that the
external disturbances exist is more challenging and has not gotten big concern. In addi-
tion, although the influence of delay has been taken into account in the observer design
process [7, 8, 15], it should be pointed out that the time-varying delay and singular per-
turbation parameter ε is not considered.
On the other hand, a kind of practical system model embraces complicated slow and

fast dynamics. A state-space model has a small positive parameter ε multiplying some
derivatives of the states. Since the fact that ill-conditioning problem will be caused by
singular perturbation parameter ε is inevitable, it is more difficult to investigate fault
estimation issue for singularly perturbed systems. By virtue of fast-slow decomposition
approach, several results have been obtained in these areas. By using an observer-based
residual generator, the sensor fault is detected in [2] but the fast subsystem is ignored.
Results in [1] have some conservativeness arising from the absence of accurate fault in-
formation. In addition, actuator faults are reconstructed by a composite observer-based
residual generator in [26] for linear singularly perturbed systems. In [25], robust fault es-
timation scheme is presented to estimate faults whose derivative is bounded for Lipschitz
singularly perturbed systems, but only sensor fault is considered. In [33], a fuzzy adap-
tive observer is developed to achieve simultaneous estimations of actuator fault and sensor
fault, but the actuator fault and system control input must satisfy matching condition.
In [30], one less conservative delay-dependent sufficient condition for the existence of fault
estimation observer is given to estimate actuator and sensor fault simultaneously; howev-
er, perturbation is not considered. For the above existing FE research results, it should be
noted that the singularly perturbed systems are considered in the aforementioned papers,
and FE problem mainly focuses on normal singular systems with no consideration for T-S
fuzzy singular perturbed systems [3, 7, 8, 10, 15, 33], also with no time delays in [23-26].
Motivated by the above factors, this paper presents a new fault estimation scheme for

a class of T-S fuzzy singular perturbed systems with state time delays. By taking the
system fault as auxiliary disturbance signal, a proportional multiple-integral (PMI) fuzzy
fault estimation observer under H∞ performance constraint is constructed to achieve the
estimation of system faults. In contrast to the existing results, the proposed approaches
have the advantage that the gains of estimator are solved directly by a set of ε-independent
LMIs, so the given methods are easy to implement and can be applied to both standard
and nonstandard singularly perturbed systems. The main contributions of this paper are
summarized as follows.
1) The obtained robust PMI observer-based fault estimator with H∞ performance index

can be synthesized to estimate actuator and sensor faults simultaneously when small
perturbation parameter ε and external disturbances exist.
2) The resulted estimator can guarantee that the error dynamic systems are asymp-

totically stable ω(t) = 0 and satisfy H∞ performance for sufficiently small ε. Due to the
fact that the information of k-order derivative of fault is considered, it is more effective to
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estimate the time-varying fault, which is a more general type in actual systems. Finally,
simulation results are presented to illustrate the effectiveness of the proposed approach.

The rest of this paper is organized as follows. The system description is presented
in Section 2. In Section 3, we show the main results and provide some new sufficient
conditions for the existence of robust fault estimation observer. In Section 4, several
numerical examples are given to demonstrate the effectiveness and merits of the proposed
methods. Finally, a brief conclusion is drawn in Section 5.

Notations: Rn denotes the n-dimensional real Euclidean space; I denotes the identity
matrix; the superscripts T and−1 stand for the matrix transpose and inverse, respectively;
notation X > 0 (X ≥ 0) means that matrix X is real symmetric positive definite (positive
semi-definite); ∥ · ∥ is the spectral norm. All matrices are assumed to have compatible
dimensions for algebraic operations. The symbol “∗” stands for matrix block induced by
symmetry. For any square matrix M , Sym(M) is defined by Sym(M) =M +MT .

2. Problem Formulation. Consider a nonlinear T-S fuzzy singularly perturbed system
with the following r number of rules:
Plant rule i: IF ξ1(t) is Mi1 and . . . and ξp(t) is Mip THEN

Eεẋ(t) = Aix(t) + Aτix(t− τ(t)) +Biu(t) + Bfaifa(t) +Bdid(t)

y(t) = Cix(t) + Cτix(t− τ(t)) +Diu(t) +Dfsifs(t) +Ddid(t)

x(t) = ϕi(t), ∀t ∈ [−τ, 0], i = 1, 2, . . . , r

(1)

where Eε = diag{In1 , εIn2}, ε (0 < ε < 1) is a singular perturbation parameter, x(t) ∈
Rn1+n2 is the state vector, u(t) ∈ Rq is the control input and y(t) ∈ Rl represents the
system output vector. Mij (i = 1, 2, . . . , r, j = 1, 2, . . . , p) are fuzzy sets, d(t) ∈ Rm is
the exogenous disturbance input that belongs to L2[0,∞), fa(t) ∈ Rq and fs(t) ∈ Rp

represent the possible actuator and sensor fault respectively. Ai, Aτi, Bi, Bfai , Bdi, Ci,
Cτi, Di, Dfsi and Ddi are constant real matrices of appropriate dimensions. Without loss
of generality, it is assumed the pairs (Ai, Ci) are observable, where i = 1, 2, . . . , r and r
is the number of IF-THEN rules. And ξ1(t), . . . , ξp(t) are the premise variables, ϕi(t) is
a vector-valued initial continuous function defined on the interval [−τ, 0]. In this paper
it is also assumed that the premise variables do not depend on the input variables. τ(t)
is the time-varying delay, and we will consider the case τ(t) is a differentiable function
satisfying for all t ≥ 0, 0 ≤ τ(t) ≤ τ , τ̇(t) ≤ τD, where τ and τD are constants.

For convenience of notations, in the sequel, we denote

A(t) =
r∑

i=1

µi(ξ)Ai, Aτ (t) =
r∑

i=1

µi(ξ)Aτi, B(t) =
r∑

i=1

µi(ξ)Bi, Bd(t) =
r∑

i=1

µi(ξ)Bdi

D(t) =
r∑

i=1

µi(ξ)Di, C(t) =
r∑

i=1

µi(ξ)Ci, Cτ (t) =
r∑

i=1

µi(ξ)Cτi, Dd(t) =
r∑

i=1

µi(ξ)Ddi

where ξ(t) = (ξ1(t), ξ2(t), . . . , ξp(t)), ξi(t) are the premise variables. And µi(ξ(t)) =
βi(ξ(t))/

∑r
j=1 βj(ξ(t)), βi(ξ(t)) = Πp

i=1Mij(ξ(t)), where Mij(ξj(t)) is the grade of mem-

bership of ξj(t) in Mij. It is easy to find that µi(ξ(t)) satisfies µi(ξ(t)) ≥ 0,
∑r

j=1 µj(ξ(t))

= 1 for any ξ(t).
Then, by fuzzy blending, the overall system model with disturbance input, actuator

and sensor faults is given by
Eεẋ(t) = A(t)x(t) + Aτ (t)x(t− τ(t)) +B(t)u(t) +Bfa(t)f(t) + Bd(t)d(t)

y(t) = C(t)x(t) + Cτ (t)x(t− τ(t)) +D(t)u(t) +Dfs(t)f(t) +Dd(t)d(t)

x(t) = ϕ(t), t ∈ [−τ, 0],
(2)
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where Bfa(t) = [
∑r

i=1 µi(ξ(t))Bfai 0], Dfs(t) = [0
∑r

i=1 µi(ξ(t))Dfsi ], f(t) =
[
fT
a (t)

fT
s (t)

]T
. Here, the faults f(t) are assumed as the time-varying signals whose k-order time

derivatives are bounded, that is ḟ(t) = f1(t), ḟ1(t) = f2(t), ḟ2(t) = f3(t), . . . , ḟk−1(t) =
fk(t), fk(t) = 0.
It should be mentioned that, in practice, when external disturbances are involved in

nonlinear plant or the output of systems is affected by sensor fault and disturbances
simultaneously, the existing results in [8, 15, 25, 32] will fail. On the other hand, we
knew that by the fuzzy membership functions, the relevant T-S fuzzy model can give a
feasible framework to express the nonlinear plant by a series of local linear sub-models. So
the considered system (2) has lots of applications in the fields of fault detection of robot
manipulator systems, sampled-data control and passivity analysis of delayed complex
dynamic network systems. Based on the above considerations, how to design the robust
fault estimator for T-S fuzzy systems (2) becomes complicated but meaningful, which will
be researched in our work.

Assumption 2.1. Assume that actuator fault fa(t) and sensor fault fs(t) along with its
k-order corresponding derivative, as well as the external disturbance d(t) satisfy fa(t) ∈
L2[0,∞), ḟaj(t) ∈ L2[0,∞), fs(t) ∈ L2[0,∞), ḟsj(t) ∈ L2[0,∞), d(t) ∈ L2[0,∞), (j =
0, 1, 2, . . . , k − 1).

Remark 2.1. In general, Assumption 2.1 is a normal one since for most practical sys-
tems, the energy of actuator fault or sensor fault is boundary. Moreover, once a system
failure occurs, then they remain somehow constant, which implies their derivatives are
energy-bounded, and similar assumptions can be found in [35, 36].

Remark 2.2. For T-S nonlinear system description (2), we can see that a more general
fuzzy system with state time delays is considered in this paper, including small singular
perturbation parameter ε, possible exogenous disturbance input, actuator and sensor fault
simultaneously. If there occur no perturbation and state time delay, i.e., ε = 1, τ(t) = 0,
then (2) reduces to the existing one in [4]. Further, if, τ(t) ̸= 0, (2) can be transformed to
the one in [7]. When perturbation parameter ε ̸= 1 is small enough, this kind of systems
embraces complicated slow and fast dynamics and is difficult to design fault estimator.

3. Main Results. In the following, we are ready to express our main results and provide
some new sufficient conditions for the existence of robust fault estimation observer for
system (2).

3.1. Observer design with ε-dependent. In order to estimate faults, the following
proportional multiple-integral fault estimation observer is constructed:

Eε
˙̂x(t) = A(t)x̂(t) + Aτ (t)x̂(t− τ(t)) +B(t)u(t) + Bfa(t)f̂(t)

−LP (t) (ŷ(t)− y(t))

ŷ(t) = C(t)x̂(t) + Cτ (t)x̂(t− τ(t)) +D(t)u(t) +Dfs(t)f̂(t)

˙̂
f(t) = −FI(t)(ŷ(t)− y(t)) + f̂1(t),

˙̂
f1(t) = −F 1

I (t)(ŷ(t)− y(t)) + f̂2(t)

...

˙̂
fj(t) = −F j

I (t)(ŷ(t)− y(t)) + f̂j+1(t), . . . ,
˙̂
fk(t) = 0, (j = 1, 2, . . . , k − 1)

(3)
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where x̂(t) ∈ Rn is the observer state, ŷ(t) ∈ Rl is the observer output, and f̂(t) ∈ Rq+p

is an estimate of fault f(t). The objective of observer-based estimator design scheme is
to obtain the appropriate dimension gain matrices LP (t) ∈ Rn×l, F j

I (t) ∈ Rq×l, where

LP (t) =
∑r

i=1 µi(ξ(t))LPi, F
j
I (t) =

∑r
i=1 µi(ξ(t))F

j
i , and estimate fault despite the pres-

ence of disturbance, perturbation parameter ε and time-varying state delay.
By defining ex(t) = x̂(t)− x(t), ey(t) = ŷ(t)− y(t), ef (t) = f̂(t)− f(t), we can obtain

that

Eεėx(t) = (A(t)− Lp(t)C(t))ex(t) + (Aτ (t)− Lp(t)Cτ (t))ex(t− τ(t))

+ (Bfa(t)− Lp(t)Dfs(t))ef (t)− (Bd(t)− Lp(t)Dd(t))d(t)

and

ėf (t) = −FI(t)(C(t)ex(t) + Cτ (t)ex(t− τ(t)) +Dfs(t)ef (t) +Dd(t)d(t)) + ef1(t)

ėf1(t) = −F 1
I (t)(C(t)ex(t) + Cτ (t)ex(t− τ(t)) +Dfs(t)ef (t) +Dd(t)d(t)) + ef2(t)

...

ėfj(t) = −F j
I (t)(C(t)ex(t) + Cτ (t)ex(t− τ(t)) +Dfs(t)ef (t) +Dd(t)d(t)) + efj+1

(t)

...

ėfk−1
(t) = −F (k−1)

I (t)(C(t)ex(t) + Cτ (t)ex(t− τ(t)) +Dfs(t)ef (t) +Dd(t)d(t)) + efk(t)

where j = 1, 2, . . . , k − 1 is the time derivative order of the system fault f(t), and then
by denoting

eT (t) =
[
eTx (t), e

T
f (t), e

T
f1
(t), . . . , eTf(k−1)

(t)
]

ωT (t) =
[
dT (t), ḟT (t), ḟT

1 (t), . . . , ḟ
T
k−1(t)

]
,

the error dynamic systems are deduced from (2) and (3) as follows:
E(ε)ė(t) =

[
Ā(t)− L̄(t)C̄(t)

]
e(t) +

[
Āτ (t)− L̄(t)C̄τ (t)

]
e(t− τ(t))

+
[
L̄(t)D̄d(t)− B̄d(t)

]
ω(t)

ey(t) = C̄(t)e(t) + C̄τ (t)e(t− τ(t))− D̄d(t)ω(t)

(4)

where

Ā(t) =


A(t) Bfa(t) 0 0 · · · 0

0 0 I 0 · · · 0

0 0 0 I · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0

 , Āτ (t) =


Aτ (t) 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0



L̄(t) =



Lp(t)

FI(t)

F 1
I (t)

...

F k−1
I (t)


, B̄d(t) =


Bd(t) 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0


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E(ε) =


Eε 0 0 0 · · · 0

0 I 0 0 · · · 0

0 0 I 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · I

 , C̄(t) =
[
C(t) Dfs(t) 0 0 · · · 0

]

C̄τ (t) =
[
Cτ (t) 0 0 0 · · · 0

]
, D̄d(t) =

[
Dd(t) 0 0 0 · · · 0

]
Remark 3.1. In general, sliding mode observer based fault estimation requires the pre-
liminary knowledge of the upper bound of f(t) in [18, 19] and the fault estimation filter
is designed under the assumption f(t) ∈ L2[0,∞). However, in many practical systems,
there is a transient period during which the fault establishes itself, after which, there re-
mains more or less constant, meaning that the derivatives of the faults are energy-bounded,
i.e., ḟ(t) ∈ L2[0,∞). Therefore, the assumption that ḟ(t) ∈ L2[0,∞) is satisfied in this
paper, which is more general than those assumption used in aforementioned design meth-
ods.

From error dynamics (4), we can see that the matrix L̄(t) contains the two matrices
LP (t), F

j
I (t) that have to be designed. Therefore, a necessary condition for the existence

of fuzzy fault estimation observer is that the pairs
(
Āi, C̄i

)
are observable, and then the

proposed robust FE observer design is converted to the problem of seeking the gain matrix
L̄(t) such that
(i) the error dynamic system (4) with time-varying state delay is asymptotically stable

(ω(t) = 0);
(ii) the following performance is satisfied:∫ L

0

∥ef (t)∥2dt ≤ γ2
∫ L

0

∥ω(t)∥2dt (5)

for L > 0 and ω(t) ∈ L2[0,∞) under zero initial conditions.

3.2. Observer existence conditions with ε-independent. For simplicity, we intro-
duce the following vectors:

ζT (t) =
[
eT (t) eT (t− τ(t)) eT (t− τ) ωT (t)

]
Γ(t) =

[
Ā(t)− L̄(t)C̄(t) Āτ (t)− L̄(t)C̄τ (t) 0 L̄(t)D̄d(t)− B̄d(t)

]
Then, the state equation of error dynamics (4) can be rewritten as E(ε)ė(t) = Γ(t)ζ(t).
Next, a fuzzy-augmented fault estimation PMI observer design method under H∞ perfor-
mance is proposed to achieve robust fault estimation.

Theorem 3.1. Consider system (4), for the given γ > 0 and positive scalars τ , τD, there
exists a sufficiently small ε∗ > 0 such that for any ε ∈ (0, ε∗], the error dynamic system (4)
is asymptotically stable (with ω(t) = 0) while satisfying a prescribed H∞ performance (5),

if there exist matrices P =

 P11 0 0
P21 P22 0
0 0 P33

, (P11, P22, P33 are symmetric matrices),

Q1 > 0, Q2 > 0, R > 0, L̄(t) and free weighting matrices M , N such that the following
inequalities hold: [

Ω̃(t) τM

∗ −τR

]
< 0 (6)
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Ω̃(t) τN

∗ −τR

]
< 0 (7)

where Ω̃(t) = Ω(t) + τΓ(t)TRΓ(t)− Φ− ΦT

Ω(t) =


Θ11(t) Θ12(t) 0 Θ14(t)

∗ −(1− τD)Q1 0 0

∗ ∗ −Q2 0

∗ ∗ ∗ −γ2I


Θ11(t) = Sym

(
P T

(
Ā(t)− L̄(t)C̄(t)

))
+Q1 +Q2 + Īk(q+p)Ī

T
k(q+p)

Θ12(t) = P T
(
Āτ (t)− L̄(t)C̄τ (t)

)
, Θ14(t) = P T

(
L̄(t)D̄d(t)− B̄d(t)

)
Φ =

[
M −M +N −N 0

]
, ĪTk(q+p) =

[
0 Ik(q+p)

]
Proof: Here, we can see that the error dynamic (4) contains the singular perturbation

parameter Eε in E(ε), where Eε = diag{In1 , εIn2} means that the error dynamic embraces
the slow and fast error states, in order to facilitate us to better analyze system stability,
E(ε) can be divided as follows:

E(ε) =



[
In1 0
0 εIn2

]
0 0 0 · · · 0

0 I 0 0 · · · 0
0 0 I 0 · · · 0
0 0 0 I · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · I


=

 [
In1 0
0 εIn2

]
0

0 I(k×q)



=

 In1 0 0

0 εIn2 0

0 0 I(k×q)


Corresponding to the matrix E(ε) above-mentioned, we define

P (ε) = P + εP0 =

 P11 0 0

P21 P22 0

0 0 P33

+ ε

 0 P T
21 0

0 0 0

0 0 0

 =

 P11 εP T
21 0

P21 P22 0

0 0 P33


where P21 ∈ Rn2×n1 , and P11 ∈ Rn1×n1 > 0, P22 ∈ Rn2×n2 > 0, P33 ∈ Rkq×kq > 0 are
symmetric positive-definite matrices. Then based on the above definition form about
E(ε) and P (ε), it can be obtained that there exists a sufficiently small parameter ε∗0, for

∀ε ∈ (0, ε∗0], an invertible matrix Pε =

[
P11 εP T

21

P21 P22

]
can be defined, where P11 = P T

11 > 0,

P22 = P T
22 > 0. For ∀ε ∈ (0, ε∗1], if there exists a scalar ε

∗
1 > 0 such that P11−εP T

21P
−1
22 P21 >

0, then according to Schur complement theorem, we have

ET (ε)P (ε) =

 In1 0 0

0 εIn2 0

0 0 Iq


 P11 εP T

21 0

P21 P22 0

0 0 P33

 =

 P11 εP T
21 0

εP21 εP22 0

0 0 P33

 > 0

For ∀ε ∈ (0, ε∗1], it is trivial that

ET (ε)P (ε) = P T (ε)E(ε) (8)
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Then the Lyapunov-Krasovskii functional candidate is constructed as follows:

V (t) = eT (t)E(ε)P (ε)e(t) +

∫ t

t−τ(t)

eT (s)Q1e(s)ds

+

∫ t

t−τ

eT (s)Q2e(s)ds+

∫ 0

−τ

∫ t

t+θ

ėT (s)E(ε)RE(ε)ė(s)dsdθ (9)

where Q1 > 0, Q2 > 0, R > 0. And the time derivatives of V (t), along the trajectories of
the error dynamic systems (4) satisfy

V̇ (t) = eT (t)
[
Sym

(
P T (ε)

(
Ā(t)− L̄(t)C̄(t)

))
+Q1 +Q2

]
e(t)

+ 2eT (t)P T (ε)
(
Āτ (t)− L̄(t)C̄τ (t)

)
e(t− τ(t))

+ 2eT (t)P T (ε)
(
L̄(t)D̄d(t)− B̄d(t)

)
ω(t)− (1− τ̇(t)) eT (t− τ(t))Q1e(t− τ(t))

− eT (t− τ)Q2e(t− τ) + τ ėT (t)E(ε)RE(ε)ė(t)−
∫ t

t−τ

ėT (s)E(ε)RE(ε)ė(s)ds

Denoting βT (t, s) =
[
ζT (t) (E(ε)ė(s))T

]
, we obtain

V̇ (t) + eTf (t)ef (t)− γ2ωT (t)ω(t)

= eT (t)
[
Sym

(
P T (ε)

(
Ā(t)− L̄(t)C̄(t)

))
+Q1 +Q2 + Īk(q+p)Ī

T
k(q+p)

]
e(t)

+ 2eT (t)P T (ε)
(
Āτ (t)− L̄(t)C̄τ (t)

)
e(t− τ(t)) + 2eT (t)P T (ε)

(
L̄(t)D̄d(t)− B̄d(t)

)
ω(t)

− (1− τ̇(t))eT (t− τ(t))Q1e(t− τ(t)) + τζT (t)ΓT (t)RΓ(t)ζ(t)

− eT (t− τ)Q2e(t− τ)−
∫ t

t−τ

ėT (s)E(ε)RE(ε)ė(s)ds− γ2ωT (t)ω(t)

− 2ζT (t)M

[
e(t)− e(t− τ(t))−

∫ t

t−τ(t)

ė(s)ds

]
− 2ζT (t)N

[
e(t− τ(t))− e(t− τ)−

∫ t−τ(t)

t−τ

ė(s)ds

]
Here, the free weighting matrices M , N are introduced in order to deal with the inte-
gral term

∫ t

t−τ
ėT (s)E(ε)RE(ε)ė(s)ds effectively to reduce the result conservatism. By de-

composing the integral term
∫ t

t−τ
ėT (s)E(ε)RE(ε)ė(s)ds into

∫ t

t−τ(t)
ėT (s)E(ε)RE(ε)ė(s)ds

and
∫ t−τ(t)

t−τ
ėT (s)E(ε)RE(ε)ė(s)ds and the change of only one matrix inequality relation

τ̇(t) < τD, we can obtain that

V̇ (t) + eTf (t)ef (t)− γ2ωT (t)ω(t)

≤ 1

τ

∫ t

t−τ(t)

[
ζT (t)Ωε(t)ζ(t) + 2τζT (t)Mė(s)− τ ėT (s)E(ε)RE(ε)ė(s)

]
ds

+
1

τ

∫ t−τ(t)

t−τ

[
ζT (t)Ωε(t)ζ(t) + 2τζT (t)Nė(s)− τ ėT (s)E(ε)RE(ε)ė(s)

]
ds

=
1

τ

∫ t

t−τ(t)

βT (t, s)

[[
Ω̃(t) τM

∗ −τR

]
+

[
εΩ̃0(t) 0

0 o(ε)

]]
β(t, s)ds

+
1

τ

∫ t−τ(t)

t−τ

βT (t, s)

[[
Ω̃(t) τN

∗ −τR

]
+

[
εΩ̃0(t) 0

0 o(ε)

]]
β(t, s)ds
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where

ζT (t) =
[
eT (t) eT (t− τ(t)) eT (t− τ) ωT (t)

]
, Ωε(t) = Ω̃(t) + εΩ̃0(t)

Ω̃(t) = Ω(t) + τΓ(t)TRΓ(t)− Φ− ΦT , Φ =
[
M (−M +N) −N 0

]
with

Ω(t) =


Θ11(t) Θ12(t) 0 Θ14(t)

∗ −(1− τD)Q1 0 0
∗ ∗ −Q2 0
∗ ∗ ∗ −γ2I


Ω0(t) =

 Sym
(
PT
0

(
Ā(t)− L̄(t)C̄(t)

))
PT
0

(
Āτ (t)− L̄(t)C̄τ (t)

)
0 PT

0

(
L̄(t)D̄d(t)− B̄d(t)

)
∗ 0 0 0
∗ ∗ 0 0
∗ ∗ ∗ 0


For the perturbation parameter integral term, it is obvious that∫ t

t−τ(t)

βT

[
εΩ̃0(t) 0

0 o(ε)

]
βds+

∫ t−τ(t)

t−τ

βT

[
εΩ̃0(t) 0

0 o(ε)

]
βds

=

∫ t

t−τ

βT

[
εΩ̃0(t) 0

0 o(ε)

]
βds

so we can obtain that

V̇ (t) + eTf (t)ef (t)− γ2ωT (t)ω(t)

<
1

τ

∫ t

t−τ(t)

βT (t, s)

[
Ω̃(t) τM

∗ −τR

]
β(t, s)ds

+
1

τ

∫ t−τ(t)

t−τ

βT (t, s)

[
Ω̃(t) τN

∗ −τR

]
β(t, s)ds

+
1

τ

∫ t

t−τ

βT (t, s)

[
εΩ̃0(t) 0

0 o(ε)

]
β(t, s)ds

=
1

τ

[∫ t

t−τ(t)

βT (t, s)

[
Ω̃(t) τM

∗ −τR

]
β(t, s)ds

+

∫ t−τ(t)

t−τ

βT (t, s)

[
Ω̃(t) τN

∗ −τR

]
β(t, s)ds

]
+O(ε)

Then according to the results in [27, 28], we know that there exists ε∗2, for any ε ∈ (0, ε∗2],
Inequalities (6) and (7) hold, one has V̇ (t) + eTf (t)ef (t) − γ2ωT (t)ω(t) < 0. Therefore,
by V (L) ≥ 0 and V (0) = 0 under zero initial conditions, we can conclude that ∃ε∗ > 0,
where ε∗ = min{ε0, ε1, ε2}, for any ε ∈ (0, ε∗], Inequality (5) holds for all L > 0 and any
nonzero ω(t) ∈ L2[0,∞).

In addition, when ω(t) = 0, by choosing the same Lyapunov function as (9) and follow-
ing the similar line in the earlier deduction under conditions (6) and (7), we can easily
obtain that the time derivative of V (t) along the solution of error dynamics (4) with
ω(t) = 0 satisfies V̇ (t) < 0, which indicates the asymptotic stability of systems (4). This
completes the proof.

Remark 3.2. In the process of analyzing stability of error dynamic system and giving sta-
bility analysis results, the derivative of Lyapunov functional candidate is always dealt with
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matrix inequalities approach. However, the integral term
∫ t

t−τ
ėT (s)Rė(s)ds was ignored

in [20-22] and some useful negative integral term
∫ t−τ(t)

t−τ
ėT (s)Rė(s)ds was directly deleted

in [23, 24]. In this paper, in order to further reduce the conservatism of conclusion, only
one identical matrix equality about τ̇(t) < τD is used and other derivation processes are
equivalent transformations. Meanwhile, the full information about τ(t) and free weight
matrix method is considered in LKF, so the less conservatives results than the existing
ones in [20, 24] can be obtained.

Remark 3.3. From the above analysis process, we can see that the augment error dynamic
systems (4) are effectively constructed to make the gain matrix Lp(t) and F j

I (t) j =
0, 1, . . . , k − 1 to be designed in one matrix variable L̄(t). In addition, based on the
configuration of E(ε) and P (ε), the fault estimator design scheme can be transformed
into ε-independent type, and then all the obtained conditions above-mentioned can be
formulated in the form of LMSs, which could be solved easily by toolbox to overcome ill-
conditioned solution problem.

Remark 3.4. It should be mentioned that the results in Theorem 3.1 cannot be applied
directly to dealing with the practical problem, because the obtained conditions are not linear
matrix inequality due to the fact that P T L̄(t) and τΓ(t)TRΓ(t) exist. Based on Theorem
3.1 and matrix inequality method, we transformed the conditions in Theorem 3.1 into
Theorem 3.2 in terms of LMIs, which can be solved efficiently by using existing solvers
such as LMI toolbox in the Matlab software.

Theorem 3.2. Consider system (4), for the given positive scalars τ , τD, δ and γ > 0,

if there exist matrices P =

 P11 0 0
P21 P22 0
0 0 P33

 (P11, P22, P33 are symmetric positive ma-

trices), Q1 > 0, Q2 > 0, R > 0, Yi and free weighting matrices MT
i =

[
MT

1i MT
2i MT

3i

MT
4i

]
, NT

i =
[
NT

1i NT
2i NT

3i NT
4i

]
(i = 1, 2, . . . , r) such that the following inequalities

hold

Ξii < 0 i = 1, 2, . . . , r (10)

Ξij + Ξji ≤ 0 1 ≤ i < j ≤ r (11)

Πii < 0 i = 1, 2, . . . , r (12)

Πij +Πji ≤ 0 1 ≤ i < j ≤ r (13)

where

Ξij =

 Ω̄ij τMi

√
τ Γ̄T

ij

∗ −τR 0

∗ ∗ −2δp+ δ2R


Πij =

 Ω̄ij τNi

√
τ Γ̄T

ij

∗ −τR 0

∗ ∗ −2δp+ δ2R


where

Ω̄ij = Ωij − Φi − ΦT
i

Ωij =


Θ1ij PĀτi − YiC̄τj 0 YiD̄dj − PB̄di

∗ −(1− τD)Q1 0 0

∗ ∗ −Q2 0

∗ ∗ ∗ −γ2I


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Θ1ij = PĀi − YiC̄j +
[
PĀi − YiC̄j

]T
+Q1 +Q2 + Īk(q+p)Ī

T
k(q+p)

Φi =
[
Mi −Mi +Ni −Ni 0

]
, ĪTk(q+p) =

[
0 Ik(q+p)

]
Γ̄ij =

[
PĀi − YiC̄j PĀτi − YiC̄τj 0 YiD̄dj − PB̄di

]
Then there exists a sufficiently small ε∗ > 0 such that for any ε ∈ (0, ε∗], the error dynamic
systems (4) are asymptotically stable (with ω(t) = 0) while satisfying a prescribed H∞
performance (5), and the observer gain matrices can be obtained as follows:

L̄i =



LPi

FIi

F 1
Ii

...

F k−1
Ii

 =
(
P T

)−1
Yi

Proof: It follows from the fact (δR−P )R−1(δR−P ) ≥ 0 that −PR−1P ≤ −2δP+δ2R,
for any scalar δ, we can see that (6) and (7) hold if the following inequalities hold Ω̄(t) τM

√
τΓ(t)TP

∗ −τR 0

∗ ∗ −2δp+ δ2R

 < 0

 Ω̄(t) τN
√
τΓ(t)TP

∗ −τR 0

∗ ∗ −2δp+ δ2R

 < 0

where

Ω̄(t) = Ω(t)− Φ− ΦT

with

Ω(t) =


Θ11(t) Θ12(t) 0 Θ14(t)

∗ −(1− τD)Q1 0 0

∗ ∗ −Q2 0

∗ ∗ ∗ −γ2I


Θ11(t) = Sym

(
P T Ā(t)− P T L̄(t)C̄(t)

)
+Q1 +Q2 + Īk(q+p)Ī

T
k(q+p)

Θ12(t) = P T Āτ (t)− P T L̄(t)C̄τ (t), Θ14(t) = P T L̄(t)D̄d(t)− P T B̄d(t)

Φ =
[
M −M +N −N 0

]
, ĪTk(q+p) =

[
0 Ik(q+p)

]
Then, by Theorem 3.1 and with the changes of variables as Y (t) = P T L̄(t), we can see
that if the conditions (10)-(12) hold, it is true that there exists a sufficiently small ε∗ > 0,
where ε∗ = min{ε0, ε1, ε2}, such that for any ε ∈ (0, ε∗],

r∑
i=1

µ2
i (ξ)Ξii +

r∑
i=1

r∑
i<j

µi(ξ(t))µj(ξ)(Ξij + Ξji) + o(ε) < 0 (14)

r∑
i=1

µ2
i (ξ)Πii +

r∑
i=1

r∑
i<j

µi(ξ)µj(ξ(t))(Πij +Πji) + o(ε) < 0 (15)

which means the inequality conditions (10)-(12) are sufficient for (14) and (15). This
completes the proof.
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Remark 3.5. In contrast to the existing results, the proposed approach do not decompose
the original systems into the slow and fast subsystems, so the designed observer-based
estimator for considered systems without assumption that A22 is nonsingular for the fast
subsystems in [1, 2, 27]. Besides, the gains of estimator to be designed are solved directly
by a set of ε-independent LMIs; therefore, the proposed results have the broader scope of
application than the traditional ones.

Remark 3.6. PMI based fault estimator considers the derivative of f(t), when f(t) is

time-varying fault signal, the introduction of term f̂j(t) (j = 1, 2, . . . , k − 1) can enhance
the speed and accuracy of fault estimation compared with constant fault. The following
example will better illustrate this feature and the effectiveness of the proposed method.

4. Numerical Examples. We provide two illustrative examples with simulation results
to demonstrate the applicability and the effectiveness of the proposed design method.

4.1. Example 1. The dynamic equation of a flexible joint inverted pendulum device is
given as follows:

ẋ1(t) = x2(t)

ẋ2(t) = I−1
2 (mgl sinx1(t)− βsε

2x3(t)− βdεx4(t))

εẋ3(t) = x4(t)

εẋ4(t) = I−1
2 mgl sin x1(t)− I−1

p βsε
2x3(t)− I−1

p βdεx4(t)− I−1
1 u(t) + I−1

1 αψ(t)

(16)

where x1(t) = θ2(t), x2(t) = θ̇2(t), x3(t) = ε−2(θ2(t) − θ1(t)), x4(t) = ε−1
(
θ̇2(t)− θ̇1(t)

)
,

ε is the perturbation parameter, Ip = I1 · I2(I1 + I2)
−1, and θ1(t) denotes the angle (rad)

of the pendulum from the vertical, θ2(t) denotes the angle (rad) of the rotor from the
vertical, I1 is the moment of inertia (kgm2) of the rotor, I2 is the moment of inertia
(kgm2) of the pendulum, m is the mass (kg) of the pendulum, l is the length (m) from
the center of mass of the pendulum round its center of mass. The parameters of the plant
are given as g = 9.8 m/s2, m = 1 kg, l = 1 m, I1 = 1 kgm2, I2 = 5 kgm2, βs = 30000
Nm, βd = 300 Nms, and α = 0.5. The objective here is to estimate the possible fault
of inverted pendulum system under disturbance input. Assuming −π < x1(t) < π, the

Figure 1. Flexible joint inverted pendulum device
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nonlinear system (16) can be described by the following fuzzy singularly perturbed model
with fault and disturbance.

Rule 1: IF x1(t) is about 0, THEN

Eεẋ(t) = A1x(t) + Aτ1x(t− τ(t)) +B1u(t) +Bfa1fa(t) +Bd1d(t)

y(t) = C1x(t) + Cτ1x(t− τ(t)) +D1u(t) +Dfs1fs(t) +Dd1d(t)

Rule 2: IF x1(t) is about ±π, THEN

Eεẋ(t) = A2x(t) + Aτ2x(t− τ(t)) +B2u(t) +Bfa2fa(t) +Bd2d(t)

y(t) = C2x(t) + Cτ2x(t− τ(t)) +D2u(t) +Dfs2fs(t) +Dd2d(t)

where Eε = diag{1, 1, ε, ε} and x = [x1(t), x2(t), x3(t), x4(t)],

A1 =


0 1 0 0

1.96 0 −0.4 −0.6
0 0 0 1

1.96 0 −2.4 −3.6

 , B1 =


0
0
0
−1

 , Bfa1 =


1
1
1
1

 , Bd1 =


0.1
0.1
0.1
0.1



A2 =


0 1 0 0
0 0 −0.4 −0.6
0 0 0 1
0 0 −2.4 −3.6

 , B2 =


0
0
0
−1

 , Bfa2 =


1
1
1
1

 , Bd2 =


0.1
0.1
0.1
0.1


and C1 = C2 =

[
0.5 0.5 0.5 0.5

]
, Aτi = (1 − a)Ai with a = 0.2, Cτ1 = Cτ2 =[

0.01 0.01 0.01 0.01
]
, Di = 1, Dfsi = 0.1, Ddi = 0.2 for (i = 1, 2). For the state

time-varying delay τ(t), we assume that τ = 0.1, τD = 0.05. Then we set δ = 10, H∞
performance index γ = 2.5, by solving the conditions (10)-(13) in Theorem 3.2 based on
the LMIs approach of Matlab toolbox, one obtains the following feasible solution P :

1.0e+ 03 ∗



0.0398 −0.0283 0 0 0 0 0 0
−0.0283 0.0362 0 0 0 0 0 0
−0.0172 0.0021 0.0132 0.0107 0 0 0 0
−0.0137 −0.0037 0.0107 0.0156 0 0 0 0

0 0 0 0 0.0018 −0.0067 0.0088 0.0324
0 0 0 0 −0.0067 0.0411 −0.1073 −0.1362
0 0 0 0 0.0088 −0.1073 0.5014 −0.5046
0 0 0 0 0.0324 −0.1362 −0.5046 8.9348


and the observer gains matrices are

LP1 =


8.8440
9.2824
8.7416
9.1149

 , FI1 =

[
68.4854
22.6227

]
, F 1

I1 =

[
3.9719
0.3207

]

and

LP2 =


8.2765
8.1145
8.0005
7.8583

 , FI2 =

[
69.5441
23.0101

]
, F 1

I2 =

[
4.0360
0.3265

]

In order to further illustrate the effectiveness of the proposed approach, we choose
different parameters to calculate the observer gain matrix and present more results, such
as when setting g = 9.8 m/s2, m = 2 kg, l = 1 m, I1 = 2 kgm2, I2 = 10 kgm2, βs = 30000
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Nm, βd = 300 Nms, and α = 0.5, the matrix of fuzzy singularly perturbed model can be
obtained as follows:

A1 =


0 1 0 0

1.96 0 −0.2 −0.3
0 0 0 1

1.96 0 −1.2 −1.8

 , B1 =


0
0
0
−1



A2 =


0 1 0 0
0 0 −0.2 −0.3
0 0 0 1
0 0 −1.2 −1.8

 , B2 =


0
0
0
−1


And by solving the conditions in Theorem 3.2 based on the LMIs approach, the following
feasible solution can be obtained:

LP1 =


9.0443
9.3885
8.3716
9.6936

 ,
[
FI1

F 1
I1

]
=


55.8940
17.9801
3.0967
0.2433



LP2 =


8.2997
8.1891
7.7509
8.2144

 ,
[
FI2

F 1
I2

]
=


56.8992
18.3321
3.1525
0.2483


Here, in order to facilitate simulation, we choose membership functions for Rules 1

and 2 are µ1(x1(t)) = sin(x1(t))/x1(t) when x1(t) ̸= 0, otherwise, µ1(x1(t)) = 1 when
x1(t) = 0, µ2(x(t)) = 1−µ1(x(t)), and considering the following actuator and sensor fault
respectively:

fa(t) =

{
0 0 ≤ t < 5(
1− e−(t−5)

)
5 ≤ t ≤ 50

fs(t) =

{
0 0 ≤ t < 5

0.5 sin(t) 5 ≤ t ≤ 50

and the disturbance d(t) is band-limited white noise with power 0.001 and sampling time
0.1 s.
By using the first obtained observer gain matrix, Figures 2 and 3 illustrate the simu-

lation result of the proposed robust fault estimation with ε = 0.5. Therein, the actual
actuator and sensor fault are depicted by red dashed line, and the fault estimation is
represented by the blue line one. As shown in Figures 2(a) and 2(b), it is obvious that the
robust fault estimation observer has a good performance to estimate the constant fa(t)
and time-varying fault fs(t). And when the system disturbance exists, Figures 3(a) and
3(b) show that the variation of system state error and fault estimate error is limited in
a small range, which guarantee the H∞ stability of error dynamic and accuracy of fault
estimation.
On the other hand, this paper mainly deals with the singular perturbed system with

ε parameter disturbance, in order to further illustrate the effectiveness of the proposed
method, we choose the different value of ε to investigate the estimation result in relation-
ships with ε.
1) By setting ε = 0.05, Figures 4 and 5 show the estimation result based on the obtained

fault estimation observer gains. It is seen from the design procedures and simulation
results that, when the perturbation parameter ε changes from large ε = 0.5 to small ε =
0.05, the accuracy of the estimation is getting better. This implies that fault estimation
can still be completed when ε is small enough.
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(a) ε = 0.5 fa(t) estimation (b) ε = 0.5 fs(t) estimation

Figure 2. ε = 0.5 actuator and sensor fault estimation

(a) ε = 0.5 state error dynamic (b) ε = 0.5 fault error dynamic

Figure 3. ε = 0.5 state and fault error dynamic response

(a) ε = 0.05 fa(t) estimation (b) ε = 0.05 fs(t) estimation

Figure 4. ε = 0.05 actuator and sensor fault estimation
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(a) ε = 0.05 state error dynamic (b) ε = 0.05 fault error dynamic

Figure 5. ε = 0.05 state and fault error dynamic response

2) In Figures 6(a) and 6(b), FE results with ε = 0.5 and ε = 0.05 are shown respectively,
we can see that whether the constant or time-varying fault, when parameter ε is small
enough, the proposed method has the fast convergence speed and the high accuracy.

(a) fa(t) estimation ε = 0.5, ε = 0.05 (b) fs(t) estimation ε = 0.5, ε = 0.05

Figure 6. Actuator and sensor fault estimation comparison

3) Due to the adoption of proportional multiple-integral observer to estimate system
fault, the derivatives of fault signals are effective considered in the process of constructing
fault estimator, so from Figures 7(a) and 7(b) it is obvious that the method is more suitable
for time-varying fault compared with constant fault, and result in wider application.
In other words, our method proposed in this paper can not only estimate the faults

when perturbation and disturbance exist, but also reduce the conservativeness of the
obtained result.

4.2. Example 2. For comparison purpose, next we consider a computer simulated truck-
trailer system borrowed from [32]. The system x1(t) is perturbed by time-delay and the



ROBUST ACTUATOR AND SENSOR FAULT ESTIMATION 783

(a) fa(t) and fs(t) estimation ε = 0.5 (b) fa(t) and fs(t) estimation ε = 0.05

Figure 7. Actuator and sensor fault estimation comparison

delayed model is given as

ẋ1(t) = −a vt̄
Lt0

x1(t)− (1− a)
vt̄

Lt0
x1(t− τ(t)) +

vt̄

lt0
u(t)

ẋ2(t) = a
vt̄

Lt0
x1(t) + (1− a)

vt̄

Lt0
x1(t− τ(t))

ẋ3(t) =
vt̄

t0
sin

[
x2(t) + a

vt̄

2L
x1(t) + (1− a)

vt̄

2L
x1(t− τ(t))

] (17)

The constant a is the retarded coefficient, which satisfies the conditions: a ∈ [0, 1]. The
limits 1 and 0 correspond to no delay term and to a completed delay term, respectively.
In this example, the model parameters are given as a = 0.7, l = 2.8, L = 5.5, v = −1.0,
t̄ = 2.0, t0 = 0.5. Then, we use the following fuzzy models to design the fuzzy fault
observer:

Rule 1: IF ξ1(t) = x2(t) + a vt̄
2L
x1(t) + (1− a) vt̄

2L
x1(t− τ) is about 0, THEN{

ẋ(t) = A1x(t) + Aτ1x(t− τ(t)) +B1u(t)

y(t) = C1x(t)
(18)

Rule 2: IF ξ1(t) = x2(t) + a vt̄
2L
x1(t) + (1− a) vt̄

2L
x1(t− τ) is about π or −π, THEN{

ẋ(t) = A2x(t) + Aτ2x(t− τ(t)) +B2u(t)

y(t) = C2x(t)
(19)

Thus, the delay model with fault f(t) and disturbance d(t) is given by T-S fuzzy systems
as follows

ẋ(t) =
2∑

i=1

µi(ξ(t))[Aix(t) + Aτix(t− τ(t)) +Biu(t) +Bfif(t) +Bdid(t)]

y(t) =
2∑

i=1

µi(ξ(t))Cix(t)

(20)
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where x(t) =
[
x1(t) x2(t) x3(t)

]T
and

A1 =


−a vt̄

Lt0
0 0

a
vt̄

Lt0
0 0

a
v2t̄2

2Lt0

vt̄

t0
0


, Aτ1 =


−(1− a)

vt̄

Lt0
0 0

(1− a)
vt̄

Lt0
0 0

(1− a)
v2t̄2

2Lt0
0 0


, B1 =


vt̄

lt0

0
0



A2 =


−a vt̄

Lt0
0 0

a
vt̄

Lt0
0 0

a
dv2t̄2

2Lt0

dvt̄

t0
0


, Aτ2 =


−(1− a)

vt̄

Lt0
0 0

(1− a)
vt̄

Lt0
0 0

(1− a)
dv2t̄2

2Lt0
0 0


, B2 =


vt̄

lt0

0
0


Here, we assume that Bi = Bfi (i = 1, 2) due to the fact that the actuator faults usually
occur in the input channel, C1 = C2 =

[
0.5 0.5 0.5

]
and the disturbance distribution

matrices are Bd1 = Bd2 =
[
0.05 0.05 0.05

]T
. For simulation purpose, we choose

membership functions for Rules 1 and 2 are µ1(ξ(t)) = 1/(1+exp(x1(t)+0.5)), µ2(ξ(t)) =

1− µ1(ξ(t)) with initial condition
[
0.5π 0.75π −5

]T
, and set d = 10 ∗ t0/π.

It should be noted that the above mentioned time delay fuzzy system in [32] is a special
case that we considered in this paper, which do not have the small singular perturbation
parameter ε and only actuator fault considered under different fuzzy rules. Here, we
consider a more practical situation that the output is affected by the sensor fault and
external disturbances. It is assumed that Cτi = (1 − a)Cτi, Dfsi = Ddi = 1.5, which

means that y(t) =
∑2

i=1 µi(ξ(t))[Cix(t) +Cτix(t− τ(t)) +Dfsifs(t) +Ddid(t)]. The time-
varying delay acting on system state is given by 0 < τ(t) < τ = 0.5, τD = 10, then by
computing matrix Inequalities (10)-(13) in Theorem 3.2 based on Matlab LMIs toolbox,
when δ = 10, γ = 5 one obtains a feasible solution:

LP1 =

 −24.3243
8.4446

−44.9258

 , FI1 =

[
23.8673
7.4062

]
, F 1

I1 =

[
1.2679
0.1182

]

LP2 =

 −23.7953
8.2424

−43.7820

 , FI2 =

[
23.5514
7.3090

]
, F 1

I2 =

[
1.2514
0.1166

]
Then, a time-varying fault fa(t) = fs(t) = f(t) is simulated as

f(t) =

{
0 0 ≤ t < 5

sin(3t− 9) + sin(4t− 12) 5 ≤ t ≤ 20

Figure 8(a) illustrates the fault estimation simulation results. It is obvious that despite
the initial error exists, the fault is estimated with satisfactory accuracy and rapidity with
time. It follows from Figure 8(b) that the error states ex1(t), ex2(t), ex3(t) fluctuate in a
limited range when the external disturbances d(t) ̸= 0.

Remark 4.1. It is worth mentioning that the work in [32] has considered no small singular
perturbation parameter ε and sensor faults exist case under different fuzzy rules. However,
this is not the situation always because in practice, the output of system will be affected
by sensor faults and external disturbances. Considering this characteristic of system, the
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(a) Fault f(t) estimation (b) Error dynamic states response

Figure 8. Actuator and sensor fault estimation comparion

FE strategy in [32] is not valid. From Figure 8(a) we can see that, the proposed method
can accurately realize fault estimation under disturbance input despite there is error in
the initial stage of fault estimation.

Remark 4.2. In contrast to the existing results [32], the proposed approaches have the
advantage that the gains of estimator are solved directly by a set of ε-independent LMIs,
so the given methods are easy to implement and can be applied to both standard and non-
standard singularly perturbed systems. It means that whether the perturbation parameter ε
and sensor fault exist or not, the fault estimator always works to give the fault estimation
information.

5. Conclusion. In this paper, the problem of robust fault estimation has been stud-
ied for a class of time delay T-S fuzzy singular perturbation systems with external dis-
turbances. By selecting the appropriate Lyapunov-Krasovskii functional and applying
LMIs techniques, the PMI observer is designed to simultaneously estimate actuator and
sensor faults by attenuation of the disturbance influence. The existence conditions of
observer-based estimator are provided and proved. Two numerical examples are given to
demonstrate the effectiveness of the developed techniques. It should be noted that the
approach presented in this paper requires that the FE observer has the same membership
functions as the plants model, and dose not consider the interval-valued fuzzy systems. In
addition, how to solve the fault-tolerant control problem under such conditions becomes
particularly important. We will consider these problems in our future work.

Acknowledgement. This work is supported in part by the National Natural Science
Foundation under Grant No. 61773013 and the Natural Science Foundation of Liaoning
Province, China under Grant No. 2019-ZD-0276.

REFERENCES

[1] A. Tellili, M. Abdelkrim and M. Benrejeb, Reliable H∞ control of multiple time scales singularly
perturbed systems with sensor failure, Int. J. Control, vol.80, no.5, pp.659-665, 2007.

[2] A. Tellili, M. N. Abdelkrim and M. Benrejeb, Model-based fault diagnosis of two-time scales singular-
ly perturbed systems, International Symposium on Control, Communications and Signal Processing,
pp.819-822, 2004.



786 C. SUN, S. HUANG, L. WU, L. GUO AND S. YI

[3] K. Zhang, B. Jiang and P. Shi, A new approach to observer-based fault-tolerant controller design for
Takagi-Sugeno fuzzy systems with state delay, Circuits Syst. Signal Processing, vol.28, pp.679-697,
2009.

[4] K. Zhang, B. Jiang and M. Staroswiecki, Dynamic output feedback fault tolerant controller design
for Takagi-Sugeno fuzzy systems with actuator faults, IEEE Trans. Fuzzy Syst., vol.18, pp.194-201,
2010.

[5] Z. Gao, X. Shi and S. X. Ding, Fuzzy state-disturbance observer design for T-S fuzzy systems
with application to sensor fault estimation, IEEE Trans. Systems, Man, and Cybernetics, Part B
(Cybernetics), vol.38, pp.875-880, 2008.

[6] C. Sun, F. Wang and X. He, Robust fault estimation for Takagi-Sugeno nonlinear systems with
time-varying state delay, Circuits Syst. Signal Processing, vol.34, pp.641-661, 2015.

[7] S. Huang and G. Yang, Fault tolerant controller design for T-S fuzzy systems with time-varying
delay and actuator faults: A k-step fault-estimation approach, IEEE Trans. Fuzzy Syst., vol.22,
pp.1526-1540, 2014.

[8] S. He, Fault estimation for T-S fuzzy Markovian jumping systems based on the adaptive observer,
Int. J. Control Autom., vol.12, pp.977-985, 2014.

[9] J. Yoneyama, Output feedback control for fuzzy systems with immeasurable premise variables, Proc.
of IEEE Conference on Fuzzy Systems, Jeju Island, Korea, pp.802-807, 2009.

[10] A. Benzaouia, A. EI-Hajjaji, A. Hmamedc and R. Oubaha, Fault tolerant saturated control for T-S
fuzzy discrete-time systems with delays, Nonlinear Analysis: Hybrid Systems, vol.18, pp.60-71, 2015.

[11] H. Bao and J. Cao, Delay-distribution-dependent state estimation for discrete-time stochastic neural
networks with random delay, Neural Netw., vol.24, pp.19-28, 2011.

[12] P. Liu, New results on stability analysis for time-varying delays systems with non-linear perturba-
tions, ISA Trans., vol.52, pp.318-325, 2013.

[13] B. Marx, D. Koenig and J. Ragot, Design of observers for Takagi-Sugeno descriptor systems with
unknown inputs and application to fault diagnosis, IET Control Theory Appl., vol.1, pp.1487-1495,
2007.

[14] Q. Han, Absolute stability of time-delay systems with sector-bounded nonlinearity, Automatica,
vol.41, pp.2171-2176, 2005.

[15] Q. Jia, W. Chen, Y. Zhang and H. Li, Fault reconstruction and fault-tolerant control via learning
observers in Takagi-Sugeno fuzzy descriptor systems with time delays, IEEE Trans. Ind. Electron.,
vol.62, pp.3885-3895, 2015.

[16] H. Ghorbel, A. El-Hajjaji, M. Souissi and M. Chaabane, Fault-tolerant trajectory tracking control
for Takagi-Sugeno systems with unmeasurable premise variables: Descriptor approach, Circuits Syst.
Signal Processing, vol.33, no.6, pp.1763-1781, 2014.

[17] D. Rotondo, M. Witczak, V. Puig, F. Nejjari and M. Pazera, Robust unknown input observer for
state and fault estimation in discrete-time Takagi-Sugeno systems, Int. J. Syst. Sci., vol.47, no.14,
pp.3409-3424, 2016.

[18] S. K. Nguang, P. Shi and S. X. Ding, Delay-dependent fault estimation for uncertain time-delay
nonlinear systems: An LMI approach, Int. J. Robust Nonlinear Control, vol.16, no.18, pp.913-933,
2006.

[19] H. Choi, LMI-based nonlinear fuzzy observer-controller design for uncertain MIMO nonlinear sys-
tems, IEEE Trans. Fuzzy Syst., vol.15, no.5, pp.956-971, 2007.

[20] S. Huang, X. He and N. Zhang, New results on H∞ filter design for nonlinear systems with time
delay via T-S fuzzy models, IEEE Trans. Fuzzy Syst., vol.19, no.1, pp.193-199, 2011.

[21] C. Lin, Q. Wang, T. Lee and B. Chen, H∞ filter design for nonlinear systems with time-delay through
T-S fuzzy model approach, IEEE Trans. Fuzzy Syst., vol.16, no.3, pp.739-745, 2008.

[22] C. Lien and K. Yu, Robust control for Takagi-Sugeno fuzzy systems with time-varying state and
input delays, Chaos Solitons and Fractals, vol.35, pp.1003-1008, 2008.

[23] Y. Su, B. Chen, C. Lin and H. Zhang, A new fuzzy H∞ filter design for nonlinear continuous-time
dynamic systems with time-varying delays, Fuzzy Sets Syst., vol.160, pp.3539-3549, 2009.

[24] J. Zhang, Y. Xiao and R. Tao, New results on H∞ filtering for fuzzy time-delay systems, IEEE
Trans. Fuzzy Syst., vol.17, no.1, pp.128-137, 2009.

[25] D. Liu, Y. Yang and Y. Zhang, Robust fault estimaion for singularly perturbed systems with Lipschitz
nonlinearity, J. Franklin Inst., vol.353, pp.876-890, 2016.

[26] F. Gong and K. Khorasani, Fault diagnosis of linear singularly perturbed systems, IEEE Conference
on Decision and Control, pp.2415-2420, 2005.



ROBUST ACTUATOR AND SENSOR FAULT ESTIMATION 787

[27] E. Fridman, Effects of small of delays on stability of singularly perturbed systems, Automatica,
vol.38, no.5, pp.897-902, 2002.

[28] J. Chen, Y. Sun and H. Min, New results on static output feedback H∞ control for fuzzy singularly
perturbed systems: A linear matrix inequality approach, Int. J. Robust Nonlinear Control, vol.23,
pp.681-694, 2013.

[29] D. Ding, X. Du and X. Xie, Fault estimation filter design for discretetime Takagi-Sugeno fuzzy
systems, IET Control Theory Appl., vol.10, no.18, pp.2456-2465, 2016.

[30] F. You, S. Chen, X. Zhang and N. Chen, Robust fault estimation for Takagi-Sugeno fuzzy systems
with state time-varying delay, Int. J. Adapt. Control Signal Processing, pp.1-10, 2019.

[31] T. Chen, A. Babanin, A. Muhammad, B. Chapron and J. CYChen, Modified fuzzy delay-dependent
control criterion for systems, ICIC Express Letters, Part B: Applications, vol.10, no.1, pp.25-29,
2019.

[32] H. Li, F. You, F. Wang and S. Guan, Robust fast adaptive fault estimation and tolerant control for
T-S fuzzy systems with interval time-varying delay, Int. J. Syst. Sci., vol.48, no.8, 2017.

[33] X. Li, D. Lu, G. Zeng, J. Liu and W. Zhang, Integrated fault estimation and non-fragile fault-tolerant
control design for uncertain Takagi-Sugeno fuzzy systems with actuator fault and sensor fault, IET
Control Theory Appl., vol.11, no.10, pp.1542-1553, 2017.

[34] X. H. Li, H. Karimi, Y. Wang, D. Lu and S. Guo, Robust fault estimation and fault-tolerant control
for Markovian jump systems with general uncertain transition rates, J. Franklin. Inst., vol.355,
pp.3508-3540, 2018.

[35] J. Lan and R. J. Patton, Integrated design of fault-tolerant control for nonlinear systems based on
fault estimation and T-S fuzzy modeling, IEEE Trans. Fuzzy Syst., vol.25, pp.1141-1153, 2017.

[36] Y. F. Mu, H. G. Zhang, K. Zhang and H. Ren, Integrated design of robust fault estimation and
fault-tolerant control against simultaneous actuator and sensor faults, Asian J. Control, pp.1-10,
2019.


