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Abstract. To evaluate the hydrocarbon generation potential, Total Organic Carbon
(TOC) of source/reservoir rocks is of vital importance. TOC estimation from well logs
is challenging and in laboratory from rock specimens is costly as well as time-consuming.
TOC prediction from Passey method is low whereas AI techniques such as Artificial Neu-
ral Network (ANN), Support Vector Machine (SVM) get trapped in local optima, resulting
in overfitting and are also considered ambiguous if the technique is not reasonable. In
this paper, we proposed four efficient tree-based ensemble techniques that include Random
Forest (RF), Extra Trees (ET), Gradient Boosting (GB), and eXtremely Gradient Boost-
ing (XGB), capable of fitting highly non-linear data with minimum data pre-processing
for TOC prediction. To evaluate the efficiency of these models, 205 data points and seven
well logs from the Goldwyer Formation of the Canning Basin, Australia, were used for
the training and testing purpose. Results validated that the accuracy of these tree-based
ensemble techniques is at exemplary level for the TOC estimation, where the XGB model
(for testing R

2 94.39%, MAE 0.0447, MSE 0.0039) outperformed the other techniques,
i.e., RF (for testing R

2 90.59%, MAE 0.0549, MSE 0.0055), ET (for testing R2 90.63%,
MAE 0.0583, MSE 0.0058) and GB (for testing R

2 91.23%, MAE 0.0569, MSE 0.0053).
These robust tree-based ensemble techniques have not only protected overfitting but also
achieved better prediction results in dealing with the multidimensional data.
Keywords: Total organic carbon, Well logs, Tree-based ensemble learning, Artificial
intelligence

1. Introduction. Estimation of hydrocarbon generation potential is an important pa-
rameter in oil and gas exploration and requires precise estimation of the Total Organic
Carbon (TOC) percentage of the rock. The quantity and quality of the organic matter,
defined by TOC, are a significant and a fundamental index. Currently TOC of rocks is
determined by two methods, i.e., by the combustion of rock powder in the laboratory and
by using empirical correlations developed based on the linear regression analysis.
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Schmoker [1] developed the first empirical correlation for TOC estimation in Devonian
shale. In this correlation the author assumed that TOC is a direct function of the forma-
tion density (Equation (1)). In 1979, Schmoker [1] developed the revised version of his
earlier model, applied in the Bakken formation Equation (2). Passey et al. [2] developed
a model for TOC estimation known as ∆ logR model (Equations (3) and (4)). Currently,
∆ logR is the most widely used model for evaluating the TOC of rocks. Wang et al. [3]
suggested consideration of Gamma-Ray (GR) log with resistivity and sonic or density
logs to improve the predictability of TOC for Devonian shale. The ∆ logR in this case is
calculated using sonic log (Equation (5)) as well as density log (Equation (6)). To assess
the ∆ logR method, Zhao et al. [4] calculated the TOC by overlaying clay content curve
with gamma ray curve and found this method of calculating TOC better than the Passey
et al.’s and Wang et al.’s model.
An important aspect observed in the recent studies is that for the non-linear implicit

function, artificial intelligence proves to be more prominent. AI techniques have been used
for estimating TOC from wireline logs by Huang et al. [5-8]. In their work, a relationship
between well logs parameters and TOC has been established by Artificial Neural Network
(ANN) which has shown that the prediction accuracy was closely related to the involved
algorithm and kernel functions. A 3 layered BP-NN model has been used by Sfidari
et al. [6] to predict TOC. Ouadfeul and Aliouane [9] used ANN to determine the TOC
content using Schmoker’s model in Barnett shale. Furthermore, Tan et al. [8] used three
different regression algorithms and four different kernel functions to predict TOC content
and Shi et al. [7] used MLP-NN and fuzzy logic to predict the TOC from the well logs to
replace the Schmoker’s model. Extreme Learning Machine (ELM) was introduced by Shi
et al. [7] for TOC estimation where ELM was found quicker than ANN and Zhu et al. [10]
introduced Integrated Hybrid Neural Network (IHNN) in Jaioshiba zone. SVM with RBF
outperformed ANN in Bolandi et al.’s work [11] to predict TOC from well logs. Mahmoud
et al. [12] and Johnson et al. [13] used ANN while Wang and Peng [14] proposed CNN
which outperformed ANN to predict TOC using well logs.
Since the properties of organic-rich rocks vary extremely in different resource plays,

∆ logR model proposed by Passey et al. [2] could predict the TOC incorrectly when
applied into a Formation different from the one used to build it. Another drawback of
the ∆ logR model is that it was built based on a 1 : 50 linear relationship between the
porosity and logarithmic resistivity as indicated in Equation (3); this assumption restricts
the applicability of the ∆ logR method to a limited range of formation porosity and re-
sistivity. Charsky and Herron [15] evaluated the predictability of Schmoker and ∆ logR
correlations in four various wells of different formations. The outcomes of their study
showed that both models predicted the TOC with high average absolute differences of 1.6
wt.% and 1.7 wt.% from the actual TOC content. The model proposed by Wang et al. [14]
removed the approximation of the linear relationship between porosity and resistivity and
suggested estimation of these slopes based on the properties of the target formation. Due
to the complicated non-linear function relation between the logging information and TOC
content, as found in the Heidari [53] study, approximation of the real function relationship
by simple linear regression is difficult and an alternative approach is required to estimate
TOC content from well logs. The available empirical correlations developed based on
the linear regression were made to learn and estimate TOC in a particular Formation.
Therefore, to apply the same correlation in a different formation, the correlation must
be modified according to the properties of the target formation. Decision trees, Artificial
Neural Networks (ANNs) [16,17], Support Vector Machines (SVMs) [18,19] are well-known
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AI techniques among data-driven methods but these algorithms are vulnerable to over-
fitting in front of high dimensional inputs, which will lead to deceptive diagnostic results
[20,21].

To improve the precision in TOC estimation from well logs, it is essential to look for the
high accuracy AI techniques. According to this quest, four tree-based ensemble techniques
are proposed in this study as a novel research approach for TOC estimation from well
logs. Ensemble learning techniques do not overfit easily in multi-dimensional classifier
design and can aggregate multiple weight based learning models to obtain a combined
model outperforming every single regression model in it [22]. Because of this reason,
ensemble learning technique combines different machine learning methods to get a more
reliable outcome [23]. In a broad spectrum of applications, ensemble learning is highly
accurate and versatile [24-31]. Because, once a machine learning model has been trained,
having carefully fine-tuned any hyper-parameters, it is extremely fast to obtain energy
predictions for a given set of design inputs, and also understand the correlations between
these parameters and energy consumption. Furthermore, tree-based ensemble learning
techniques are from ensemble learning techniques that combine properties from machine
learning and statistical approach [26]. Therefore, it is particularly popular among other
ensemble learning techniques [24,27,29,30,32-34]. Besides obtaining high accuracy level,
tree-based ensemble learning allows the interpretation of important features used in the
prediction [30,35]. Moreover, these tree-based ensemble techniques are able to fit highly
non-linear data and require minimum data pre-processing [23,28].

Given the high level of uncertainties in both the shale reservoir rocks properties and
the model tuning parameters, neither the individual AI techniques nor their hybrid for-
mulations could handle more than one hypothesis of the problem at a time [36]. The
shale reservoir characterization problem is so complex and full of uncertainties that the
existence of diversities of expert opinions that lead to diverse hypotheses needs a more
cooperative and robust solution. Such solution should be able to incorporate and inte-
grate existing diversities of expert opinions to solve the complex problems. Despite the
success of the individual and HCI models, they are not robust enough to solve the complex
problems and handle the uncertainties in the shale oil & gas industry. The tree-based
ensemble techniques used in this study for TOC estimation have shown the ability to fit
highly non-linear data with minimum data pre-processing. Moreover, the techniques have
tackled the high level of uncertainties associated with organic rich source/reservoir rocks
and the model tuning parameters at a time.

The approach followed in this study is summarized below.

• Four popular, robust and efficient tree-based ensemble techniques, namely (a) RF,
(b) ET, (c) GB and (d) XGB have been investigated as a novel research approach
in this paper study for the estimation of the TOC content from the wireline logs.

• Total 205 laboratory measured TOC data points and seven well logs namely GR,
DT, RHOB, SP, NPHI, LLD, and LLS are used from the Canopus-1 well in the
Goldwyer Formation of the Canning Basin for training and testing the tree-based
ensemble models. It provided comparable results and evaluated the efficiency of
these intelligent models’ performance during the TOC content prediction process.

• The contribution of each feature on the trained models has been investigated to jus-
tify that even features with lower or non-statistically significant correlation with the
target can be of use in tree-based ensemble techniques and improve their predictive
power.



810 M. S. A RAHAMAN, P. VASANT, I. UL HAQ ET AL.

• A comprehensive comparative analysis has been established between four tree-based
ensemble learning techniques to evaluate their accuracy and performance in TOC
estimation from well logs.

This paper is organized as follows. Section 2 describes the geological background and
stratigraphic setting of the Goldwyer Formation in the Canning Basin, Western Australia.
Section 3 introduces the proposed data-driven tree-based ensemble learning techniques
and their applications. Section 4 describes the methodology of proposed techniques. Nu-
merical simulation results are given in Section 5, including both performance comparison
studies and robustness tests, which are used to verify the effectiveness of the proposed
method. Conclusions are drawn in the last section.

Equations.

TOC(vol.%) =
(ρB − ρ)

1.378
(1)

where ρB represents the bulk formation density (g/cm3), and ρ denotes the organic matter
free rock density (g/cm3).

TOC(wt.%) =
[(100ρ0)− (ρ− 0.9922ρmi − 0.039)]

[Rρ(ρ0 − 1.135ρmi − 0.675)]
(2)

where ρ0 represents the density of the organic matter (g/cm3), R is the weight percentage
ratio of the organic matter to organic carbon, and ρmi is the average density of the grain
and pore fluid (g/cm3).

∆ logR = log10

(
R

Rbaseline

)
+ 0.02× (∆t−∆tbaseline) (3)

TOC = ∆ logR× 10(2.297−0.1688×LOM) (4)

where ∆ logR represents the separation in the resistivity and sonic transit time logs,
R is the target formation resistivity (Ω.m), Rbaseline is the base formation resistivity
corresponding to an organic lean shale (Ω.m), ∆t represents the sonic transient time
(µs/ft), ∆tbaseline is the base sonic transit time corresponding to an organic lean shale
(µs/ft), and LOM denotes the level of maturity.

∆ logR = log10

(
R

Rbaseline

)
+

1

ln 10

m

(∆t−∆tm)
× (∆t−∆tbaseline) (5)

∆ logR = log10

(
R

Rbaseline

)
+

1

ln 10

m

(ρm − ρ)
× (ρ− ρbaseline) (6)

where m represents the cementation exponent, ∆tm and ρm denote the matrix sonic tran-
sit time and density in (µs/ft) and (g/cm3), respectively. ρbaseline represents the baseline
density corresponding to Rbaseline (g/cm

3).

Nomenclature
AI Artificial Intelligence
ANN Artificial Neural Network
CNN Convolutional Neural Network
EL Ensemble Learning
ELM Extreme Learning Machine
ET Extra Trees
GA Genetic Algorithm
GB Gradient Boosting
GBRT Gradient Boosting Regressor Trees
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MAE Maximum Absolute Error
ML Machine Learning
MLP Multilayer Perceptron
MSE Mean Square Error
R2 Coefficient of Determination
RBF Radial Basis Function
RF Random Forest
SVM Support Vector Machines
TOC Total Organic Carbon
XGB eXtremely Gradient Boosting
XGBRT eXtremely Gradient Boosting Regressor Trees

2. Geology of the Study Area. The Canning Basin located in the north-western Aus-
tralia is the largest sedimentary basin and comprises an area greater than 595,000 km2

[37]. The basin is bounded in the north by the Precambrian Kimberley Block and in the
south by Pilbara and Musgrave Blocks and structurally is an intra-cratonic depression de-
veloped in Early Paleozoic between the Pilbara and Kimberley Blocks (Figure 1) [36,39].
The Canning Basin underwent five major tectonic events. First event was subsidence due
to an extension in the Early Ordovician [39] followed by a compression and erosion event
in the Early Devonian. Third event was another extension and subsidence event in the
Late Devonian. In the Middle and Late Carboniferous to Permian a sequence of compres-
sion and subsidence events took place followed by final erosional and transpressional uplift
events in the Early Jurassic [37]. The thickness of the sedimentary pile in the Canning
Basin is highly varied due to the movement of fault blocks. In the deepest troughs the
basin hosts up to 15 km of sediments and in the structural highs the sediment thickness
is as low as 1 km.

Figure 1. Map of the Canning Basin showing distribution of sub-basins
and relevant stratigraphic column showing the lower and upper contacts of
the Goldwyer Formation [modified after 39]
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Sedimentary succession of the Canning Basin ranges in age from Ordovician to Creta-
ceous. Carbonates and fine-grained clastics of the Goldwyer Formation were deposited in
the Middle Ordovician in a shallow epeiric sea and subtidal conditions as the sedimentary
deposition slowed down [41]. The average thickness of the Goldwyer Formation is around
400 m in the Canning Basin while the thickest section, 739 m, is recorded in a Lennard
Shelf Sub-basin well (Blackstone 1). The lithology of the Formation comprises mudstone
and carbonate alternating with each other across the Basin. However, it tends to be
mudstone dominated in the deeper parts of the Basin. Different subdivisions were made
to the Goldwyer Formation, where in the Broome Platform multiple geological reports of
some wells noted the presence of a lower shale, a middle limestone, and an upper shale
unit. The Goldwyer Formation is believed to have excellent source rock potential [38]
and is considered oil and gas prone with kerogen types II and III [42]. According to
US EIA (Energy Information Administration) report of 2013 Goldwyer Formation has an
estimated potential of 225 TCF of recoverable shale gas, the highest shale gas potential
in Australia.

3. Data Set and Comparative Analysis.

3.1. Data set. Two sets of data were used to carry out this study i.e., laboratory mea-
sured TOC data (205 data points) and wireline log data, from the Goldwyer Formation
of Canning Basin. The data was made open by Western Australia Department of Mines
and Petroleum (WADMP). The main purpose of using both the data was to generate a
relationship between the corresponding laboratory measured TOC value with that esti-
mated from well logs. Depth matching was carried out by adjusting the depths to the
most probable density log response with the measured TOC value within 1-3 m window,
the standard range of error for cuttings depth (Guzmán [54]).

Table 1. Data set description from well Canopus-1

Feature Target Description Unit Minimum Maximum Mean Std

X1 − SP [mV] 26.3125 72.14063 51.12851 11.31858

X2 − GR [api] 38.46875 198.375 113.2831 43.04463

X3 − DT [µs/ft] 53.1875 105.75 75.77485 14.21376

X4 − LLD [m.ohm] 1.679736 43.54575 9.466722 8.512348

X5 − LLS [m.ohm] 1.479652 45.43213 9.949067 9.166248

X6 − RHOB [g/cc] 1.614258 2.742188 2.485123 0.286654

X7 − NPHI [%] 3.857422 52.19727 20.69622 12.13644

− Y1 TOC [%] 0.1 1.5 0.441659 0.24671

3.2. Relationship between well logs (input) and measured TOC (desired out-
put). This procedure has a significant role in the construction of the tree-based ensemble
models. To classify the logs with strong relationship with each geochemical property
simple regression plots are used. [43] stated that, the inputs having a stronger relation-
ship with the output provide a more accurate prediction. For proper identification and
elimination of noisy and potentially misleading data, cross-plots of well logs (input) and
geochemical property (desired outputs) are used.
205 lab measured TOC data points and well log data are analyzed in this study. Before

analyzing the data, depth matching was carried out. On the ground, Gamma-Ray (GR)
validated the TOC values of core samples. Gamma-ray curve was compared with the
measured TOC curve until it coincided.



EVALUATION OF TREE-BASED ENSEMBLE LEARNING ALGORITHMS 813

Gamma-Ray (GR), Density (RHOB), Resistivity (LLD, LLS), Neutron Porosity (NP-
HI), Spontaneous (SP) and Sonic (DT) logs are the organic-sensitive wireline logs as shown
in previous studies. Generally, an abnormality is observed in the logs with an increase
in the organic matter content. Due to this, for predicting the TOC content multiple log
parameters are required. For selecting the sensitive input, a Coefficient of Determination
(R2) was implemented between the well logs and lab measured TOC values. Following
Equation (7) was used for calculating R2:

R2 =

∑n

i=1(Yi,m − Yi,e)
2

∑n

i=1

(
Yi,m − Ȳi,m

)2 (7)

Ȳi,m, Yi,e, Yi,m, n represent average laboratory measured values, well logging parameters,
laboratory measured values and number of samples respectively.

Table 2 shows the correlation coefficient matrix of Canopus-1 well obtained by calcu-
lation. It can be seen that the correlation coefficient between the gamma-ray curve and
the TOC content was high (0.4278). Moreover, there is a decent coefficient of correlation
between the TOC values and spontaneous potential, sonic, density, neutron porosity, and
resistivity log curves. A good correlation of SP, GR, DT, LLD, LLS, RHOB and NPHI
was found with the laboratory measured TOC data as shown in Figure 2. In summary,
there is no one-to-one correspondence function relationship between the aforementioned
well logs and the measured TOC as noticed from the analysis for the cross-plots (Figure
2) and coefficient of correlation (Table 2) but some well logs were significantly sensitive
in different forms with measured TOC values.

Table 2. Correlation matrix of well Canopus-1

Parameters SP GR DT LLD LLS RHOB NPHI TOC
SP 1
GR −0.02976 1
DT −0.44986 0.739597 1
LLD 0.174363 −0.64247 −0.74108 1
LLS 0.165095 −0.63518 −0.73446 0.994352 1

RHOB 0.735955 −0.32795 −0.69521 0.523373 0.512119 1
NPHI −0.57092 0.660468 0.943845 −0.71509 −0.70423 −0.77388 1
TOC 0.191815 0.427844 0.049148 0.108673 0.122422 0.148619 −0.0123 1

3.3. Tree based ensemble learning algorithms.

3.3.1. Base estimator (regression tree). This method is not among the ensemble models
but is tested because this is the base estimator for all four following tree-based ensemble
techniques. A brief description of this method is presented below.

Through a series of hierarchical rule, a decision tree approximates a function as il-
lustrated in Figure 3 which is also a supervised learning algorithm. From the example,
preset points (Z1-Z4) sequence threshold the input variable (X1 and X2). Then the input
variable divides the function domain into a partition set where each assigned the function
value subsequently into an approximation. As example, if X2 > Z2 and X1 > Z4 then the
tree will produce R5 (the output shown in Figure 3).

In all ensemble techniques followed in this paper, this simple structure is used where
multiple trees are being combined in different variety of ways. For knowing more details
about this base estimator such as how the tree structure and threshold are determined,
[44] provided good summary.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 2. Plot showing correlation between SP, NPHI, RHOB, LLD, LLS,
GR, DT logs and measured TOC
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Figure 3. Base estimators (regression tree)

3.3.2. Random Forest (RF). Random Forest (RF) is an ensemble model which was pro-
posed by Breiman [45]. RF has several instances of individual DT with the predictor
variables randomly in each instance and used Breiman’s “bagging” idea to ensemble a
set of controlled decision tree variance. Firstly, RF starts with a single DT model then
using a bootstrap strategy RF resampled the data which makes RF increase sequentially.
After reaching the minimum number of nodes, the growth of tree models stops which
helps to avoid overfitting. An excessive number of tree models are associated with RF.
Random forest model has been accounted for to be effective and performing astoundingly
well [46]; however, overfitting possibilities have also been reported [47,48]. For knowing
more information about RF, Breiman paper [45] is a good read.

3.3.3. Extremely randomized Trees (ET). Extremely randomized trees (Extra trees) al-
gorithm is first proposed by Geurts et al. [49] which shares RF several characteristics
and relatively a recent approach by taking the randomness a step further in the tree s-
plits. For training each base estimator, ET use a random feature subset similar to RF.
The best among K randomly generated splits is picked by ET instead of choosing the
most discriminative split in each node. The difference between ET and RF is that, whole
training data set is used by ET for training each regression tree which is opposite to RF
bootstrap sample. The split points explicit randomization in ET is expected to reduce
other methods with randomization weaker schemes. The reduction in the model’s bias
motivates the utilization of full training data rather than a sample among them.

3.3.4. Gradient Boosted Decision Trees (GBDT). Gradient Boosted Decision Tree (GB-
DT) is first proposed by [44] which is widely used for regression and classification problems.
Again, regression trees or decision stumps are used in GBDT as weak classifier. Error
observed in each node is measured by the weak learners of GBDT and using test function
GBDT split the node. Like the RF model, a set of weak learners is also combined in
GBDT but GBDT trees are fit on formal trees residual for reducing the biases of GBDT
where the variance is reduced by RF model. Because of this reason GBDT model cannot
be trained in parallel where the RF model can easily be trained. Thus, the GBDT model
is superior to the RF model in terms of computational costs and over-fitting. For getting
more information about GBDT, [44] is a good read. In below the algorithm of GBDT is
given:

(i) Initialize model: F0(x) = E[y]
(ii) For m = 1 to M :
(a) “pseudo-residuals” computation
(b) Using the base regression tree fit pseudo-residuals

i.e., set hm to minimize L(y, hm(x))
(c) Find γm = argminγ{L(yi, Fm−1(xi) + γmhm(xi))}
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(d) Update Fm = Fm−1(x) + γmhm(x)
(iii) Model finalization is Fm(x)

3.3.5. eXtremely Gradient Boosting Regressor Trees (XGBRT). Chen and Guestrin [50]
proposed eXtreme Gradient Boosting regression tree (XGBRT) in 2016 which is a machine
learning scalable system for tree boosting. 17 solutions among 29 winning solutions in
the machine learning competition Kaggle in 2015 were used by XGBRT.

Figure 4. Flowchart of eXtreme Gradient Boosting (XGB)

XGBRT is from gradient boosting where weak base learning models are being combined
in an iterative fashion for turning into a stronger learner [44]. From (Figure 4) each
gradient boosting iteration, for correcting the previous prediction the residual will be
used for being optimized the specified loss function. Again, for establishing the objecting
function in XGBRT for the model performance measurements, regularization is added to
the loss function which is for improvements as given in Equation (8):

J(Θ) = L(Θ) + Ω(Θ) (8)

Θ is the parameter trained from given data and the training loss function is denoted as L.
The regularization term such as L1 or L2 norm is Ω. Against the overfitting, the simpler

models tend to have better performance. The model output Ẑi is averaged or voted by F

of k trees since the base model is decision tree.

Ẑi =
k∑

i=1

fk(xi), fk ∈ F (9)

The Ẑ
(t)
i can be given as

Ẑ
(t)
i =

t∑

k=1

fk(xi) =
̂

Z
(t)
i + ft(xi) (10)

Regularization term Ω(fk) for a decision tree is defined as
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Ω(fk) = γT +
1

2
λ

T∑

j=1

w2
j (11)

where T , γ, λ and w are the number of leaves in a decision tree, the complexity of each
leaf, a parameter to scale the penalty and the vector of scores on leaves respectively.
Then, in XGBRT instead of first order in general gradient boosting, second order Taylos
expansion is taken to the loss function. The objective function can be finally derived
where the loss function is assumed as Mean Square Error (MSE) as

J (t) ≈
n∑

i=1

[
giwq(xi) +

1

2

(
hiw

2
q(xi)

)]
+ γT +

1

2
λ

T∑

j=1

w2
j (12)

Here gi is the first derivative and hi is the second derivative of MSE loss function and
q(.) is a function of a leaf of assigned data point. In Equation (12), each data sample
loss value summation determines the loss function because only one leaf is corresponded
to each sample and by each leaf node of loss values summation also expresses the loss
function. So,

J (t) ≈
T∑

j=1




∑

i∈Ij

gi


wj +

1

2


∑

i∈Ij

hi + λ


w2

j


+ γT (13)

According to Equation (13), Gj and Hj can be defined as

Gj =
∑

i∈Ij

gi, Hj =
∑

i∈Ij

hi (14)

all data sample on j leaf nodes are represented by Ij . So, the problem for finding the
quadratic minimum function can transform the objective functions optimization, which
means, based on the objective function the change of model performance can be evaluated
after a certain node split. This change will be adopted if the performance of decision tree
model gets improved or the split will be stationary.

4. Methodology.

4.1. Parameter tuning. Parameter tuning or model selection in the context of ma-
chine learning is the identifying process for designing the parameters which optimize the
performance of learning algorithms on a set of data. Using a grid search strategy, the
important parameters of a wide range were evaluated for all four tree-based ensemble
model discussed earlier. For increasing the selection of parameter’s optimal probability,
an exhaustive approach has been selected over randomized search.

Three categories can be sub-divided in the model parameters for the algorithm of boost-
ing or boosting algorithm such as: (i) affecting parameters in boosting algorithm which
can be called as a boosting parameters such as learning rate, (ii) each learner associated
parameters which are called tree-specific parameters such as each trees maximum depth,
and (iii) miscellaneous parameters such as the minimized cost function.

Three main features are affecting in RF and ET’s performance. First is the number
of maximum features that are allowing for trying in each learner. The second feature
is the minimum sample number required for forming a leaf. And the third and the last
parameters are the tree numbers which comprise the ensemble.

We randomly split the data into 70% for the training set and 30% for the testing set for
the parameter tuning first step. Then we performed a grid search for being evaluated and
10-fold cross-validation for also being evaluated. Among 10-fold, we utilized 9-fold for
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training the model and the rest was utilized for testing purpose. This process is repeated
for 10 time until each fold gets validated and the scores get averaged.

4.2. Model evaluation. The performance and accuracy of four tree-based ensemble
model studied here for the TOC content were evaluated. Again, by using three statistical
indicators, i.e., Mean Absolute Error (MAE, Equation (15)), Mean Square Error (MSE,
Equation (16)), Coefficient of Determination (R2, Equation (17)) these four tree-based
ensemble models were compared. These statistical indicators’ mathematical equation has
been described below:

MAE =
1

N × p

p∑

i=1

N∑

j=1

|Tij − Lij | (15)

MSE =
1

N × p

p∑

i=1

N∑

j=1

(Tij − Lij)
2 (16)

R2 =

∑n

i=1(Yi,m − Yi,e)
2

∑n

i=1

(
Yi,m − Ȳi,m

)2 (17)

where p, N represent the number of data set patterns and the number of output units.
Again, Tij are the target values and Lij is the output value. Furthermore, Ȳi,m, Yi,e, Yi,m,
and n represent average laboratory measured values, well logging parameters, laboratory
measured values and number of samples respectively. The model will perform better if the
value of MSE and MAE is low. Conversely, higher value of coefficient of determination
(R2) means its value is closer to 1 which makes the regression line fit the data well and
better model performance.
The data of raw meteorological were normalized for the requirements of tree-based

ensemble models (machine learning algorithm) which range between 0 and 1 by Equation
(18):

Z∗ =
Z − Zmin

Zmax − Zmin
(18)

where Z and Z∗ represent raw data and normalized data and Zmax represents the maxi-
mum value and Zmin represents the minimum values of the original data respectively.

5. Results & Discussion. The main research findings have been presented in this
section where in Section 4.1 it has been discussed by each technique’s optimal hyper-
parameters through 10-fold cross-validation. In Section 4.2 we discussed the studied
model’s performance of prediction and compared among them. Again, also analyze the
algorithmic importance features.

5.1. Model selection. The performance of the tree-based ensemble models depends
largely on the number of estimators, number of max depths, max number of features,
max tree depth, learning rate, minimum sample leaf, validation friction, type of booster
and others. These parameters reflect the range or distribution of the training data, which
has a greater impact on the prediction effect of the model. There is no theoretical way to
determine tree-based ensemble model parameters, and one of the commonly used methods
for setting the parameters in the tree-based ensemble techniques is ‘grid search’, described
in the following section.
The grid optimization algorithm is a large-scale point set search method. The deter-

mination of the search range needs to be set by the model builder. In order to determine
the optimal value of the parameters, grid search is carried out in the tree-based ensemble
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Table 3. Parameter search space

Model Parameter Range

RF

Number of estimators 200

Max depth 4

Min samples splits [4, 5]

Max tree depth [2, 3, 4, 5]

ET

Number of estimators 100

Max number of features [“all”]

Min samples leaf [1, 2, 3, 4, 5]

Max depth 4

GB

Number of estimators 35

Learning rate 0.1

Validation fraction 0.1

Max depth 2

XGB

Number of estimators 43

Booster ‘gbtree’

Learning rate 0.1

Max depth 3

techniques. Table 3 depicts the range of parameters for the four tree-based ensemble
techniques.

From Table 3 we can see that in the case of RF, for TOC, the optimal number of
estimators was 200. Again, for forming the best model a leaf node required 1 sample
as a minimum, maximum tree depth of 4 and for looking to the best split all possible
features were considered (max number of features = “all”). In ET, regarding the number
of estimators, 100 was the optimal values for TOC. Again, ET also uses all possible
feature to decide on the best split for TOC. Further, for a leaf node it requires 1 sample
as the minimum and 4 for the maximum tree depth. GB required 2 max depth for TOC
prediction. Again, for achieving the optimal estimators regarding TOC content (target),
GB used 35 for TOC prediction. Further, for both learning rate and validation fraction GB
required 0.1. Finally, for XGB, the combination of parameters is giving the most accurate
results after cross-validation consists of 34 boosting stages (number of estimators), a
learning rate of 0.1, and a maximum tree depth of 3 for TOC prediction. Again, the
booster for XGB was ‘gbtree’. Notice that among all four tree-based ensemble models,
the cross-validated optimal models for RF for TOC prediction consist of a significantly
higher number of estimators.

5.2. Model performance & discussion of results. Seven well logs namely natu-
ral Gamma-Ray (GR), Density (RHOB), Spontaneous Potential (SP), Deep Resistivity
(LLD), Shallow Resistivity (LLS), Neutron Porosity (NPHI) and Density (DT) were used
as an input variable and the TOC content was considered as an output variable for con-
structing four tree-based ensemble model which are Random Forest (RF), Extra Trees
(ET), Gradient Boosting trees (GB), eXtreme Gradient Boosting trees (XGB) respective-
ly. Core analysis data were used for all sample data as it is mentioned before. These data
were stratified into two parts (training and testing data). For the training part, 70% of
the total sample data were used while 30% were used for the testing part. Then, all of
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the data were normalized in the range [0, 1] for optimizing the model performance before
modeling.

5.2.1. Prediction results. This section presents the results of testing the predictive accu-
racy of the trained models on previously unseen data. As mentioned earlier, the data
set was randomly split into 10 folds, 9 of which were used for training and 1 for test-
ing the algorithm. For generalization, the experiment was performed 100 times and the
prediction errors were averaged. The predictions of the four algorithms were compared
and the results are summarized in Figures 5, 6, 7, and 8. A first look at the bar plots
from Figure 6 clearly shows that XGB improves the prediction of TOC, outperforming all
other algorithms discussed in the literature. For instance, the XGB model outperformed
other models by having the lowest MAE of 0.0347 for training, 0.0447 for testing and
0.0397 for all dataset and MSE of 0.0025 for training, 0.0039 for testing and 0.0032 for all
dataset and highest R2 of 0.9606 for training, 0.9439 for testing and 0.9523 for all dataset.
Because of the superiority of XGB, better prediction performance can be gained through
this model than the rest tree-based ensemble learning techniques studied in this paper.
An interesting discussion point is how different implementations of the same algorith-

m (i.e., RF) can lead to different accuracy levels, highlighting the need for a thorough
parameter tuning when implementing machine learning algorithms. Because, once an
ensemble technique has been trained, having carefully fine-tuned any hyper-parameters,
it is extremely fast to obtain energy predictions for a given set of design inputs, and
understand the correlations between these parameters and energy consumption. For this
reason, an improvement of up to 70% can be realized using the optimized ensemble tech-
niques compared with default ensemble techniques (without implementing any parameter
tuning).

5.2.2. Discussion. Four tree-based ensemble models were chosen for evaluating and com-
paring the performance and employed to estimate TOC from well log data. Same input
and output datasets were employed for reasonable comparison among the models in train-
ing and testing phase in TOC estimation.
Among 205 laboratory-measured TOC data, 143 data points were used for the training

phase and 62 data points were used for testing phase for the four tree-based ensemble
models. Again, in training and testing phases, the critical indicator for evaluating the four
tree-based ensembles models’ predictive performance between core/measure and predicted
data was the correlation coefficient (R2) as it is shown in Figure 5 where seven well logs
were used as an input. Cross plots between measured TOC and RF, ET, GB and XGB
model predicting TOC results are shown in Figures 5(a), 5(c), 5(e), 5(g) respectively
through training samples. Among those derived TOC values with respect to real values,
the correlation coefficient (R2) of XGB is higher than other three tree-based ensemble
models which are 0.9606 in training phase. Further, Figures 5(b), 5(d), 5(f) and 5(h) show
the cross plots between measured TOC results and four tree-based ensemble models for
the testing phase where correlation coefficient (R2) between XGB-derived TOC value and
real values were highest than others. The correlation coefficient (R2) of XGB, GB, ET and
RF were 0.9439, 0.9123, 0.9063, 0.9059 respectively which demonstrate the distinguished
performance of the XGB over the other tree-based ensemble models employed in this
study. Furthermore, there are some questions regarding the model with respect to their
performance which relates to whether the performance of a predictive model is good or
not.
In addition, the authors can evaluate the performance of these studied techniques by us-

ing statistical indicators such as correlation coefficient (R2), Mean Absolute Error (MAE)
and Mean Square Error (MSE) which are relative to the real value.
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(a) RF-training results (b) RF-testing results

(c) ET-training results (d) ET-testing results

(e) GB-training results (f) GB-testing results

(g) XGB-training results (h) XGB-testing results

Figure 5. (color online) Cross-plot of measured and estimated TOC con-
tent using (a) RF, (c) ET, (e) GB and (g) XGB for training data sets and
(b) RF, (d) ET, (f) GB and (h) XGB for testing data sets
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(a) MAE of ensemble models

(b) MSE of ensemble models

Figure 6. Histograms comparing MAE, MSE of RF, ET, GB, and XGB
models to predict TOC in training, testing and all data

In Figure 6, graphical presentation of the calculated MAE and MSE of training, testing
samples and all dataset with four tree-based ensemble models (RF, ET, GB and XGB) is
shown for having more intuitive comparison among the result and for better assessment.
From the graphical results illustrated in Figure 6, it can be seen that among four tree-
based ensemble models the XGB has lower MAE and MSE for the training phase, testing
phase and all datasets.
Thus, through the comparison between RF, ET, GB and XGB, we can see that the

XGB model was superior.
Table 4 has listed the results from Figures 5 and 6 of MAE, MSE and R2 for training

phase, testing phase and all dataset for four tree-based ensemble models. Among these
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Figure 7. (color online) Image plots showing graphical predicted TOC
content in testing phase versus measured TOC content

Table 4. Performance calculation for RF, ET, GB and XGB tree-based
ensemble models in training phase, testing phase and all dataset

Model
Training Testing All

MAE MSE R2 MAE MSE R2 MAE MSE R2

RF 0.0452 0.0037 0.9412 0.0549 0.0055 0.9059 0.05005 0.0046 0.9235

ET 0.049 0.0048 0.9341 0.0583 0.0058 0.9063 0.05365 0.0053 0.9202

GB 0.0481 0.0042 0.9391 0.0569 0.0053 0.9123 0.0525 0.00475 0.9257

XGB 0.0347 0.0025 0.9606 0.0447 0.0039 0.9439 0.0397 0.0032 0.9523

four tree-based ensemble models, the XGB model outperformed other models by having
the lowest MAE of 0.0347 for training, 0.0447 for testing and 0.0397 for all dataset and
MSE of 0.0025 for training, 0.0039 for testing and 0.0032 for all dataset and highest R2 of
0.9606 for training, 0.9439 for testing and 0.9523 for all dataset. Because of the superiority
of XGB, better prediction performance can be gained through this model than the rest
tree-based ensemble learning techniques studied in this paper.
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Figure 8. (color online) Wireline log curve with four tree-based ensemble
techniques derived TOC content with measured TOC content

In this paper, a graphical comparison between predicted TOC results and the core
measurements TOC through Rock-Eval pyrolysis is shown through tree-based ensemble
models in both Figures 7 and 8. From Figure 7 it shows that the predictive performance
of each tree-based ensemble model applied in the study is good enough. Further, among
tree-based ensemble models, XGB is more successful in predicting TOC. Again, better
consistency is observed between the TOC obtained from this model and actual tested
TOC. Due to this reason, a better application prospect is held by XGB which should be
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shown. From the different model, the predicted TOC values are compared with measure-
ment for visualizing the prediction quality. As shown in Figure 8, the left three curves
are well logs which acted as input for the intelligent models and the right four curves
are model-derived TOC curved denoted as RF, ET, GB, XGB respectively. Between the
right four curves illustrated in Figure 8, the continuous line is representing the predicted
TOC content by the four tree-based ensemble techniques respectively and the dots are
representing the actual/measured TOC content. Among the four model-derived curves,
it is clear that the most consistent value with measured TOC results of core samples is
XGB.

The trained models had been investigated for the contribution of each feature. In
Figure 9, the relative importance of each feature is shown in the heatmap to each tested
algorithm with the target variable. Starting from the relationship between feature and
target, in the same degree all features are correlated with TOC. We noticed that the
GR and DT parameters are strongly, positively, respectively correlated with TOC. Again,
LLD and LLS parameters (features) seem to have reciprocal, similar relationship with the
target. Further, the relationship between the compactness ration and the target feature
is proportional which means the higher the compactness ratio is, the higher the target
feature will be.

Figure 9. (color online) Tree-based ensemble model’s feature importance
for the TOC content prediction

Most of the information from the feature is drawn by ET models where the features
are correlated with the target feature. On the other hand, the most important features
of XGB are the less correlated ones (i.e., SP, RHOB, NPHI). From the XGB nature, the
findings can be justified despite being counterintuitive. From Section 3.3.5, based on the
errors of the previous model, XGB fits their sequential trees. Each constituent learner is
focusing on the residual information rather than the target feature itself. For this reason,
feature with non-statistically significant or lower correlation with target features can be
used in XGB and improve the predictive power of XGB. Further, three features (i.e.,
SP, NPHI, RHOB) have a lower correlation with the rest of the predictors. Since those
three features have a major contribution to the extreme boosting model, we can conclude
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that the model is better suited for avoiding overfitting and handling the multicollinearity
problem (correlation among feature). For the machine learning researcher, the correlation
among the feature is a common issue [51], which often results in adversely affecting the
model’s predictive power and misleading conclusion.
Python 3.7.2 with libraries of scientific computing such as pandas 0.19.2 and NumPY

1.12.1 providing pre-processing methods and the efficient data structure has been used in
this work for training the tree-based ensemble learning models. Again, Xgboost 0.6 and
Scikitlearn have been imported for supporting the four tree-based ensemble models such
as RF, ET, GB and XGB [52].

6. Conclusions. The first comprehensive performance evaluation of tree-based ensemble
learning techniques has been presented in this work for the prediction of TOC content
from well logs in a potential shale reservoir. Four popular, robust and efficient tree-based
ensemble techniques, i.e., Random Forest (RF), Extra Trees (extremely randomized trees)
(ET), Gradient Boosting (GB) and eXtremely Gradient Boosting (XGB) were studied that
is a novel approach in the estimation of TOC. 205 laboratory measured TOC data points
with seven well logs namely GR, DT, RHOB, SP, NPHI, LLD, and LLS were used for
training and testing the tree-based ensemble models and evaluating the efficiency of these
intelligent models’ performance during the TOC content prediction process.
The results confirm the ability of tree-based ensemble learning models to accurately

model and predict TOC content estimation from well logs in the shale reservoir as all
the four tree-based ensemble techniques have achieved the exemplary level of accuracy.
Among these models, the XGB predicted TOC values more accurately than the other
three which means that the predicted TOC by XGB matches well with measured TOC
content. In comparison to RF, ET, and GB, the XGB model has lower MSE and MAE and
higher R2 showing that XGB is most suitable to predict TOC in intervals having no core
data. Furthermore, it is also noted that three logs, i.e., SP, NPHI, RHOB have a lower
correlation with the rest of the predictors. Since these three logs have a major contribution
to the extreme boosting model, it is concluded that the XGB model is better suited
for avoiding overfitting and handling the multicollinearity problem (correlation among
features). Moreover, these robust tree-based ensemble models can protect overfitting and
have achieved better prediction results while dealing with the multidimensional data.
By proving the benefits and adequacy of utilizing the above-mentioned techniques has

made the contribution of this paper significant for TOC prediction from well logs. These
tested approaches can be reliably used in prediction of organic richness. The studied
techniques can be generalized for additional elements with desirable accuracy in other
research areas such as estimation of petrophysical and geochemical properties of hydro-
carbon reservoirs.
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