
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2021 ISSN 1349-4198
Volume 17, Number 3, June 2021 pp. 831–851

SPATIAL PROPERTIES OF PRODUCTION FLOW SYSTEM
BASED ON RIEMANNIAN MANIFOLD STRUCTURE

Kenji Shirai1, Yoshinori Amano2, Atsuya Ando1 and Takayuki Uda1

1Faculty of Information Culture
Niigata University of International and Information Studies

3-1-1, Mizukino, Nishi-ku, Niigata 950-2292, Japan
dr.kenji5761@gmail.com; { atsuya; uda }@nuis.ac.jp

2Kyohnan Elecs Co., LTD.
8-48-2, Fukakusanishiura-cho, Fushimi-ku, Kyoto 612-0029, Japan

y amano@kyohnan-elecs.co.jp

Received November 2020; revised March 2021

Abstract. We report that there is a correlation between the probability distribution in
production stage and the Fisher information matrix defined in the Riemannian space
(hereinafter referred to as FIM). The rationale for this is that, regarding with the pro-
cess throughput in the probability distribution, it was found that the smaller the trend
coefficient is and the larger the variance value is, the more FIM, which is a Riemannian
metric, is scattered. Therefore, we present the analysis results of the actual data which
is Testrun1 (Test1) through Testrun5 (Test5), obtained in the production flow process.
There is no other research that utilizes information geometry for analysis of production
processes. It was equal to the results we have reported so far. In other words, logical
consistency has been obtained. There is no research specifying the parameters of the dy-
namic equation defined by a free energy of Ginzburg-Landau (GL) based on real data.
Next, we report the change in entropy with regard to volatility. Finally, we report the
entropy of three states, that is, a stable state, a state with an assumed phase transition,
and a state with a phase transition.
Keywords: Riemannian manifold, Fisher information matrix, Dual flat, Potential en-
ergy, Entropy

1. Introduction. A motive that the present writers and the like started to promote
such kind of research during many years of experience of manufacturing operations of
control equipment for general industrial machines is as follows. With respect to Japan
after Lehman Shock, Japan’s economy has been in a slump, and production bases of
manufacturing industries keep moving overseas. Business environments of equipment
manufacturing companies in Japanese are extremely severe. In Japan, the situation here
is that thorough cost reduction is required. Therefore, we thought that, by finding relation
between a company size and a production size of a company, and management parameters
mathematically, cost reduction becomes possible.

Regarding research related to the information geometry, there is the report in which, in
order to analyze the intrinsic geometrical structure of the manifold of probability distri-
butions, the information geometry was researched [1]. Then, there are still few examples
of previous research in stochastic analysis of production processes. In this research, in
order to clarify the correlation between the Riemannian metric distribution and the pro-
cess throughput probability distribution of Testrun1 (Test1) through Testrun5 (Test5)
obtained in the production flow system, the information geometry is utilized. Further,

DOI: 10.24507/ijicic.17.03.831

831



832 K. SHIRAI, Y. AMANO, A. ANDO AND T. UDA

as a result of analysis based on Testrun1 (Test1) through Testrun5 (Test5) collected over
10 years or more from the above-mentioned motive, we have noticed that a correlation
between Testrun1 (Test1) through Testrun5 (Test5) data and FIM.
Regarding with our previous research, we have reported on mathematical modeling

(deterministic system, stochastic system), optimization, etc. of production processes in
small and medium scale [2, 3, 4, 5, 6]. We have constructed the state in which the produc-
tion density of each process corresponds to the physical propagation of heat [7, 8]. Using
this approach, we have shown that the diffusion equation dominates the manufacturing
process. In other words, when minimizing the potential of the production field (stochastic
field), the equation, which is defined by the production density function Si(x, t) and the
boundary conditions, is described using the diffusion equation with advection to move in
transportation speed ρ. The boundary conditions mean the closed system in the produc-
tion field. The adiabatic state in thermodynamics represents the same state [7, 8]. Also,
the previous research applying Fluid mechanics that the trial production of a new concept
vertical take-off and landing rotorcraft of flexible kite wing attached multicopter is very
interesting [9].
Regarding an optimal production capacity, we have reported that the quantity pro-

duced is proportional to the rate of return, which aids corporate development and limits
production capacity. Therefore, we have employed the Hamilton-Jacobi-Bellman equa-
tion to calculate optimal production capacity and determine optimal parameters of the
quadratic form evaluation function based on the optimal production capacity [10]. Then,
we have investigated a method for optimal control of production processes that include
lead-time delays. We have proposed the model that expresses lead-time lag in a strict
mathematical model and the model with lead-time delay based on the average regression
process, which is the Ornstein-Uhlenbeck process model that is used in mathematical
finance. Optimal control is obtained using each state equation [3].
Regarding the analysis of production processes under the Riemanian space, we have

reported the mathematical modeling for the production system by utilizing a Riemannian
manifold. The production process denotes the diffusion process in the manner similar to
that of the physical phenomenon. Based on the theory of constraints (TOC), one method
for optimizing the production system is to synchronize the bottlenecks in the system.
These bottlenecks may result from worker volatility or from delivery delays caused by other
companies. Synchronizing the bottlenecks tends to improve the process throughput. The
TOC generally requests the improvement cycle toward the throughput (or lead time);
this shortens the bottleneck. However, the TOC does not consider standard physical
constraints, which serve as quantitative guidelines for production systems. Specifically, it
refers to the following items.

1) Reducing the lead time, improving the throughput, and synchronizing the production
process by the TOC.

2) Sharing the demand information and performing mathematical evaluations.
3) Analyzing the reduction and fluctuating demands of the subsystem (using nonlinear

vibration theory).
4) Basing the inventory management approach on stochastic demand.

In our previous study, we have reported a throughput model for a production flow
system using the Riemannian manifold, which is easier to implement than stochastic
modeling methods. This model is derived from the stochastic throughput model for pro-
ducing the propagation necessary to measure synchronization. We have also introduced
the Fisher information matrix to specify volatility. To validate the new method and clar-
ify the synchronization processes, we perform a dynamic simulation of the production
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system. We have also presented the real synchronous and asynchronous data obtained
from the production flow process.

In our present research, the geometric structure of the production space which is com-
posed of the production stages and the workers, should be described. The discussion
proceed by regarding the production space as the Riemannian space. The research theme
reports that there is some relationship between the probability distribution of each pro-
duction stage existing in the production space and FIM. When the dispersion of the
production process is large, the scattered FIM is larger than when the dispersion is small.
This suggests that there is the correlation between the probability distribution at each
stage and FIM.

Moreover, we attempt to analyze the phase transition mechanism in the manufacturing
industry by treating manufacturing processes as the closed process when seen as the
single manufacturing process, that is, the process on which external forces do not act. We
instead define order parameters within the manufacturing process and further introduce
the Ginzburg-Landau (GL) free energy [11, 12]. The rate of return considerably varies
in response to stochastic external forces. For example, considerable delays may arise in
the production process or in areas such as logistics. When analyzed by the GL potential
energy, the rate of return is influenced by logistical delays and lead times. Here, we
analyze the parameters of the potential function using the GL free energy. The rate of
return was calculated from the estimates of production orders from September 2014 to
September 2016. The parameters of the dynamic equation were empirically obtained from
the rate of return data. By specifying these parameters, the potential function and the
entropy of the three states could be obtained. The state of a real production process
could be specified. We also report the change in entropy with regard to volatility.

The subjects of this paper are as follows. We clarify a correlation between the proba-
bility distribution in production stage and the Fisher information matrix defined in the
Riemannian space. Furthermore, as a matter not mentioned in the TOC, production
delays due to distribution delays are analyzed by utilizing GL potential energy. Finally,
we report the entropy of three states: the stable state, the state with the assumed phase
transition, and the state with the phase transition.

2. Production Business of a Small-to-Midsize Firm.

2.1. Production systems in the production equipment industry. We refer to the
production system in manufacturing equipment industry studied in this paper. This is not
a special system, but “Make-to-order system with version control”. Make-to-order system
is a system which allows necessary manufacturing after taking orders from clients, resulting
in “volatility” according to its delivery date and lead time. In addition, “volatility” occurs
in lead time depending on the contents of make-to-order products (production equipment).

However, effective utilization of the production forecast information on the orders may
suppress certain amount of “variation”, but the complete suppression of variation will be
difficult. In other words, “volatility” in monthly cash flow occurs and of course influences
a rate of return in these companies. Production management systems, suitable for the
separate make-to-order system which is managed by numbers assigned to each product
upon order, is called as “product number management system” and is widely used.

All productions are controlled with numbered products and instructions are given for
each numbered product.

Thus, ordering design, logistics and suppliers are conducted for each manufacturer’s
serial numbers in most cases except for semifinished products (unit incorporated into the
final product) and strategic stocks.
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Therefore, careful management of the lead time or production date may not suppress
“volatility” in manufacturing (production).
The company in this study is the “supplier” in Figure 1 and “factory” here. Companies

are under the assumption that there are N (numbers of) suppliers; however, this study
deals with one company because no data is published for the rest of the companies (N−1).

Figure 1. Business structure
of company of research target

Figure 2. Production flow process

2.2. Production flow system. A manufacturing process that is termed as a production
flow process is shown in Figure 2. The production flow processes, which manufacture
low volumes of a wide variety of products, are produced through several stages in the
production process. In Figure 2, the processes consist of six stages. In each step S1-S6 of
the manufacturing process, materials are being produced by one worker of each step S1
through S6. S1-S6, which are given by Tables 5, 7, 9 and 11 in Appendix A, correspond
to the process in Figure 2. The throughput will vary greatly depending on the proficiency
level of the worker (Testrun1 through Testrun3-2 in Appendix A).
The direction of the arrow represents the direction of the production flow. In this

system, production materials are supplied from the inlet and the end product will be
shipped from the outlet.

Assumption 2.1. The production structure is nonlinear.

Assumption 2.2. The production structure is a closed structure; that is, the production
is driven by a cyclic system (production flow system).

• Reasonability of Assumption 2.1. Assumption 2.1 indicates that the determination
of the production structure is considered a major factor, which includes the gener-
ation value of production or the rate of return generation structure in a stochastic
manufacturing process (hereafter called the manufacturing field). Because such a
structure is at least dependent on the demand, it is considered to have a nonlinear
structure. Because the value of such a product depends on the rate of return, its
production structure is nonlinear. Therefore, Assumption 2.1 reflects the realistic
production structure and is somewhat valid.
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• Reasonability of Assumption 2.2. Assumption 2.2 is completed in each step and
flows from the next step until stage S6 is completed. Assumption 2.2 is reasonable
because new production starts from S1. For a more detailed analysis, please refer to
our Appendix A.

3. Geometric Structure of Production Field.

3.1. Fisher information matrix in Riemannian space on the production process.
The probability distribution of production stages in the production field is as shown in
Figure 3. S ∈ [S1, S2, . . . , Sn] is the throughput. [Q] is the production field.

Figure 3. Probability distri-
bution of production stages in
the production field

Figure 4. Production densi-
ty of each process in Riemann-
ian space

Definition 3.1. Gauss probability density function pi(Si;µi, σi) of mean µi, variance σ2
i

pi(Si;µi, σi) =
1√
2πσi

exp

{
−(Si − µi)

2

2σ2
i

}
(1)

S ∈ {pi(Si;µi, σi), i = 1, 2, . . . , n} (2)

where Equation (1) indicates uniquely determined given the µi and the variance σ2
i .

The production density of each process in Riemannian space is as shown in Figure 4.
ξ ≡ (µ, σ), the production flow is as follows.

dξ =
n∑

i=1

dξiei (3)

Since we study in the framework of information geometry, we define the Fisher infor-
mation matrix (Hereinafter referred to as FIM) as follows.

Definition 3.2. FIM G(ξ)
G(ξ) ≡ (gij(ξ)) (4)

where gij(ξ) is derived as follows.

gij(ξ) = < ei, ej > ≡ E

(
∂ ln pi(Si; ξ)

∂ξi
∂ ln pi(Si; ξ)

∂ξj

)
, pi(Si; ξ) ∈ A

=

∫
∂ ln pi(Si; ξ)

∂ξi
∂ ln pi(Si; ξ)

∂ξj
pi(Si; ξ)dSi (5)
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Figure 5 shows that the probability density function can be determined by defining the
µi and the variance σ2

i . By generalizing this, it is possible to equate a statistical model,
which is a family of the following probability distributions, with a manifold, which is a set
of parameters that specify the probability distribution. Therefore, the following equation
is derived from Equation (1).

Q := {pi(Si; ξ)|ξ = (ξ1, ξ2, . . . , ξn) ∈ Ξ} (6)

It means that the statistical model Q put on par with the manifold Ξ in Equation (6).

Figure 5. Two-dimensional
manifold M

Figure 6. Single propagation
path of u → v

The distance between the probability distributions that exist in each stage in Riemann-
ian space is given by the following equation.

ds2 =
∑
i,j

gijdξidξj (7)

where gij is FIM.
At this time, the geometry of Q does not depend on the value of parameter ξ.
The covariant derivative of ei and ej is defined as follows.

Definition 3.3. Covariant derivative of ei in the ej direction

∇ejei = lim
dξ→0

e
′
i − ei
dξ

(8)

At this time, the inner product of the covariant derivative is given by the following
equation.

Γi,j,k(ξ) = < ∇ejei, ek > (9)

where Γi,j,k(ξ) is also an affine connection coefficient that indicates the connection between
production factors which refer to manufactured parts, logistics, and the like.
At this time, the Riemannian connection is defined as follows.

Definition 3.4. Riemannian connection Γi,j,k(ξ)

Γi,j,k(ξ) =
1

2

(
∂

∂ξi
gik +

∂

∂ξj
gjk −

∂

∂ξk
gij

)
= [ij : k] (10)
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Furthermore, the permissible connection is given by the following equation according
to the principle of invariance [1].

Γα
i,j,k(ξ) = [ij : k]− α

2
Γi,j,k (11)

Γi,j,k = E

[
∂

∂ξi
ln p(S; ξ) · ∂

∂ξj
ln p(S; ξ) · ∂

∂ξk
ln p(S; ξ)

]
(12)

where it is limited to the above two equations. It is called α connection.
Here, let the manifold Q having g and ∇ be Q{S, g,∇}. The parallel movement ⨿ of

the direction dξ of a certain tangent vector to itself is called a geodesic line. It becomes
like the following equation.

< a, b >Q=< ⨿S,⨿Sb >T (13)

The following equation is obtained in {S, g,∇,∇∗}. The event that holds in Q also holds
in T through the operator ⨿.

< a, b >Q=< ⨿S,⨿∗
Sb >T (14)

where ∇ and ∇∗ are called dual enemies.
The α connection and the −α connection are dual, and when α = 1, they are called

the exponential connection and are given by the following equation.

p(S; ξ) = exp

[∑
i

ξiki(S)− φ(ξ)

]
(15)

where ξ is the affine coordinate system. Equation (15) belongs to the exponential family
and is dually flat and linear.

3.2. Evaluation of production flow system using FIM. We presented the stochastic
throughput model in our previous study as [13, 14]

∂S(t, x) =

[
a(x)

∂S(t, x)

∂x
+D(x)

∂2S(t, x)

∂x2

]
∂t

+
N∑
i=1

∂i
d(x)S(t, x)∂W

i
d(t, x) +

N∑
k=1

σk
0(x)∂W

k
0 (t, x) (16)

Then, Equation (16) can be rewritten as follows:

∂S(t, x) = LS(t, x)dt+
N∑
i=1

∂i
d(x)S(t, x)∂W

i
d(t, x) +

N∑
k=1

σk
0(x)∂W

k
0 (t, x) (17)

where

L ≡ 1

2

N∑
i,j=1

αij(x, t)
∂2

∂xi∂xj
+

N∑
i=1

βi(x, t)
∂

∂xi
(18)

Equation (18) indicates an infinitesimal generator under the measure with no risk. When
αij(x, t) and βi(x, t) are derived as spatial elements, Equation (18) can be utilized as the
stochastic throughput model [13, 15]. Then, we rewrite Equation (18).

L ≡ −
∑
i,j

gij(x)
∂2

∂xi∂xj
−
∑
ik

∂ig
ii(x)

∂

∂xk
(19)

where [gij] indicates a reverse matrix of Riemannian metrics [gij]. We evaluate in 6
processes and 9 workers configured as shown in Figure 7 and Figure 8.

∆giiuii ≡ giivjj − giiuii (20)
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Lf(uii) = −
∑

vjj∼uii

gii{f(vjj)− f(uii)} −
∑
eij

∆gii(uii)
f(vjj)− f(uii)

2

= −
∑

vjj∼uii

f(vjj)− f(uii)

2
{f(vjj)− f(uii)}

= −
∑

vjj∼uii

wij(uii, vjj){f(vjj)− f(uii)} (21)

Here, wij(uii, vjj) represents propagation efficiency and is expressed as follows:

wij(uii, vjj) =
f(vjj)− f(uii)

2
(22)

where wij(vjj, uii) = wij(uii, vjj) > 0.

Figure 7. Business structure
of company of research target

Figure 8. Six processes and
9 workers in production flow
system in Riemannian space

Figure 9. Generalized prop-
agation connected in Rie-
mannian space

Figure 10. Unit propagation
path in Riemannian space

Figure 6 shows a single propagation path of u → v, where S(t, x) represents the prop-
agation characteristics of u → v and is derived as follows:

∂S(t, x)

∂t
= (div gradG S) (23)

Therefore, we obtain as follows. Please refer to our previous research for detailed inter-
mediate calculations [13].

∂S(t, x)

∂t
+ v

∂S(t, x)

∂x
= D

∂2S(t, x)

∂x2
(24)



SPATIAL PROPERTIES OF PRODUCTION FLOW SYSTEM IN MANUFACURING 839

Equation (24) represents a propagation equation with respect to t, x ∈ V , and v is the
weight parameter of the propagation path between each stage in the process.

FIM is a symmetric matrix from Definition 3.2. Furthermore, if the FIM is a definite-
value symmetric matrix for any G(ξ), the manifold ξ ∈ Ξ becomes a Riemannian manifold
by introducing a Riemannian metric corresponding to G(ξ). The Riemannian metric
corresponding to this FIM is called Fisher metric. Therefore, it is possible to measure the
distance parameter by introducing Fisher metric given the probability distribution group
that is parametrized. The FIM of the Gaussian distribution is as follows

pi(Si : µi, σi) =
1√
2πσi

exp

{
−(Si − µi)

2

2σ2
i

}
ln pi(Si : µi, σi) = − ln

√
2π − lnσi −

(Si − µi)
2

2σ2
i

∂ ln pi(Si : µi, σi)

∂µ
=

Si − µ

σ2

∂ ln pi(Si : µi, σi)

∂σ
= − 1

σ
+

(Si − µ)2

σ2

∂2 ln pi(Si : µi, σi)

∂µ2
= − 1

σ2

∂2 ln pi(Si : µi, σi)

∂µ∂σ
= −2

Si − µ

σ2

∂2 ln pi(Si : µi, σi)

∂σ2
=

1

σ2
− 3

(Si − µ)2

σ4
(25)

Therefore, the FIM of the Gaussian distribution G(ξ) is as follows.

G(ξ) =
1

σ2

[
1 0
0 2

]
(26)

The squared distances of ξ and ξ + dξ using FIM are as follows.

ds2 = [dµ, dσ]G(ξ)

[
dµ

dσ

]
=

(dµ2 + 2dσ2)

σ2
(27)

ds2 is inversely proportional to σ in Equation (27). This result is in agreement with
previous results [14, 15, 16].

Definition 3.5. Connection matrix Γk
ij

Γk
ij =

∑
h

ghkΓijh (28)

Then we obtain as follows [17]:

∂igih = Γijh, ∂i ≡
∂

∂xi
(29)

For any spatial connection, if gij ∼= 0 in Figure 8, no spatial dual connection is defined.
In other words, any stage is isolated from other stages in the production system. The
stage is stopped.

Here, the operator L(•) in the Riemannian manifold is given by the following equation.

L ≡ −
∑
i,j

gij

(
∂2

∂xi∂xj
−
∑
k

Γ̂k
ij

∂

∂xk

)
(30)
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Also,

∂ig
ik = −

∑
j,h

ghkgij
(
Γ̂ijh + Γ̂ihj

)
(31)

where Γ̂ijh indicates the Levi-Civita connection matrix [17].
Therefore, we obtain

−divG(gradGC) = −
∑
ij

gij

(
∂2

∂xi∂xj
−
∑
k

Γ̂k
ij

∂

∂xk

)
(32)

By utilizing information geometry, we presented the probability distribution and pro-
duction density of each stage of the production process. The potential function f(φ) will
be examined in next Section 4.1. Potential in the present research is defined as “ability
to create a return”.
When considering like this, we define potential energy (free energy) in a production

field as follows [20].

Definition 3.6. Potential energy in production field

[Potential of production field per production density]

= [Potential for production unit] + [Fluctuation of potential for production unit]

Such Definition is almost equivalent to definition of the potential or free energy of a field
in physics. We consider that a return is generated by temporal deviation of a potential
function (free energy) attributed to a production density function.

4. Potential Energy and Entropy Analysis of Rate of Return h(t). We describe
the phase transition mechanism in the manufacturing industry and the entropy of three
states: a stable state, a state with an assumed phase transition, and a state with a phase
transition.

4.1. Potential energy and rate of return of production process. We report to
analyze the phase transition mechanism in the manufacturing industry by treating manu-
facturing processes as a closed process when seen as a single manufacturing process, that
is, a process on which external forces do not act. We instead defined order parameters
within a manufacturing process and further introduced the Ginzburg-Landau (GL) free
energy.

4.2. Utilization of Ginzburg-Landau (GL) free energy for production process
analysis.

Definition 4.1. Potential energy function f(φ)

f(φ) = afg(φ) + bg(φ) + ch{1− h(φ)} (33)

From the relationship between σs and σ, we classify as follows.
1) as σs = σ, 0 = bg = ch Ts = T
2) as σs < σ, 0 = ch < bg Ts < T
3) as σs > σ, 0 = ch > bg Ts > T

where Ts denotes the lead time of the synchronization process (set threshold) and T
denotes the lead time of the actual measurement data.
From the above mentioned description, the overall lead time T in the case of batch

processes is the time taken to produce a piece of equipment in one period of work. Note
that only one person produces one piece of equipment in a batch process, and thus,
Ts = T . However, in the case of a production flow system, Item no.1) in the parameter
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of Definition 4.1 and Item no.3) in the parameter of Definition 4.1 are not appropriate
for determining the throughput. In the case of a batch process, only Item no.2) in the
parameter of Definition 4.1 is not appropriate. The lack of sufficient throughput thus
leads to increased costs.

Here, the deviation of the lead time is constrained as follows:

∂f

∂t
= −Mφ

δf(φ)

δφ
(34)

Equation (34) indicates that the lead time deviation (phase deviation) is an equation to
move the surface of lead time function. The cause is dependent on the fluctuation of
volatility fluctuation.

As a result, we obtain generally as follows:

f(φ) = afg(φ) + bg(φ) + ch{1− h(φ)} (35)

g(φ) = φ2(1− φ)2 (36)

h(φ) = φ2(3− 2φ) (37)

GL free energy F (φ) is as follows:

F (φ) =

∫
Ω

[
ϵ2

2
|∇φ|2 + f(φ)

]
dV (38)

Then

τ
∂φ

∂t
= −δF

δφ
(39)

By calculation of Equation (39), we obtain as follows:

τ
∂φ

∂t
= ϵ2∇2φ+ 2a2fφ(1− φ)

{
φ− 1

2
+

3(ch − bg)

a2

}
= ϵ2∇2φ+ 2a2fφ(1− φ)

{
φ− 1

2
+ β

}
, β =

3(ch − bg)

a2
(40)

Figure 12 illustrates the transition from a lower-energy production process (energy
state C) to the (higher-energy) next process (energy state C

′
). In Figure 12, the number

of production units at each stage of a production unit i shifts over time. To function
effectively, a production process requires a minimum number of personnel. This situation
constitutes a shortest path problem. The displacement of the potential in the production
field generates a revenue. From the principle of maximum entropy, the entropy increase
contributed by the production unit is another source of revenue [5]. We now derive the

Figure 11. Overview of the
production field concept

Figure 12. Transition from
a lower-energy production pro-
cess to the next process
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model equation that constrains the dynamic behavior of the production cost. If the
production field sets {Si(t)}, i = 1, . . . , n, introducing sustainable order information and
exciting the system with a sustainable target allow the process to progress from a static to
a dynamic production field. The free energy of the process is increased by this transition
[22]. Please refer more detail information in our previous paper [5]. Here we describe the
GL free energy in a manufacturing industry as follows.

Definition 4.2. Free energy: F (h) related to production quantity

F (h) =

∫ L

0

[r
2
(∇h)2 +W (h)

]
dx (41)

Equation (41) indicates that free energy given by the space integration of a function
depends on order parameter h and is GL free energy. ∇h represents fluctuations.
From here on, h(t, x) is the order parameter (rate of return) which depends on almost

time only. It is important for the rate of return that a high quality product is completed
until planned period. Therefore, we consider the rate of return to h(t).

4.3. Entropy analysis of rate of return h(t). We describe the state equation before
discussing entropy.

Definition 4.3. Production density C(t, x)

∂C(t, x)

∂t
= LxC(t, x) (42)

where t and x denote time and stage number of process. The initial condition and bound-
ary condition are as follows:

C(0, x) = C0(x) (43)

C(t, x)|x∈∂Ω = 0 (44)

where ∂Ω denotes a start and end process.
Then, we define a stochastic variable for the process time series variable.

Definition 4.4. Stochastic variable n(t) for the process time series variable

dn(t)

dt
= −νn(t) + FR(t) (45)

where ν and FR(t) denote average and exogenous and endogenous disturbances, which
are logistics delay, changing delivery date of customer and staff manufacturing mistake,
etc.
Here, probability of n(t) that will enter n ∼ n+dn is as follows: to satisfy the probability

that n(t) falls into n → n+ dn, it is to satisfy the following Fokker Planck equation [21]:

∂Pn(t, n)

∂t
= −ν

∂Pn(t, n)

∂n
+

∂2Pn(t, n)

∂n2
(46)

There is no problem even if the Langevin type equation is simplified to a normal prob-
ability type differential equation. Langevin type equation can be regarded as a diffusion
system [7, 18].

Assumption 4.1. Stochastic differential equation of normal type n(t)

dn(t) = µξdt+ σξdZξ(t) (47)

where µξ, σξ and Zξ(t) are the average, volatility and Wiener process respectively.
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Assumption 4.2. ϕ(t) denotes a probability density function of normal type with average
zero.

ϕ(t) ≡ 1√
2πσξ

exp

(
− t2

2σ2
ξ

)
(48)

where σξ denotes a volatility.
At the observation time t ∈ [0, T ], the probability function P (t) has the following

probability density function in the range x ≤ n(t) ≤ x+ dx as follows.

Definition 4.5. Probability function P (t)

P (t) =

∫ t

−∞
ϕ(x)dx (49)

Then, we define the entropy as follows.

Definition 4.6. Entropy S

S = −
∫

P (t) lnP (t)dt (50)

As n(t) is the stochastic function, we define the variable U as follows.

Definition 4.7. Stochastic function U

U =< n(t) > + ξ = n+ ξ (51)

where < n(t) > and ξ denote the average n and white noise respectively [19]. The
probability of existence P (U > θ) relative to the threshold θ is as follows:

P (U > θ) = P (ξ > θ − n) = P (ξ > σξ) (52)

Therefore,

P (ξ > σξ) =
1√
2πσξ

∫ ∞

ξ

exp

(
− s2

2σ2
ξ

)
ds =

1√
2π

∫ ∞

ξ/σξ

exp

(
−α2

2

)
dα

= 1− Φ(ξ/σξ) (53)

where σξ = θ − n.
Therefore, we obtain from Equations (52) and (53) as follows:

P (U > θ) = 1− Φ(ξ/σξ) (54)

Here, let δ = ξ/σξ. Then, we obtain as follows:

Φ(δ) =
1√
2π

∫ δ

−∞
exp

(
−s2

2

)
ds (55)

where σξ denotes the volatility of ξ.
Then, we define the entropy function for threshold [22]. From Equation (50), we present

the numerical calculations in Section 5.

5. Numerical Simulation.

5.1. Numerical results of FIM in the Riemannian space. Tables 5 to 14 show the
productivity (throughput) of each stage (S1-S9) with 6 workers (K1-K6) and 9 stages of
work. Recognizing these tables as the production stage space (Riemannian space), we
will investigate the relationship between the throughput probability distribution of each
stage and FIM. For example, the calculation method of the value 0.322 of Test1-a in Table
1 calculates the FIM from the average variance value 2.49 of the third stage and the fourth
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Table 1. Analysis result of Testrun1-Testrun5

a b c d e
Test1 0.322 0.180 0.223 0.180 0.07
Test2 4.65 0.727 0.369
Test3 0.260 0.449 0.727
Test4 1.34 0.966 0.727
Test5 1.34 3.38

Table 2. Mean and variance data for each Testrun1 through Testrun5

µ σ
Test1 0.73 0.29
Test2 0.92 0.06
Test3 0.92 0.03
Test4 0.95 0.03
Test5 0.95 0.03

stage of the worker K1 of Testrun1 in Table 6. Table 2 shows the mean and variance
values needed to calculate Table 1.
As described above, the connection between stages and the probability distribution are

considered. As a result of analyzing the production flow system reported by the author
and others, regarding the probability distribution of throughput (lead time), the smaller
the trend coefficient (µ) is and the larger the variance value (σ) is, the more FIM, which
is a Riemannian metric, is scattered. Therefore, it was found that there is a correlation
between the distribution of the Riemannian metric and the probability distribution.

5.2. Numerical results of potential function using the phase field method. The
potential energy may change a certain direction according to an external force. The
transition of the lead time threshold value mainly depends on the volatility of production
processes. Therefore, by setting the volatility of a synchronization process to σs and that
of a real process to σ, we defined the potential energy function using a phase field method
as follows.
Figures 13 to 15 show the potential function graphs at parameter settings of af , bg,

and ch. The cost calculations on which the rate of return was based used the data of the
orders received between September 2014 and December 2014. Figures 16 to 18 show also
the graphs obtained from the parameters af , bg, and ch. Figures 16 and 17 show that
the period before the process improvement can be assumed to contain a potential phase
transition. In contrast, Figure 18 shows the period after the process improvement, which
is characterized by a stable potential.
The potential function model equations of Figures 13, 14, 15, 16, 17 and 18 are derived

as follows (Reprinted above Equations (35), (36) and (37)):

f(θ) = af · g(θ) + bg · h(θ) + ch · (1− h(θ))

g(θ) ≡ θ2(1− θ)2, Double-well function

h(θ) ≡ θ2(3− 2θ), Energy density distribution

In contrast, Figure 18 shows the period after the process improvement, which is char-
acterized by a stable potential.

F (θ) =

∫ [r
2
(∇θ)2 +W (θ)

]
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φ∗(θ, t) ∼=
1

2

(
1− tanh

(
θ − V t

2

))
where θ denotes the special solution of following equation.

∂θ

∂t
= −τ

δF

δθ

Figure 13. Potential func-
tion by the phase field method
(af = 0.1, bg = 0, ch = 0)

Figure 14. Potential func-
tion by the phase field method
(af = 0.1, bg = 0.2, ch = 0)

Figure 15. Potential func-
tion by the phase field method
(af = 0.1, bg = 0, ch = 0.2)

Figure 16. Potential func-
tion by the phase field method
(af = 0.1, bg = 0.07, ch =
0.01): {Sf}

In Table 3, {Sf}, {SLocal}, and {Si} denote the processes before improvement, during
improvement {Sf}, and after improvement, respectively. {SLocal} ⊂ {Sf} and {Sf} →
{Si}.
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Figure 17. Potential func-
tion by the phase field method
(af = 0.1, bg = 0.01, ch =
0.009): {SLocal}

Figure 18. Potential func-
tion by the phase field method
(af = 0.1, bg = 0.03, ch =
0.02): {Si}

Table 3. Profit margin before/after improvement of processes

Before improvement
(SLocal)

Current process
(Sf )

After improvement
(Si)

µ 2.04 6.6 2.02
σ 3.7 5.3 1.79

Rate of return 0.15 ∼ 0.3 −0.1 ∼ −0.3 0.2 ∼ 0.3

Figure 19. Probabilistic rep-
resentation of process time se-
ries

Figure 20. Entropy in con-
sideration of standardized
volatility {Si}

5.3. Entropy in consideration of standardized volatility. Figure 19 shows a process
transition diagram derived by applying Equations (58) and (59). Based on Equation (50),
Figures 20 to 22 show the entropy values. Si > Sf > SLocal represents the rate of return.
From Figure 19, we define the deviation of entropy as follows.
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Figure 21. Entropy in con-
sideration of standardized
volatility {Sf}

Figure 22. Entropy in con-
sideration of standardized
volatility {SLocal}

Definition 5.1.

∆S(t1, t2) = S(t1)− S(t2) (56)

Then, Si and Sf are derived as follows:

Si = S[Pi] + S[{Pi, P0}] (57)

Sf = S[Pf ] + S[{Pi, P0}] (58)

Sf − Si = [S[Pf ]− S[Pi]] + [S[{Pi, P0}]− S[{Pf , P0}]] = S[Pf ]− S[Pi] (59)

where [S[{Pi, P0}]− S[{Pf , P0}]] = 0.
As a result, we obtain as follows:

Sf − Si
∼= 6.298 (60)

Sf − SLocal = −4.7572 (61)

6. Conclusion. We confirmed that the relationship between the probability distribution
of each production stage exists in the production space and FIM. In other words, there is
the correlation between the probability distribution at each stage and FIM. Then, when
analyzed by the GL potential energy, we clarified that the rate of return was influenced
by logistical delays and lead times. Regarding with the rate of return data, we presented
the actual data which are the estimates of production orders from September 2014 to
September 2016. Finally, we reported the entropy of three states: a stable state, a state
with an assumed phase transition, and a state with a phase transition.
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Appendix A: Analysis of Actual Data in the Production Flow System. Based
on the control equipment, the product can be manufactured in one cycle. The rate of
return required to maintain 6 pieces of equipment/day is as follows:

• (Testrun1): Because the throughput of each process (S1-S6) is asynchronous, the
overall process throughput is asynchronous. In Table 4, we list the manufacturing
time (min) of each process. In Table 6, we list the volatility in each process performed
by the workers. Finally, Table 5 lists the target times. The theoretical throughput is
obtained as 3×199+2×15 = 627 (min). In addition, the total working time in stage
S3 is 199 (min), which causes a bottleneck. In Figure 23, we plot the measurement
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Table 4. Correspondence between the table labels and the Testrun number

Table number Production process Working time Volatility

Testrun1 Table 5 Asynchronous process 627 (min) 0.29

Testrun2 Table 7 Synchronous process 500 (min) 0.06

Testrun3-1
�� ��Table 9

�� ��“Synchronization with preprocess” method
�� ��470 (min)

�� ��0.03

Testrun3-2
�� ��Table 11

�� ��“Synchronization with preprocess” method
�� ��470 (min)

�� ��0.03

Table 5. Testrun1

WS S1 S2 S3 S4 S5 S6
K1 15 20 20 25 20 20 20
K2 20 22 21 22 21 19 20
K3 10 20 26 25 22 22 26
K4 20 17 15 19 18 16 18
K5 15 15 20 18 16 15 15
K6 15 15 15 15 15 15 15
K7 15 20 20 30 20 21 20
K8 20 29 33 30 29 32 33
K9 15 14 14 15 14 14 14

Total 145 172 184 199 175 174 181

Table 6. Volatility of
Table 5

S1 S2 S3 S4 S5 S6
K1 1.67 1.67 3.33 1.67 1.67 1.67
K2 2.33 2 2.33 2 1.33 1.67
K3 1.67 3.67 3.33 2.33 2.33 3.67
K4 0.67 0 1.33 1 0.33 1
K5 0 1.67 1 0.33 0 0
K6 0 0 0 0 0 0
K7 1.67 1.67 5 1.67 2 1.67
K8 4.67 6 5 4.67 5.67 6
K9 0.33 0.33 0 0.33 0.33 0.33

Figure 23. Total work time
for each stage (S1-S6) in Table
5

Figure 24. Volatility data
for each stage (S1-S6) in Table
5

data listed in Table 5, which represents the total working time of each worker (K1-
K9). In Figure 24, we plot the data contained in Table 5, which represents the
volatility of the working times.

• (Testrun2): Set to synchronously process the throughput. The target time listed in
Table 7 is 500 (min), and the theoretical throughput (not including the synchroniza-
tion idle time) is 400 (min). Table 8 presents the volatility of each working process
(S1-S6) for each worker (K1-K9).

• (Testrun3-1): Introduce a preprocess stage. The process throughput is performed
synchronously with the reclassification of the process. As shown in Table 9, the
theoretical throughput (not including the synchronization idle time) is 400 (min).
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Table 7. Testrun2

WS S1 S2 S3 S4 S5 S6
K1 20 20 24 20 20 20 20
K2 20 20 20 20 20 22 20
K3 20 20 20 20 20 20 20
K4 20 25 25 20 20 20 20
K5 20 20 20 20 20 20 20
K6 20 20 20 20 20 20 20
K7 20 20 20 20 20 20 20
K8 20 27 27 22 23 20 20
K9 20 20 20 20 20 20 20

Total 180 192 196 182 183 182 180

Table 8. Volatility of
Table 7

S1 S2 S3 S4 S5 S6
K1 0 1.33 0 0 0 0
K2 0 0 0 0 0.67 0
K3 0 0 0 0 0 0
K4 1.67 1.67 0 0 0 0
K5 0 0 0 0 0 0
K6 0 0 0 0 0 0
K7 0 0 0 0 0 0
K8 2.33 2.33 0.67 1 0 0
K9 0 0 0 0 0 0

Table 9. Testrun3-1

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 20 20 20
K2 20 18 18 18 20 20 20
K3 20 21 21 21 20 20 20
K4 20 13 11 11 20 20 20
K5 20 16 16 17 20 20 20
K6 20 18 18 18 20 20 20
K7 20 14 14 13 20 20 20
K8 20 22 22 20 20 20 20
K9 20 25 25 25 20 20 20

Total 180 165 164 161 180 180 180

Table 10. Variance of
Table 9

S1 S2 S3 S4 S5 S6
K1 0.67 0.33 0.67 0 0 0
K2 0.67 0.67 0.67 0 0 0
K3 0.33 0.33 0.33 0 0 0
K4 2.33 3 3 0 0 0
K5 1.33 1.33 1 0 0 0
K6 0.67 0.67 0.67 0 0 0
K7 2 2 2.33 0 0 0
K8 0.67 0.67 0 0 0 0
K9 1.67 1.67 1.67 0 0 0

Table 11. Testrun3-2

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 18 18 18
K2 20 18 18 18 18 18 18
K3 20 21 21 21 21 21 21
K4 16 13 11 11 13 13 13
K5 16 16 16 17 17 16 16
K6 16 18 18 18 18 18 18
K7 20 14 14 13 14 14 13
K8 20 22 22 22 22 22 22
K9 20 25 25 25 25 25 25

Total 168 165 164 163 166 165 164

Table 12. Volatility
of Table 11, K5: Pre-
process

S1 S2 S3 S4 S5 S6
K1 0.67 0.33 0.67 0.67 0.67 0.67
K2 0.67 0.67 0.67 0.67 0.67 0.67
K3 0.33 0.33 0.33 0.33 0.33 0.33
K4 1 1.67 1.67 1 1 1
K5 0 0 0.33 0.33 0 0
K6 0.67 0.67 0.67 0.67 0.67 0.67
K7 2 2 2.33 2 2 2.33
K8 0.67 0.67 0.67 0.67 0.67 0.67
K9 1.67 1.67 1.67 1.67 1.67 1.67

Table 10 presents the volatility of each working process (S1-S6) for each worker
(K1-K9).

• (Testrun3-2): The same as Testrun3-1.
On the basis of these results, the idle time must be set to 100 (min). Moreover,

the theoretical target throughput (T
′
s) can be obtained using the “Synchronization

with preprocess” method. This goal is as follows:

Ts ∼ 20× 6 (First cycle) + 17× 6 (Second cycle)

+ 20× 6 (Third cycle) + 20 (Previous process) + 8 (Idol-time)
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∼ 370 (min) (62)

The full synchronous throughput in one stage (20 min) is

T
′

s = 3× 120 + 40 = 400 (min) (63)

Using the “Synchronization with preprocess” method, the throughput is reduced
by approximately 10%. Therefore, we showed that our proposed “Synchronization
with preprocess” method is realistic and can be applied in flow production systems.
Below, we represent for a description of the “Synchronization with preprocess”.

In Table 13, the working times of the workers K4, K7 show shorter than others.
However, the working time shows around target time. Next, we manufactured one
piece of equipment in three cycles. To maintain a throughput of six units/day, the
production throughput must be as follows:

(60× 8− 28)

3
× 1

6
≃ 25 (min) (64)

where the throughput of the preprocess is set to 20 (min). In Equation (64), the value
28 represents the throughput of the preprocess plus the idle time for synchronization.
Similarly, the number of processes is 8 and the total number of processes is 9 (8 plus
the preprocess). The value of 60 is obtained as 20 (min) × 3 (cycles).

Table 13. Total manufactur-
ing time at each stage for each
worker, K5: Previous process

WS S1 S2 S3 S4 S5 S6
K1 20 18 19 18 18 18 18
K2 20 18 18 18 18 18 18
K3 20 21 21 21 21 21 21
K4 16 13 11 11 13 13 13
K5 16 * * * * * *
K6 16 18 18 18 18 18 18
K7 16 14 14 13 14 14 13
K8 20 22 22 22 22 22 22
K9 20 20 20 20 20 20 20

Total 148 144 143 141 144 144 143

Table 14. Volatility of Table
13, K5: Previous process

S1 S2 S3 S4 S5 S6
K1 0.67 0.33 0.67 0.67 0.67 0.67
K2 0.67 0.67 0.67 0.67 0.67 0.67
K3 0.33 0.33 0.33 0.33 0.33 0.33
K4 1 1.67 1.67 1 1 1
K5 * * * * * *
K6 0.67 0.67 0.67 0.67 0.67 0.67
K7 0.67 0.67 1 0.67 0.67 1
K8 0.67 0.67 0.67 0.67 0.67 0.67
K9 0 0 0 0 0 0

In Table 4, Testrun3/run4 indicates a best value for the throughput in the three types
of theoretical working time. Testrun2 is ideal production method. However, because it is
difficult for talented worker, Testrun3/run4 is a realistic method.

In Table 9 and Table 11, Testrun3-1/Testrun3-2 indicate a best value for the throughput
in the three types of theoretical working time. Testrun2 is ideal production method.
However, because it is difficult for talented worker, Testrun3-1/Testrun3-2 is a realistic
method.

The results are as follows. Here, the trend coefficient, which is the actual number of
pieces of equipment/the target number of equipment, represents a factor that indicates
the degree of the number of pieces of manufacturing equipment.

Testrun1: 4.4 (pieces of equipment)/6 (pieces of equipment) = 0.73,
Testrun2: 5.5 (pieces of equipment)/6 (pieces of equipment) = 0.92,
Testrun3-1 and Testrun3-2: 5.7 (pieces of equipment)/6 (pieces of equipment) = 0.95.
Volatility data represent the average value of each Testrun.


