
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2021 ISSN 1349-4198
Volume 17, Number 3, June 2021 pp. 789–805

A RECURRENT NEURAL NETWORK-BASED SUCCESSION
CANCELLATION FOR POLAR DECODER

Guiping Li, Xiuhua Hu and Junjun Guo

School of Computer Science and Engineering
Xi’an Technological University

No. 2, Xuefuzhonglu Road, Weiyang District, Xi’an 710021, P. R. China
15693685@qq.com; llxghp@sina.com; 15332400693@189.com

Received November 2020; revised March 2021

Abstract. To solve the low output and high latency of successive cancellation decoding
for polar codes in 5G scene, accelerate scheme of successive cancellation (SC) decoding
based on recurrent neural network (RNN) for polar codes is proposed. In this work, we
leverage the expert knowledge in communication systems and adopt a long short-term
memory network (LSTM)-aided SC to improve the performance of conventional SC. To
lower the complexity, we consider a method of pruning the children binary tree which
leaf nodes are all frozen bits or information bits under the chosen different parameters,
according to the reliability of the polarized different channels. Simulation shows that the
proposed scheme has a better decoding performance compared with successive cancellation
decoding, and also reduces the time complexity of the successive cancellation decoding
based on deep learning.
Keywords: Polar codes, Successive cancellation decoding, Deep learning, Recurrent
neural network, Long short-term memory network (LSTM)

1. Introduction. Polar codes [1] are a class of error correction codes that are mathemat-
ically proven to achieve channel capacity. Compared with the known LDPC and Turbo,
polar codes have the properties of regular encoding structure, explicit construction method
and low encoding and decoding complexities. Due to these advantages, polar codes have
been chosen as coding scheme for the enhanced mobile broadband (eMBB) control chan-
nels of the 5th generation (5G) wireless communication systems since 2016. It is known
that successive cancellation (SC) decoding and belief propagation (BP) decoding are both
the basic decoding algorithms of polar codes. However, their decoding performance under
finite-length polar codes still does not meet the requirement of 5G communication. To
reduce the gap to capacity, some improved SC algorithms such as SC list (SCL) [2] are
proposed, which can approach the maximum-likelihood (ML) performance with a larger
list size. Moreover, when polar codes aided by CRC, the SCL decoder may successfully
compete with some optimized LDPC codes. However, SCL decoding suffers from high
latency and low throughput since its sequential decoding process is the same as that of
SC. On the other hand, although BP can achieve higher throughput since its iterative
message passing process can be executed in parallel, it still suffers from poor performance
within limited iterations.

With the development of neural network, deep learning (DL) technologies have drawn
much attention since they can provide promising performance in many tasks, such as
speech recognition, game playing, machine translation and automatic driving [3,4]. In
communication systems, DL has also been found in many applications at the physical

DOI: 10.24507/ijicic.17.03.789

789



790 G. LI, X. HU AND J. GUO

layer functions, for example, channel coding, modulation recognition, physical layer secu-
rity, channel estimation and equalization. In recent years, new decoding schemes based
on deep-learning have shown to have good performance for decoding polar codes [5-16].
Among these different approaches, they can be mainly divided into two parts. The first
one is to exploit DL based decoders to cope with the challenges of BP decoding algorithm
[5-13]. The other part of research focuses on designing DL algorithms for SC decoding
[14].
Specifically, the first one includes two baseline ideas. 1) Replace the conventional decod-

ing algorithms completely with a fully-connected neural network. Although it can show
near optimal performance with structured codes, the train complexity increases exponen-
tially with block length. And also, this approach can cause the curse of dimensionality
since the high dimensionality of codewords requires much more training data and de-
grades the ability of generation for unseen codewords [5]. 2) Leverage the well-developed
BP algorithm via unfolding the iterative structure to the layered structure of neural net-
work [6,10]. Simulation results show that the performance of the unfolded BP decoder
with learned weights significantly outperforms traditional BP decoders [10]. Although
this technique of DL is very powerful, it needs massive number of weights which results in
considerable memory overhead for storage. On another side, it needs to perform massive
multiplication for the weights updating on the neural networks, which leads to an increase
in complexity and occupied area for hardware implementation [14]. In fact, we can learn
from [10] that the unfolded BP decoder still requires high number of BP iterations to
achieve a reasonable error correction performance as that of SC decoding which in turn
decelerates the speed of decoding.
To overcome the above issues, an NN-based neural SC decoder that consists of multiple

constituent NN decoders which are connected together using SC decoding is proposed as
the second DL technology for polar codes. The approach has significantly smaller decoding
latency while maintaining the same error correction performance when compared with [10]
and original SC decoding.
In this paper, we propose an RNN-based neural SC decoder that consists of multiple

constituent recurrent neural network (RNN) decoders which are more powerful NN models
to further improve the decoding performance of [1]. Besides, to avoid the severely increased
memory overhead and additional computations from DL model, we apply our domain
knowledge in communication systems with carefully designed DL architecture. The main
contributions of our work are described as follows.
1) We apply LSTM to the SC decoder, which can effectively extract the features from

the sequential decoding process and enhance log-likelihood ratio (LLR) prediction of every
node in the SC decoding binary tree. Therefore, the proposed design can improve the block
error rate (BLER) performance and decoding latency by 0.11dB and 41.25%, respectively.
2) By taking advantage of domain knowledge for input data preprocessing and output

dimension reduction, we can significantly reduce the memory requirements and computa-
tional complexity by over 20, making our design more feasible for hardware implementa-
tion.
The rest of this paper is organized as follows. Section 2 briefly reviews the concept of

polar codes, DL, and the prior work. Section 3 illustrates the proposed architecture and
main algorithms of LSTM-assisted SC with novel input data preprocessing and output
design. The numerical experiments and analyses are shown in Section 4. Finally, Section
5 concludes our work.



A RECURRENT NEURAL NETWORK-BASED SUCCESSION CANCELLATION 791

2. Problem Statement and Preliminaries.

2.1. Polar codes. By recursively applying channel combining and splitting operations on
N (N = 2n, n ≥ 1) independent copies of W , we can get a set of N polarized subchannels,

denoted by W
(i)
N

(
yN1 , ui−1

1

∣∣ui

)
where i = 1, 2, . . . , N . The construction of an (N,K) polar

code is completed by choosing the K best polarized subchannels which carry information
bits and freezing the remaining subchannels to zero or some fixed values. According to
the encoding rule of polar codes, the encoder can first generate the source block uN−1

0 .
Then, polar coding is performed on the constraint xN−1

0 = uN−1
0 GN , where GN is the

generator matrix and the vector xN−1
0 is the codeword. The matrix GN is obtained by

the formula BNF
⊗n, where F⊗n is the n-th Kronecker power of F ,

[
1 0
1 1

]
and BN

is the bit-reversal permutation matrix. The encoding process of an (N,K) polar code is
shown as Figure 1.

Å

Å

Å

Å

Å Å

Å

Å

Å

Å

Å

Å

0
u

1
u

2
u

3
u

4
u

5
u

6
u

7
u

0
x

1
x

2
x

3
x

4
x

5
x

6
x

7
x

Figure 1. The encoding process of an (N,K) polar code

When the codeword x is modulated by using binary phase shift keying (BPSK) and
transmitted by the additive white Gaussian noise (AWGN) channel, we can receive a set of
initial channel values y. It is known that the vector y can be computed by y = (1−2x)+z,
where the noise vector z ∈ RN and z is satisfied with N(0, σ2). By using the soft values
y, the receiver can compute the LLR of each bit in the codeword x to get the estimate
vector û of information source vector u.

2.2. Successive cancellation decoding of polar codes. In [1], SC decoding is pro-
posed as a baseline algorithm which has a very low complexity N logN , where N is the
codeblock length. Since the recursive structure of the polar encoder, the SC decoder per-
forms a series of interlaced step-by-step decisions, which heavily depend on the decisions
of the previous steps and the received sequence yN1 from channel. The process of SC
decoding can be divided into (logN + 1) stages as shown in Figure 2. Soft information
α = {α0, α1, . . . , αN−1} and bit estimated value β = β0, β1, . . . , βN−1 are transmitted re-
cursively among these nodes between the (logN + 1) stages. Lastly, the estimations u of
the information source corresponding to the N nodes in the leftmost stage of Figure 2
will be got.

In Figure 2, the root node of the binary tree firstly computes the soft-message values
by using the channel initial LLRs, and then sends them to its left child. Following that,
the decoding process of a binary-tree branch with root ν includes two phases [17].



792 G. LI, X. HU AND J. GUO

Å

a
b

la

ra
lb

rb

0
û

1̂
u

2
û

3
û

4
û

5
û

6
û

7
û

Figure 2. The SC decoding binary tree of an (N,K) polar code

1) Suppose node ν not to be a leaf node. If node ν is in stage dν , the soft message
passed to its left child is computed as:

ανℓ [i] = αν [2i]△αν [2i+ 1] (1)

where i = 0 : 2logN−dν−1 − 1 and the binary operator △ which combines two extended
real numbers x and y is defined to form x△y := 2 arctan(tanh(x/2) tanh(y/2)).
The left child νℓ computes its hard decision value βνℓ , and passes βνℓ to its parent node

ν. Then, node ν computes the soft information value ανγ and sends it to its right child
νγ.

ανγ [i] = αν [2i](1− 2βνℓ) + αν [2i+ 1] (2)

where i = 0 : 2logN−dν−1 − 1. The right child node νγ calculates the hard decision value
βντ when it receives ανγ and passes it to its parent node ν. The node ν calculates

βν [2i+ 1] = βνγ [i], βν [2i] = βνl [i]⊕ βνγ [i] (3)

2) If the node ν is a leaf node, it sets βν = 0. Otherwise,

βν =

{
0 αν ≥ 0
1 αν < 0

(4)

2.3. Deep neural network decoding. DL has made remarkable achievements in the
fields of computer vision and natural language processing and it has been adopted for
application in channel decoding. The data-driven DL approach in [18] converted the
decoding task into the pure idea of learning to decode by optimizing the general black
box fully connected deep neural network (FC-DNN). The model can be seen as a simulator
of a universal function f : y = f(x0; θ) with network input x0 ∈ R and output y ∈ R,
where θ is a set of parameters which can help to simulate the function f accurately. The
structure of DNN includes input layer, multi-hidden layers and output layer as shown as
Figure 3.
Each layer has many neurons z. When it is used in channel decoding, the vector lengths

of input and output are both the codeblock. It is known that the original channel LLRs
as input vector are fed to DDN and computed as ot = ft(ot−1) = ϕt(ot−1ωt + bt), where
o0 = α and ϕt is a non-linear activation function such that

ϕt(y) =


max(0, y) if 1 ≤ t ≤ T

1

1 + e−y
if t = T + 1

(5)



A RECURRENT NEURAL NETWORK-BASED SUCCESSION CANCELLATION 793

Figure 3. Network structure of DNN

The Sigmoid function ϕ(y) = 1
1+e−y can be as an activation function of output layer

since it can make the values of output layer within the range of (0, 1), which are considered
as the probabilities of each bit being 0 or 1 of a codeword.

Weight and bias are two kinds of important parameters of DNN. Specifically, weight
reflects the impact scale between neurons, while bias describes whether neurons are ac-
tivated. To minimize the loss function, back propagation (BP) or stochastic gradient
descent (SGD) is used to adjust the two kinds of parameters iteratively in training phase
until DNN converges and becomes stable.

2.4. Recurrent neural network decoding. Although DNN-SC [10] and DNN-BP [14]
show the property of low computation complexity or better performance, the deep archi-
tecture needs massive memory to store weights and also consumes a lot of energy when
fetching the weights. Both of these issues will hinder the deployment of DNN-SC in real
world communication systems. Therefore, we propose a recurrent neural network-based
successive cancellation (RNN-SC) for polar decoder to share the weights among different
iterations to reduce the memory overhead.

RNN is recurrent neural network and suitable for learning connected sequential data,
in which the current output of a sequence is also related to the previous output. Specif-
ically, RNN uses its internal memory to save the previous information and applies it to
the calculation of the current output. Hence, it is very powerful for sequential signal
processing. Considering the traditional RNN suffers from severe vanishing and exploding
gradient problem, we use long-short term memory (LSTM) in Figure 4 as our practical
RNN implementation.

Compared with the DNN-SC, the greatest difference of LSTM-SC is that the feed-
forward architecture is transformed into a recurrent network, which forces the decoder to
reuse weights among different iterations and results in a totally different optimization.

Though recurrent architecture effectively reduces the required number of parameters,
the floating-point parameters still can hinder the hardware implementation of neural
network decoder. Besides, the additional multiplications for scaling parameters also in-
crease the computational complexity. Hence, codebook-based weight quantization [7] is
proposed to effectively quantize the parameters and alleviate computational complexity
without visible performance degradation.



794 G. LI, X. HU AND J. GUO

´ +

´

´

Figure 4. The architecture of LSTM

3. Successive Cancellation Decoding Aided by LSTM. Replace each constituent
SC decoder of length 2s at stage s in the SC decoding tree with an LSTM decoder. Then,
four LSTM decoders are used to replace constituent SC decoders at stage 1 when the
codeblock is 8 as Figure 5 shows.

Å

0
û

1
û

2
û 3

û
4
û

5
û 6

û
7
û

LSTM LSTM LSTM LSTM

Figure 5. NSC decoding with RNN decoders applied at stage 1 of P (8, 5)
with (u0, u1, u2) ∈ I polar code

In supervised learning, the scheme of recurrent successive cancellation decoding can be
divided into two parts: one is recurrent network training and the other is SC decoding
aided by LSTM. First, we should obtain the training data sequences so that the LSTM
decoder can learn a mapping between input and output spaces. Each training sample pair
(xn, tn) is generated from the same true joint distribution p(x, t) and the sample pairs are
independent identically distributed (i.i.d). Then we can obtain a predictor which performs
well on any possible relevant input x.

3.1. Method of obtaining data sequences for training. Assuming the SC decoder
has already had the information of the transmitted bits, it can obtain the training data of
each LSTM decoder. These training data includes hard values and corresponding internal
LLR values. For the hard values of each node in the decoding tree, we can calculate them
out from stage n to stage 0 only by using the message bits. While for the corresponding
internal LLR values, they can be calculated out given that all the previous bits are decoded
correctly. Based on the above analysis, we have the following two algorithms to obtain
the two kinds of training data for the k-th LSTM decoder at stage s in the decoding tree.
We use Algorithm 1 to obtain hard training values for LSTM network based on the

aforementioned Formula (3). In Algorithm 1, the variable dν denotes the current level
number and is initialized to 1, which denotes to compute the hard values of each internal



A RECURRENT NEURAL NETWORK-BASED SUCCESSION CANCELLATION 795

node for training data starting from stage 1 to stage logN . And c2 is the previous level
number of the current level in the decoding tree. The other variables such as c1, c3 and c4
denote the nodes number in the current level or the previous level, respectively. In current
level dν , it has N/2dν nodes in total and needs to compute 2dν hard values of each node m.

Algorithm 1 Algorithm of obtaining hard training values for LSTM

Input: the source bit sequences u;
Output: internal bits sequence β;

1: dν = 1, m = 0, nBase = logN ;
2: use u to initialize part of two-dimensional vector β
3: while dν ≤ nBase do
4: m = 0;
5: int c1, c2, c3, c4;
6: while m < N/pow(2, dν) do
7: for i1 < pow(2, dν) do
8: c1 = 2 ∗ i1 +m ∗ pow(2, dν);
9: c2 = dν − 1;
10: c3 = i1 +m ∗ pow(2, dν) + pow(2, dν − 1);
11: c4 = i1 +m ∗ pow(2, dν);
12: β[dν ][c1] = (β[c2][c4] + β[c2][c3])⊕ 2;
13: β[dν ][c1 + 1] = β[c2][c3];
14: end for
15: m++;
16: end while
17: dν ++;
18: end while

Algorithm 2 is used to obtain LLR training values for LSTM network based on the
aforementioned Formulas (1) and (2). In Algorithm 2, the variable dν also denotes the
current level number, but it is initialized to 1 which shows the computation of internal
LLR training values of each node starting from stage logN − 1 to stage 0. In each level,
the decoder needs to compute 2dν LLR values of each node m in N/2dν nodes. And in
Formula (1), the binary operator △ is defined to combine two extended real numbers x
and y to form 2 arctan(tanh(x/2) tanh(y/2)). The function TanFunction() here is used to
realize the operator △ in Algorithm 3.

In Algorithm 3, the function TanFunction() first computes the tangent value of two
input parameters, respectively. And then we can get the product of the two hyperbolic
tangents. Before calculating the arctangent value of the product, it gives the solution
method when the product is out-of-bounds. Lastly, the returned arctangent value can be
obtained.

3.2. LSTM-aided SC decoding. The decoding process of SC aided by LSTM consists
of two phases: one is from top level to the stageindex level and the other is from the
stageindex level to the bottom leaf level. Specically, the stageindex level is the defined
level.

The LLR values obtained from the training phase are used as the input vector for the
LSTM. The node number of the input layer depends on from which stage the decod-
ing tree is classified into bottom part and top part. If we set the parameter stageindex to
j, the number of nodes in the input layer is 2j. Hence, this parameter indicates from which



796 G. LI, X. HU AND J. GUO

Algorithm 2 Algorithm of obtaining LLR training values for LSTM

Input: the original LLR vector L;
Output: the internal LLRs sequence α;

1: dν = nBase;
2: use L to initialize part of two-dimensional vector α
3: while (dν ≥ 0) do
4: m = 0;
5: c1 = 0, c2 = 0, c3 = 0, c4 = 0;
6: while m < N/pow(2, dν) do
7: for i < pow(2, dν − 1) do
8: c1 = 2 ∗ i+m ∗ pow(2, dν);
9: c2 = dν + 1;
10: c3 = i+m ∗ pow(2, dν) + pow(2, dν − 1);
11: c4 = i+m ∗ pow(2, dν);
12: α[c2][c4] = TanFunction(α[dν ][c1], α[dν ][c1 + 1]);
13: α[c2][c3] = α[dν ][c1] ∗ (1− 2 ∗ β[c2][c4]) + α[dν ][c1 + 1];
14: end for
15: m++;
16: end while
17: dν −−;
18: end while

Algorithm 3 The Function TanFunction(t1, t2)

Input: the updated LLRs t1 and t2 of the current node’s parent node;
Output: an updated LLR t of current node;

1: t = 0.0, t5 = 0.0, t3 = 0.0, t4 = 0.0;
2: t3 = tanh(t1/2);
3: t4 = tanh(t2/2);
4: t5 = t3 ∗ t4;
5: if t5 ≥ 1 then
6: t5 = 0.9999999999999999;
7: else
8: if t5 ≤ −1.0 then
9: t5 = −0.9999999999999999;
10: end if
11: end if
12: t = 2 ∗ a tanh(t5)
13: return t;

levels of the decoding tree will be replaced by LSTM decoders to complete the remaining
decoding process. The following Algorithm 4 shows the SC decoding process aided by
LSTM.
In Algorithm 4, the indicator array a[dν ] is equal to 0, 1 or 2, which corresponds to the

current node operation of the dν-th level in the decoding tree. If a[dν ] = 0, the current
node should compute LLR values and pass them to its left children. If a[dν ] = 1, the
current node computes and passes the LLR values to its right children. If a[dν ] = 2, the
current node should compute its internal hard values and pass them to its parents. Since
the decoding process in the decoding tree is performed according to depth-first rule, the



A RECURRENT NEURAL NETWORK-BASED SUCCESSION CANCELLATION 797

Algorithm 4 The process of SC decoding aided by LSTM

import all kinds of required packages;
read CSV file converted from txt file to the data set;
Input: the received channel sequence yN−1

0 , two indicator arrays a and m, the index
set of chosen bit chosenI;
Output: bit estimated values uu;
dν = logN ;
initialize indicator arrays a and m to be 0

1: while (a[logN ] ≤ 2) do
2: while dν > stageindex do //perform SC decoding
3: if a[dν ] == 0 then //compute 2dν−1 LLRs passed to the left children
4: c1 = dν − 1;
5: for i3 < pow(2, dν − 1) do
6: c2 = i3 +m[dν ] ∗ pow(2, dν);
7: c3 = 2 ∗ i3 +m[dν ] ∗ pow(2, dν);
8: LLR[c1][c2] = TanFunction(LLR[dν ][c3], LLR[dν ][c3 + 1]);
9: end for
10: a[dν ] + +;
11: dν −−;
12: end if
13: if a[dν ] == 1 then //compute 2dν−1 LLRs passed to the right children
14: c1 = dν − 1;
15: for i4 < pow(2, dν − 1) do
16: c2 = i4 +m[dν ] ∗ pow(2, dν);
17: c3 = 2 ∗ i4 +m[dν ] ∗ pow(2, dν);
18: c4 = i4 +m[dν ] ∗ pow(2, dν) + pow(2, dν − 1);
19: LLR[c1][c4] = LLR[dν ][c3] ∗ (1− 2 ∗ bit[c1][c2]) + LLR[dν ][c3 + 1];
20: end for
21: a[dν ] + +;
22: dν −−;
23: end if
24: if a[dν ] == 2 then //compute 2dν internal bit values of the current node
25: c1 = dν − 1;
26: for i5 < pow(2, dν − 1) do
27: c2 = 2 ∗ i5 +m[dν ] ∗ pow(2, dν);
28: c3 = i5 +m[dν ] ∗ pow(2, dν);
29: c4 = i5 +m[dν ] ∗ pow(2, dν) + pow(2, dν − 1);
30: bit[dν ][c2] = (bit[c1][c3] + bit[c1][c4])%2;
31: bit[dν ][c2 + 1] = bit[c1][c4];
32: end for
33: if dν == nBase then
34: a[dν ] + +;
35: else
36: a[dν ] = 0;
37: end if
38: m[dν ] + +;
39: dν ++;
40: end if
41: end while



798 G. LI, X. HU AND J. GUO

42: if dν == stageindex then //reaching the defined level
43: LSTMDecoder(); //perform LSTM decoder for the remaining stages
44: c1 = dν − 1; //compute 2dν−1 bit values of the current node
45: for i6 < pow(2, dν − 1) do
46: c2 = 2 ∗ i6 +m[dν ] ∗ pow(2, dν);
47: c3 = i6 +m[dν ] ∗ pow(2, dν);
48: c4 = i6 +m[dν ] ∗ pow(2, dν) + pow(2, dν − 1);
49: bit[dν ][c2] = (bit[c1][c3] + bit[c1][c4])%2;
50: bit[dν ][c2 + 1] = bit[c1][c4];
51: end for
52: m[dν ] + +;
53: dν ++;
54: end if
55: end while

value a[dν ] can vary with different nodes of the dν-th level. Another indicator array m
is used to show which value of a node should be computed. And the two-dimensional
arrays LLR and bit are used to store LLR values and internal hard values of each node,
respectively.
When the SC decoder reaches the defined stageindex-th level, the SC decoding process

stops. And the program calls the function LSTMDecoder() and 2logN−stageindex LSTM
decoders begin to work. An LSTM decoder corresponding to a node in the stageindex-th
level uses 2stageindex LLRs of the node as its input and computes 2stageindex internal hard
values of the node as its output.
This network is mainly composed of one LSTM layer, two fully connected layers, a

dropout layer and an output layer. There are 2stageindex timesteps in each LSTM layer.
And each timestep contains tn hidden LSTM unit. The variable tn is set to 220 and the
ratio of dropout is 0.05 in our simulation. The function relu() is as the activate function
of hidden layer to strengthen the non-linear relationship between these layers, and the
output layer uses the activate function Sigmoid() to normalize the values of LSTM to a
range of (0.0-1.0). In view of the property of the concave and protruding of the function,
logarithmic function is used to avoid local shock during gradient descent optimization.
The specific algorithm is as Algorithm 5.
Each LSTM network takes 2stageindex LLR sequences of each corresponding node as

input and outputs a 2stageindex-dimension vector which is determined by the probability
calculated by the Sigmoid() function in the output layer. With the LSTM architecture,
the network produces multiple outputs and we use the mean-squared-error (MSE)

ζMSE =
1

M

M−1∑
j=0

Nυ−1∑
i=0

(
µ
(j)
i − P

(j)
i

)2

(6)

as the loss function, where µ
(j)
i and P

(j)
i are the bit value and the output probability of

the i-th bit in the j-th message word of the min batch, respectively. Then stochastic
gradient descent is used to minimize the loss.
To train the networks, we need to generate a training set, and each sample in the

training set contains the values of LLR sequences and corresponding internal hard val-
ues. We carry out extensive simulations to acquire the training set. First, random source
information sequences are generated and codewords are obtained by polar coding. Then,
after BPSK modulation, we can receive the data sequences polluted by AWGN channel
noise. SC decoding is used to correct the errors of the received data. In the binary SC



A RECURRENT NEURAL NETWORK-BASED SUCCESSION CANCELLATION 799

Algorithm 5 LSTMDecoder()

import all kinds of required packages;
read CSV file converted from txt file to the data set;
Input: parameters of input and hidden layers weights, biases ;
Output: values to (0.0-1.0) of output layer;

1: function multilayer perception(X1,weights1, biases1)
2: relu(); //compute the values of hidden layer
3: sigmoid(); //compute the values of output layer
4: end function

pred = multilayer perception( x, weights , biases);
cross entropy = −(y × tf . log(pred) + (1− y)× tf . log(1− pred));
loss = reduce mean(cross entropy);
train 1 = tf .train.GradientDescentOptimizer(learning rate = 0.001).
minimize(loss);
training epochs = 100;
minibatchSize = 100;
with tf.Session() as sess:

5: initialized all variables;
6: saver = tf .train.Saver();
7: for epoch in range (training epochs) do
8: for i in range (np.int32(len(L result)/minibatchSize)) do
9: x1 = L result[i×minibatchSize : (i+ 1)×minibatchSize];
10: y1 = b result[i×minibatchSize : (i+ 1)×minibatchSize];
11: , lossval, errval=sess.run([train 1, loss, pred], feed dict=x:x1, y:y1);
12: summerr = summerr + lossval;
13: end for
14: end for

tree, we store LLR sequence and hard values of each internal node of the defined stage as
a sample in the training set.

3.3. Optimization of LSTM-aided SC decoding. From above, we can see that the
whole decoding process based on a binary tree can be divided into two parts: top region
and bottom region. The nodes in the top part perform the original SC decoding, while
others in the bottom are divided into several parts and perform different LSTM decoding
respectively. Figure 5 shows that the SC decoding binary tree of a (8, 5) polar code has
four stages. If stageindex = 1, stage 3 and stage 2 are both in top part and the remaining
stages are in bottom part.

The sequential structure of SC decoding makes the decoding process proceed by travers-
ing the binary tree to visit the nodes at level 0 from left to right. While for NSC algorithm,
it does not fully consider the parallel decoding of special nodes in the SC decoding tree
and limits the reduction of system delay to a certain extent. To further reduce latency and
improve low throughput, several types of nodes are considered in the decoding process.
Specifically, Rate-0 nodes and the hard bit estimations can be directly calculated at level
s where the Rate-0 node is located, because the values of frozen bits are known to the
decoder. And also, there is no need to traverse the decoding tree below Rate-1 nodes,
since the hard bit estimations can be directly calculated at level s where the Rate-1 node
is located. Hence, the branch of binary tree corresponding to Rate-1 nodes or Rate-0
nodes can be directly pruned. On another side, the last child node of the node Rep is



800 G. LI, X. HU AND J. GUO

information bit, and the other child nodes are frozen bits [19]. If the node Rep has q-
child nodes, the previous q − 1 hard decision βν of Rep are all 0. The q-th hard decision
depends on

∑q
i=1 αν [i]. If the value

∑q
i=1 αν [i] ≥ 0, then βq

ν = 0, or else βq
ν = 1. We can

use these three kinds of nodes to simplify the SC decoding process and change the serial
decoding to partial parallel decoding. And the number of LSTM decoders also can be
reduced. According to above analysis, in Figure 6, we only need three LSTM decoders to
replace the original branches of SC decoding tree at stage 3. The branches corresponding
to Rate-0 codes and Rate-1 codes can be directly pruned. The optimization algorithm of
LSTM-aided SC decoding is as Algorithm 6.

Figure 6. SC decoding tree of (32, 12) polar code with
(
u14, u15, u

23
21,

u31
25) ∈ I

Algorithm 6 SC decoding LSTM-aided of polar codes

Input: the received channel sequence yN−1
0 , two signed arrays a and m,

the chosen bitindex values chosenI;
Output: bit estimated values uu;
dν = logN ;
leaf index = 0;

1: while (a[logN ] ≤ 2) do
2: while dν > stageindex do //perform SC decoding when not reaching the defined

level
3: if a[dν ] == 0 then //compute LLR values passed to the left children of current

node
4: compute 2dν−1 LLRs;
5: a[dν ] + +;
6: dν −−;
7: else
8: if a[dν ] == 1 then
9: compute 2dν−1 LLRs passed to the right children;
10: a[dν ] + +;
11: dν −−;
12: end if
13: if a[dν ] == 2 then
14: compute 2dν bit values of the current node
15: if dν == nBase then
16: a[dν ] + +;
17: else
18: a[dν ] = 0;



A RECURRENT NEURAL NETWORK-BASED SUCCESSION CANCELLATION 801

19: end if
20: m[dν ] + +;
21: dν −−;
22: end if
23: end if
24: end while
25: if dν == stageindex then //reaching the defined level
26: if dν ∈ R 0 then //directly compute LLR values to its right child
27: compute 2dν−1 LLRs passed to the right children;
28: a[dν ] + +;
29: dν −−;
30: else
31: if dν ∈ R 1 then //directly compute LLR values to its right child
32: compute 2dν−1 LLRs passed to the right children;
33: a[dν ] + +;
34: dν −−;
35: else
36: LSTMDecoder(); //perform LSTM decoder
37: compute 2dν−1 bit values of the current node
38: m[dν ] + +;
39: dν ++;
40: end if
41: end if
42: end if
43: end while

4. Numerical Example. In this section, we consider a (128, 64) rate-1/2 polar code C1

to examine the error correction performance of the proposed LSTM decoder in terms of
frame error rate (FER). All simulations are performed over an additive white Gaussian
noise (AWGN) channel with binary phase shift keying (BPSK).

4.1. Choice of stageindex. In the above algorithms, the variable stageindex denotes the
number of levels at which LSTM decoders are used to replace SC decoders to perform the
remaining decoding process. Most references set the value according to the experience.
Following the idea of [14], we list the values from 0 to logN and choose a value under
which the decoder has almost the same or better performance compared with the original
SC decoder.

4.2. Comparison of the FER performance. Simulation results show that the decod-
ing performance and latency of polar codes partly depend on the value of variable stageindex
when using neural network-aided SC. Generally, the larger the value of stageindex, the bet-
ter the performance and latency. However, stageindex has a threshold value. Once larger
than the threshold value, stageindex has almost no influence on the performance and laten-
cy. For 128-length and 256-length polar codes, threshold values of stageindex are both 4.
So the scheme needs 27/24 = 8 LSTM decoders for a (128, 64) polar code and 28/24 = 16
LSTM decoders for a (256, 128) polar code, respectively. The performances of the two
codes under different decoding schemes are shown as Figure 7 and Figure 8. We can see
that the proposed scheme has better performance.



802 G. LI, X. HU AND J. GUO

1 2 3 4 5

SNR

10
-4

10
-3

10
-2

10
-1

10
0

F
E

R

SC

 BP(80 iterations)

PNN(8 NN decoders)[8]

NSC(8 NN decoders)[12]

proposed (5 NN decoders)

Figure 7. FER of a (128, 64) polar code under SC, BP, PNN, NSC and
the proposed method

2 2.5 3 3.5 4 4.5

SNR

10
-5

10
-4

10
-3

10
-2

10
-1

F
E

R

SC

BP (80 iterations)

PNN(16 NN decoders)[8]

NSC(16 NN decoders)[12]

proposed (7 NN decoders)

Figure 8. FER of a (256, 128) polar code under SC, BP, PNN, NSC and
the proposed method

4.3. Comparison of average time complexity. For an N -length polar code, its time
complexities under different decoding schemes are different. Considering that lots of vari-
ables are used to denote these complexity formulas, we first provide a variable list as
shown in Table 1 to make the used variables more clearly.
Specifically, BP algorithm scales much better with O(logN) and depends on the number

of iterations T . Since it can be synchronization after each BP stage, namely, its time
complexity is 2T logN . The PNN decoder enforces less BP updates and the NNDs itself
only synchronize after each layer. Hence, it has N

Np
×NH + N

Np
× 2 log N

Np
time complexity.

The decoding latency in terms of the number of time steps for the NSC decoder can be
calculated as N

2stageindex
× (NH +1)+2× N

2stageindex
− 2. Time complexities of these schemes

are shown as Table 2.



A RECURRENT NEURAL NETWORK-BASED SUCCESSION CANCELLATION 803

Table 1. Symbol definition

Symbol Meaning
N the length of code block
T iteration number of BP decoding
Np the size of partition
NH the number of hidden layer
q the number of three special nodes at stage stageindex
q0 the number of rate-0 at stage stageindex

Table 2. Time complexities under different decoding schemes for an N -
length polar code

SNR Time complexity

BP decoding 2T logN

SC decoding 2N

PNN N
Np

×NH + N
Np

× 2 log N
Np

NSC N
2stageindex

× (NH + 1) + 2× N
2stageindex

− 2

Proposed
(

N
2stageindex

− q
)
× (NH + 1) + 2× N

2stageindex
− 2 + q − q0

For NSC decoders in the above table, its time complexity in a T -hidden layer of network
is N

2stageindex
× (NH + 1). The time complexity of top part nodes in the SC decoding tree

is 2 × N
2stageindex

− 2. So, the total time complexity of NSC is N
2stageindex

× (NH + 1) +

2× N
2stageindex

− 2. The proposed scheme only needs N
2stageindex

− q LSTM decoders, where
q is the number of special nodes at the stage stageindex. Its final time complexity is(

N
2stageindex

− q
)
× (NH + 1) + 2 × N

2stageindex
− 2 + (q − q0) × 1. As we know, Rate-0 node

does not consume time step, while both Rep node and Rate-1 node only need one time
step in the calculation process. So, (q − q0) denotes the number of time steps contained
in these special nodes at the stage stageindex. For example, the index set of frozen bits for
a (128, 64) polar code is 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 48, 49, 50,
52, 56, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 80, 81, 82, 84, 96. When stageindex is set
to be 4, NSC needs 8 NN decoders but 5 for the proposed scheme. While stageindex = 3,
the former and latter need 16 and 7 NN decoders, respectively. Comparisons of the time
complexity between different decoding schemes are shown in Figure 9 and Figure 10.

From the two figures, it shows that the proposed scheme has much lower time complexity
than other schemes at low stages, which give us a new thought of choosing appropriate
stage to combine SC decoding with LSTM decoders.

5. Conclusions. In this paper, we proposed an LSTM-based successive cancelation de-
coding scheme to improve the FER performance and lower the decoding complexity. A
pruning method combined with the LSTM decoding scheme and how to set the value of
some important parameters are considered. In the end, simulation results are presented.
However, the proposed scheme is only friendly to the short-length polar codes. In the
future, we will research into the design for supporting moderate-length polar codes and
investigate the decoding capability of the more powerful NN models.



804 G. LI, X. HU AND J. GUO

2 3 4 5 6

stage_index

10
1

10
2

10
3

T
im

e
 s

te
p
s SC

BP(80 iterations)

PNN [8]

NSC[12]

proposed

Figure 9. Comparison of time steps consumed of a (128, 64) polar code
under SC, BP, PNN, NSC and the proposed method

2 3 4 5

stage_index

10
2

10
3

T
im

e
 s

te
p
s

SC

BP(80 iterations)

PNN[8]

NSC[12]

proposed

Figure 10. Comparison of time steps consumed of a (256, 128) polar code
under SC, BP, PNN, NSC and the proposed method

Acknowledgment. The authors would like to thank the editor and anonymous reviewers
for their constructive comments which helped improve the quality of this paper. This work
was supported in part by the Project Supported by Natural Science Basic Research Plan
in Shaanxi Province of China (No. 2018JM6102), in part by the Principal Fund of Xi’an
Technological University (No. XAGDXJJ17018), in part by the State and Provincial Joint
Engineering Lab of Advanced Network, Monitoring and Control of Xi’an Technological
University.

REFERENCES

[1] E. Arikan, Channel polarization: A method for constructing capacity achieving codes for symmetric
binary-input memoryless channels, IEEE Transactions on Information Theory, vol.55, no.7, pp.3051-
3073, 2009.



A RECURRENT NEURAL NETWORK-BASED SUCCESSION CANCELLATION 805

[2] I. Tal and A. Vardy, List decoding of polar codes, IEEE Transactions on Information Theory, vol.61,
no.5, pp.2213-2226, 2015.

[3] K. Fithriasari and U. S. Nuraini, Face identification using multi-layer perceptron and convolutional
neural network, ICIC Express Letters, vol.15, no.2, pp.157-164, 2021.

[4] C. Lee and B.-D. Lee, Enhancement for automatic extraction of RoIs for bone age assessment based
on deep neural networks, ICIC Express Letters, vol.14, no.2, pp.163-170, 2020.

[5] T. Gruber, S. Cammerer, J. Hoydis and S. T. Brink, On deep learning-based channel decoding, Proc.
of IEEE the 51st Conference on Information Sciences and Systems, Baltimore, pp.1-6, 2017.

[6] W. Lyu, Z. Zhang, C. Jiao, K. Qin and H. Zhang, Performance evaluation of channel decoding with
deep neural networks, Proc. of IEEE International Conference on Communications, Kansas City,
pp.1-6, 2018.

[7] E. Nachmani, E. Marciano, L. Lugosch, W. J. Gross, D. Burshtein and Y. Be’ery, Deep learning
methods for improved decoding of linear codes, IEEE Journal of Selected Topics in Signal Processing,
vol.12, no.1, pp.119-131, 2018.

[8] W. Xu, Z. Wu, Y.-L. Ueng, X. You and C. Zhang, Improved polar decoder based on deep learning,
Proc. of IEEE International Workshop on Signal Processing Systems, Cape Town, pp.1-6, 2017.

[9] C.-F. Teng, C.-H. D. Wu, A. K.-S. Ho and A.-Y. A. Wu, Low complexity recurrent neural network-
based polar decoder with weight quantization mechanism, Proc. of the IEEE International Acoust.,
Speech, Signal Process., Brighton, pp.1413-1417, 2019.

[10] S. Cammerer, T. Gruber, J. Hoydis and S. ten Brink, Scaling deep learning-based decoding of polar
codes via partitioning, Proc. of IEEE Global Communication Conference, Paris, pp.1-6, 2017.

[11] E. Nachmani, Y. Be’ery and D. Burshtein, Learning to decode linear codes using deep learning,
Proc. of the Annual Allerton Conference on Communication, Control and Computing, Monticello,
pp.341-346, 2016.

[12] L. Lugosch and W. J. Gross, Neural offset min-sum decoding, Proc. of the IEEE International
Symposium on Information Theory, Aachen, pp.1361-1365, 2017.

[13] I. Be’ery, N. Raviv, T. Raviv and Y. Be’ery, Active deep decoding of linear codes, IEEE Transactions
on Communications, vol.68, no.2, pp.728-736, 2020.

[14] N. Doan, S. A. Hashemi, M. Mondelli and W. J. Gross, Neural successive cancellation decoding
of polar codes, Proc. of IEEE International Workshop on Signal Processing Advances in Wireless
Communications, Kalamata, pp.1-5, 2018.

[15] J. Fang, M. Bi, S. Xiao, H. Yang, Z. Chen, Z. Liu and W. Hu, Neural successive cancellation polar
decoder with tanh-based modified LLR over FSO turbulence channel, IEEE Photonics Journal,
vol.12, no.6, pp.1679-1689, 2020.

[16] N. Doan, S. A. Hashemi, F. Ercan et al., Neural successive cancellation flip decoding of polar codes,
Journal of Signal Processing Systems, vol.12, no.6, pp.1-12, 2020.

[17] C. Leroux, A. J. Raymond, G. Sarkis andW. J. Gross, A semi-parallel successive-cancellation decoder
for polar codes, IEEE Transactions on Signal Processing, vol.61, no.2, pp.289-299, 2013.

[18] O. Simeone, A very brief introduction to machine learning with applications to communication
systems, IEEE Transactions on Cognitive Communications and Networking, vol.4, no.4, pp.648-664,
2018.

[19] G. Sarkis, P. Giard, A. Vardy, C. Thibeault and W. J. Gross, Fast polar decoders: Algorithm and
implementation, IEEE Journal on Selected Areas in Communications, vol.32, no.5, pp.946-957, 2014.


