
International Journal of Innovative
Computing, Information and Control ICIC International c©2021 ISSN 1349-4198
Volume 17, Number 3, June 2021 pp. 853–871

TOWARD INFORMATION-CENTRIC NETWORKING
RECEIVER-DRIVEN TRANSMISSION MECHANISM

OVER WIRELESS LOCAL AREA NETWORK:
IMPLEMENTATION AND OPTIMIZATION

Yifeng Liu1,2, Xuewen Zeng1,2, Rui Han1,2 and Peng Sun1,2

1National Network New Media Engineering Research Center
Institute of Acoustics, Chinese Academy of Sciences

No. 21, North 4th Ring Road, Haidian District, Beijing 100190, P. R. China
{ liuyf; zengxw; hanr; wangx }@dsp.ac.cn

2School of Electronic, Electrical and Communication Engineering
University of Chinese Academy of Sciences

No. 19(A), Yuquan Road, Shijingshan District, Beijing 100049, P. R. China

Received December 2020; revised April 2021

Abstract. Information-Centric Networking (ICN) is a novel network paradigm that is
compatible with the pull-based content delivery approach. The pull-based and connection-
less nature of ICN promotes the exploitation of receiver-driven transport protocols. In
deployment, using Wireless Local Area Networks (WLANs) to provide users low-cost,
easy-to-deploy and high-quality wireless accesses to ICN has practical significance. And
from the view of transmission, the Quality-of-Experience (QoE) of mobile applications in
ICN can be significantly enhanced through the exploitation of wireless networks. In this
paper, we introduce a natively supported receiver-driven transmission mechanism for ICN
and focus on the wireless access scenario. We have implemented it in the Linux kernel.
First, we present the core functionalities of the protocol, including a receiver-based Bottle-
neck Bandwidth and Round-trip propagation time (BBR) algorithm. Then, we explore the
major issues raised by our receiver-driven transmission in IEEE 802.11-based networks.
Through analysis of the transport model, we propose corresponding schemes to balance
communication overheads and control precision while achieving saturated throughput.
Finally, we experimentally validate through extensive experiments on a physical testbed
that the introduced design is robust, offers high performance and induces less overhead
on Content Routers (CRs).
Keywords: Information-centric networking, Receiver-driven transmission control,
WLAN, Receiver-based BBR, Optimization

1. Introduction. Over the past decades, the pressure of massive content delivery has
promoted the rethinking of Internet communication paradigm. Today’s CDN and P2P
system make efforts in this aspect. However, the rapid growth of traffic data still re-
veals shortcomings of their architecture on mobility support, content delivery efficiency,
scalability, etc.

Information-Centric Networking (ICN) [1] is expected as an innovative network para-
digm. And it is expected to have potential to enhance Fifth-Generation (5G) network on
transmission latency and data distribution efficiency. ICN advocates the decoupling of the
identifier and locator, which shifts the communication from host-centric to information-
centric. ICN is characterized by ubiquitous in-network caching, mobility support, build-in
multicast and inherent security. So far, many ICN architectures have been designed, such

DOI: 10.24507/ijicic.17.03.853

853



854 Y. LIU, X. ZENG, R. HAN AND P. SUN

as Named Data Networking (NDN) [2], MobilityFirst (MF) [3], DONA [4], and Network
of Information (NetInf) [5]. In contrast with those clean-state (e.g., NDN) that abandon
the IP layer, ICN over IP [6,7] (e.g., MF) greatly reduces deployment costs due to its
compatibility with current IP facilities. This incrementally deployed ICN has practical
significance that the compatibility contributes to the smooth evolution of ICN. In this
paper, our work is based on such ICN.
In ICN, data is treated as information objects. An information object is commonly

known as a Named Data Object (NDO) – an addressable data chunk representing a piece
of information. Each NDO has a globally unique identifier. NDO retrieval in ICN is na-
tively pull-based driven by user requests. Through Name Resolution System (NRS), user
gets the Network Address (NA) of NDO and sends requests (or interests) to this NA. And
then, the Content Router (CR) returns the corresponding NDO to the user. Defining an
overlay (e.g., HTTP) on the top of TCP can realize such request-response (or interests/
data) mode. However, considering the heavy tasks of CR (high throughput forwarding,
traffic monitoring, cache and storage [8,9]), its “sender-based” nature of transmission
control puts massive pressure on CRs. By comparison, the native receiver-driven trans-
mission offloads the state management and transmission control to all users and makes
CRs stateless, which is more in agreement with the “connection-less” and “pull-based”
nature of ICN. Moreover, this way greatly reduces the complexity of CRs and improves
the robustness and performance of CRs.
As one of the most widely used wireless access technologies, Wireless Local Area Net-

work (WLAN) [10] provides low-cost, easy-to-deploy and high-quality Internet access
services. With the rapid increase of number of mobile users, users accessing to ICN sys-
tem through the IEEE 802.11-based (Wi-Fi) networks is common. From the perspective
of transmission, the wireless network, as the last-hop adjacent to the users, is usual-
ly the bottleneck of the whole transmission path. And the QoE (Quality-of-Experience)
of mobile applications in ICN is critically subject to the transmission behavior on such
medium. In fact, the receiver-driven way can bring many gains through exploiting in-
formation available only at the receiver end [11]. For instance, transmission can faster
recover from loss state for that the receiver directly accessing to the receive buffer has a
better knowledge of receiving situations without incurring the overhead of feedbacks (e.g.,
SACK in TCP). Moreover, since the user is adjacent to the wireless last-hop, it has the
first-hand knowledge about wireless information, such as Received Signal Strength Indi-
cation (RSSI). This may be useful for optimizing transmission control, for example, when
handoff occurs, the user can fast detect this non-congestion related outage and recover
the transmission soon on the new path. On the other hand, due to Wi-Fi’s characters
of high degrees of aggregation (A-MPDU and A-MSDU in IEEE 802.11n/ac) and RTT
variance, optimizing transmission on such medium has practical significance for deploying
a high-available ICN system.
In this paper, we introduce a receiver-driven transmission mechanism with BBR and put

it into the ICN context to provide pull-based, reliable, ordered delivery of streams of octets
between users and CRs. Particularly, we focus on the performance in the wireless access
scenario. We have implemented the mechanism in the Linux kernel (4.19.97). A demo
with resource code is available on [12]. Through POSIX APIs, user-space programs can
request their desired NDOs. The receiver-driven transmission does not require connection
setups in agreement with “connection-less” nature of ICN and makes CRs stateless by
offloading transmission control to all receivers.



ICN RECEIVER-DRIVEN TRANSMISSION MECHANISM 855

The contribution of this work can be summarized as

• We show the receiver-driven transmission stack implemented in the kernel space and
describe the key functionalities, especially a receiver-based BBR. To the best of our
knowledge, we are the first to implement the BBR at the receiver end and evaluate
its performance in practical uses.

• We focus on major issues raised by receiver-driven way in the context of Wi-Fi
network. Through analysis of the transport model, we present requests aggregation
and adjust the congestion window (cwnd) to achieve the saturated throughput.

• We conduct extensive experiments on a physical testbed to evaluate the performance
of receiver-driven transmission under various link conditions, especially in Wi-Fi
scenarios. The experimental results show that our receiver-driven transmission has
high performance while consuming less resources on CRs.

The remainder of the paper is organized as follows. In Section 2, we review the related
work about receiver-driven transmissions and the BBR algorithm. Section 3 presents the
whole receiver-driven transmission system implemented in the kernel space. In Section
4, we explore major issues in Wi-Fi environment and propose corresponding schemes
to optimize it. Then, we evaluate performance and analyze it in Section 5. Finally, we
conclude this paper in Section 6.

2. Related Work. Two key research fields related to our work: receiver-driven transmis-
sion and congestion control. This section presents a comprehensive study of the current
literature on them.

2.1. Receiver-driven transmission. There is some literature on receiver-driven trans-
mission. NETBLT (Network Block Transfer) [13] may be one of the first transport proto-
cols that delegate some transport functionalities to the receiver. It places retransmission
timer at the receiver end to make error recovery more efficiently. In its later work, more
control functionalities are delegated to the receiver for better performance. WTCP (Wire-
less Transmission Control Protocol) [14] delegates sending rate calculation to the receiver
end. In TFRC (TCP-Friendly Rate Control) [15], receiver records the history of loss state
and reports it to the sender. The latter then calculates the TCP-friendly sending rate ac-
cording to feedbacks. TCP-Real [16] is a receiver-oriented TCP-compatible and -friendly
protocol with aim to improve real-time capabilities of TCP. It tracks packet loss and de-
termines the sending rates at the receiver. [17] and [18] delegate the receiver to control
the bandwidth shares of TCP flows by adapting the receiver’s advertised window and
delay in returning ACK messages.

In contrast with above protocols that just place part of transmission control func-
tionalities at the receiver, WebTP (Web Transport Protocol) [19] and Reception Con-
trol Protocol (RCP) [20] offload all control functions to the receiver. WebTP presents a
receiver-oriented, request/response protocol for the Web. It is designed to be completely
receiver-based in terms of transport initiation, flow control and congestion control. RCP is
a receiver-centric transport protocol over wireless environments, especially in the context
where mobile hosts equip with multiple interfaces. Authors argue that RCP allows for
better congestion control, loss recovery and power management mechanisms compared to
sender-centric ways. From the perspective of transport, [11] summarizes the key advan-
tages and vulnerabilities of receiver-driven TCP. It concerns that transmission controlled
by receivers introduces an incentive for misbehavior that receivers can illegally manipulate
the congestion control to obtain higher throughput or lower latency. The paper argues
that transmission should strike a balance between enforcement mechanisms and complete



856 Y. LIU, X. ZENG, R. HAN AND P. SUN

trust of endpoints. However, despite this, receiver-driven way brings some gains in perfor-
mance and functionality, such as faster recovery from loss state and first-hand knowledge
about wireless link, which could help with transmission control on wireless paths. On the
other hand, receiver-driven transmission can reduce the complexity of servers because it
distributes the state management and control across the large number of clients.
In ICN domain, Carofiglio et al. propose the Interest Control Protocol (ICP) as a

receiver-driven transport protocol for Content-Centric Network (CCN) [21]. It adopts a
window-based interest flow control mechanism and depends on delay measurements and
timer expirations to ensure reliability. Afterwards, authors propose the Remote Adap-
tive Active Queue Management (RAAQM) [22] applied in CCN. It focuses on multipath
transmission and realizes separate RTT monitoring on each route. RAAQM adjusts con-
gestion window of each flow to achieve efficient and fair resource utilization. NetInf TP
[23] develops a receiver-driven transport protocol which provides reliable data transfer
with TCP-like congestion control and a new type of retransmission. Simulation results
show that NetInf TP slightly outperforms TCP New-Reno.

2.2. Congestion control and BBR. Congestion control is key to transmission. To the
best of our knowledge, all of above receiver-driven protocols adopt a loss-based conges-
tion control which adopts the Additive Increase Multiplicative Decrease (AIMD) model.
Loss-based congestion control (e.g., CUBIC [24]) leads to “bufferbloat” issue [25] when
bottleneck buffers are large and leads to low throughput when bottleneck buffers are
small. In addition, window-based rate control, which just uses congestion window (cwnd)
to bound the amount of data inflight (data sent but not yet acknowledged), incurs bursty
traffic, ACK compression and multiplexing problems [26].
To deal with these, Google proposes a new congestion control algorithm, named BBR

[27]. With the pacing which uses the window to determine how much to send out but
uses rates instead of acknowledgements to determine when to send, BBR bounds the
amount of data inflight near the estimated Bandwidth-Delay Product (BDP) and keeps
rates equal to the estimated bottleneck bandwidth. To achieve this, BBR dynamically de-
tects the maximum bandwidth and the minimum Round-Trip Time (RTT) by ProbeBW
and ProbeRTT state. The ProbeBW is the cycle, wherein the pacing gain periodically
changes in {1.25, 0.75, 1, 1, 1, 1, 1, 1}. The phase of 1.25 means packets more quickly en-
tering into the network for bandwidth detection. On the other hand, BBR periodically
turns to ProbeRTT state to detect the minimum RTT. In this way, BBR can generate a
smaller intermediate queue which introduces lower delays while achieving a full bandwidth
utilization. Now, BBR is available on many Linux’s distributions and many protocols sup-
port it, e.g., QUIC [28]. And as an emerging algorithm, BBR is still under standardiza-
tion. [26] and the series of IETF documents [29-33] present the state machine model (i.e.,
Startup, Drain, ProbeBW and ProbeRTT state) and details of it. In the later work [34-36],
many improvements are proposed, namely BBR v2.0 which has a state machine similar to
v1 at high level but many details are changed, such as adjustment of control parameters
(pacing gain, cwnd gain), and fairness.
BBR over wireless environments has aroused extensive attention. In [37], the authors

evaluate the performance of BBR in the cellular networks. And in [36], the authors trace
the packets over a Wi-Fi path where the TCP sender is on Ethernet and the receiver
is on a Wi-Fi network. Due to Wi-Fi’s aggregation and RTT variance, it introduces an
aggregation estimator, which allows the sender to put extra data inflight, to achieve
saturated throughput over Wi-Fi. [38,39] argue that TCP BBR is inefficient in exploring
the Wi-Fi bandwidth due to the contradiction between TCP BBR’s queue control and Wi-
Fi’s aggregation function. It reveals the impact of TCP TSQ and BBR on Wi-Fi uplink



ICN RECEIVER-DRIVEN TRANSMISSION MECHANISM 857

and downlink throughput. The author increases the value of 1.25 for the pacing gain in
the cycle {1.25, 0.75, 1, 1, 1, 1, 1, 1} to allow a longer queue for higher throughput, at the
cost of slight increased delay.

All in all, from the view of protocol, most of receiver-driven mechanisms (e.g., WTCP,
TFRC, TCP-Real) mentioned above all make incremental improvements based on TCP.
However, TCP’s connection-oriented mode and data-ack style of message exchange are in
contradiction with pull-based, connection-less nature of ICN. From the view of transmis-
sion control, RCP, RAAQM and NetInf TP use requst-data exchange for data transfer,
but they adopt AIMD or AIMD-like congestion control which leads to a high propagation
delay. BBR is a good choice. However, receiver-based BBR still lacks on the literature.
And BBR optimization over wireless network is based on TCP. We overcome the limita-
tion of these schemes, place the BBR congestion control in receiver-driven transmission
and improve its performance over WLANs.

3. System Design and Implementation. The whole receiver-driven transmission sys-
tem is described in this section. We first give the design of protocol. Then, we describe the
protocol stack architecture implemented in the kernel space. And finally, we detail the key
functionalities for receiver-driven transmission, including timeout request retransmission,
fast request retransmission and receiver-based congestion control (BBR).

3.1. Protocol description. To incrementally deploy the ICN, we place an EID layer
on the IP layer to explicitly announce the EID of the content requested by the receiver
in both request and data directions. Here, the EID is a globally unique identifier of the
content. For executing ICN’s cache policy, the EID layer is visible to the intermediate
CRs. A receiver-driven transport layer is upon the EID layer. In receiver-driven way, data
acknowledge the requests sent by the receiver instead of receiver acknowledging received
data by ACK messages. Therefore, to provide pull-based, reliable, ordered delivery of
streams of octets, the layer needs two essential fields, namely offset and length. The 2-tuple
<offset, length> controlled by the receiver represents which data should be sent and how
much data can be sent. Here, the two fields are both 32-bit. Besides, we set another 1-bit
field app limit which is to explicitly notify status of sender’s application layer. For those
end-to-end streaming media transmission, congestion control at the receiver end needs
such a field to distinguish between different reasons of bandwidth decreasing – congestion
or limitation of sender’s application. However, in ICN, this scenario is not common due
to ICN’s chunk-based storage. On the other hand, for higher protocol efficiency, we allow
the receiver to carry, if necessary, more control information in the option field of receiver-
driven transport protocol. As usual, the item of option field is based on Tag-Length-
Value (TLV) structure. The option filed enables the receiver to request the discrete byte
fragments using one request. This is useful for recovery from the loss state in an effective
fashion.

3.2. Protocol stack architecture. The whole protocol stack has been implemented
in the Linux kernel space, which is shown in Figure 1. It includes not only a receiver-
based congestion control but all essential functionalities for transmission such as reliability
guarantees, and reordering. The receiver-driven mechanism is integrated into a kernel
module working on top of the receiver’s IP layer. And we provide a set of POSIX APIs
(e.g., socket, connect, sendto, recvfrom, and close) for user-space programs to obtain
data from ICN. Specially, the semantics and functions of these APIs are reconstructed.
For example, the “connect” has not the semantics of TCP’s triple handshake. Instead,
it represents that user asks for some content. Thus, in addition to the NA (IP address)
of the CR, we allow the user-space program to pass the EID of desired content, which is



858 Y. LIU, X. ZENG, R. HAN AND P. SUN

Figure 1. Protocol stack architecture in the kernel space

used to fill the EID layer of requests. The functionality of sender is simple that it just
sends byte fragments according to the information – EID, offset and length – carried in
the requests.
At the high level, our implementation has a framework similar to Linux TCP. We also

utilize a two-layer lock and a backlog queue to synchronize information while minimizing
contention for resource.
As shown in Figure 1, request engine and congestion control drive the pull-based trans-

mission. It is still based on the sliding window mechanism, which has proven to be effective
in dealing with transmission complexity. Those between req una and req nxt represent
the amount of data inflight (data that has been requested but not yet received). In order
to sampling, each item in the sliding window records the information of the request when
the request sent, such as current timestamp, the number of delivered packets, send time of
the most recently sent request, and timestamp of the most recently received packet. For
each data packet arriving at the receiver, we can not only estimate the Round-Trip Time
(RTT) and Retransmission Time-Out (RTO), but estimate the delivery rate which is im-
portant for BBR. An entire and robust method of delivery rate estimation is elaborated
in [40]. The sampling results (delivery rate and RTT) will be passed to congestion control
(BBR) module which will return two parameters (pacing rate and cwnd) to control data
requesting in turn.
We utilize an out-of-order (ofo) queue to reorder those out-of-order packets. The ofo

queue is a red-black tree, which can search, insert or delete one packet within O(logn).
Packets in the ofo queue are queued by byte offset in ascending order. When the offset of
the incoming packet is not equal to req una, we enqueue the packet into the ofo queue.
And when the offset of the first packet in ofo queue equals req una, we add consecutive
packets starting with the head of ofo queue into the receiver queue (Figure 1) for accessing
by program. Like TCP, reliability is guaranteed by timeout request retransmission and
fast request retransmission.

3.3. Timeout request retransmission. Timeout request retransmission is triggered
by timer expiration. And timeout setting relies on RTT and RTO estimate. We adopt
a similar smooth RTT/RTO estimate method referring to RFC 6298 [41]. Further, we
make some changes in timeout timer management for receiver-driven transmission. The
rules of timer management are as follows:



ICN RECEIVER-DRIVEN TRANSMISSION MECHANISM 859

• Every time a request is sent, if the timer is not running, the receiver starts it so that
it expires after RTO. And when all requested data have arrived at receiver (req wnd

equals zero), turn off the timer.
• Restart the timer with current estimated value of RTO only if a data packet arrives
in order (the offset field of the packet just equals req una).

• When the timer expires, we re-request those segments that have been requested but
are thought to be lost.

Unlike TCP just retransmitting the earliest segment that has not been acknowledge-
ment, receiver re-requests all segments that are thought to be lost when the timer expires.
This is because that receiver has direct access to the receiver queue and request queue
to get more information about packet loss. In addition to the earliest requested segment
that is not received, we will re-request all of those segments that have been requested but
do not arrive at receiver (i.e., between req una and req nxt) within the estimated RTO.

3.4. Fast request retransmission. Fast request retransmission can detect packet loss
earlier than timeout request retransmission so that transmission can recover from loss state
faster. Fast request retransmission depends on statistics of the number of arriving out-
of-order segments. In TCP, generally, once sender receives 3 duplicate ACKs or Selective
ACKs (SACK), it thinks the packets are lost. The value of 3 is to tolerate for slight
out-of-order phenomenon in data direction. Out-of-order in the feedback direction does
not matter because of ACK’s semantics of cumulative acknowledgement. However, this
may be different in receiver-driven transmission for that out-of-order in both directions
(request direction and data direction) can affect data delivery. Therefore, we increase this
value to 6. Once the receiver observes 6 out-of-order packets, it immediately retransmits
a request again to ask for that packet not yet received.

3.5. Receiver-based congestion control. We transplant the entire code of Linux (4.14.
97) TCP BBR to the receiver end. In addition, a pacing function is used by receiver-based
BBR to pace the requests smoothly. BBR is a model-based congestion control which
follows a state machine including four states: Startup, Drain, ProbeBW and ProbeRTT.
Detecting the bottleneck bandwidth (BtlBw) and RTTmin, BBR bounds the amount of
data inflight near the estimated BDP and keeps the send rate equal to the estimated
BtlBw. This brings a smaller intermediate queue (i.e., lower delays) while achieving a
high throughput.

Figure 2 shows an overview of the receiver-based BBR. Receiver-based BBR still utilizes
two control parameters to control the transmission, namely pacing gain and cwnd gain.

Figure 2. BBR and pacing at the receiver end



860 Y. LIU, X. ZENG, R. HAN AND P. SUN

Learning from link conditions, receiver-based BBR determines the values of control pa-
rameters based on the state machine and finally returns pacing rate and cwnd which
control the data requesting in turn. The pacing rate directly controls the request rate to
indirectly control the sending rate of sender to be equal to BtlBw. Cwnd is the upper limit
of the amount of data inflight. The outputs – pacing rate and cwnd – are still yielded by
following formulas, respectively:

pacing rate = pacing gain× BtlBw (1)

cwnd = cwnd gain× BtlBw × RTTmin (2)

Though pacing can be realized by Fair Queue of Qdisc, we implement an internal
pacing like Linux TCP does for accuracy. The pacing function sets one high resolution
timer (hrtimer) per socket and one tasklet per CPU which is a micro thread in the Linux
kernel. Suppose that the receiver sends a request asking for M bytes data. It will start
the hrtimer so that it expires after M

pacing rate
. And before sending the next request, the

receiver will check whether the hrtimer is enabled. If true, the request will not be sent.
And when the hrtimer expires, it will delegate the task of sending request to the tasklet
of current CPU to trying to send the next request at the appropriate time. In this way,
the pacing function paces the requests instead of pouring them down.

4. Optimization over Wireless Network. In this section, we first give the transport
model of receiver-based BRR and analyze the characteristic of wireless media. Based on
these, we propose the request aggregation to improve transmission efficiency and band-
width detection capability. Then, we adjust the cwnd to solve the cwnd exhaustion issue.

4.1. Transport model. Similar to MSS in TCP, we set up a minimum transmission
unit that each data frame returned by CRs carries a payload of UNIT MSS bytes. And
each request must ask for a multiple of UNIT MSS (i.e., the length field of request is
n× UNIT MSS, and the n is an integer).

For receiver-based BBR, the key is to estimate the bottleneck bandwidth B̂tlBw and

R̂TTmin by sampling. For an NDO which has m×UNIT MSS (m ∈ N+) bytes, it has m
minimum transmission units. For each unit ui (i ∈ [1, m]), we suppose that the receiver
requests it (i.e., sends a request) at T req

i and receives it at T rcv
i . T delivered

i is the timestamp
of the most recently received data when sending a request for ui.
Define

p(t) =

{

1, t = T rcv
i

0, others
, i ∈ [1, m] (3)

Then ui generates a sample when it arrives at the receiver:

deliveryRatei =
∆delivered

∆t
=

∑T rcv
i

T
req

i

p(t)

T rcv
i − T delivered

i

(4)

rtti = T rcv
i − T

req
i (5)

Afterwards, we get

B̂tlBw = WindowMax(deliveryRatei) (6)

R̂TTmin = WindowMin(rtti) (7)

where the WindowMin gets the minimum value in the window of 10 seconds and the

WindowMax gets the maximum value in window of 10 R̂TTmin. Finally, according to
the state machine, receiver-based BBR determines pacing gain and cwnd gain to control
requesting data.



ICN RECEIVER-DRIVEN TRANSMISSION MECHANISM 861

IEEE 802.11-based network is characterized by high degrees of aggregation (A-MPDU
and A-MSDU in IEEE 802.11 n/ac) and RTT variance. [39] argues that BDP is not the
optimal point to the Wi-Fi networks. In Figure 3(a), the authors think the point B is
the best. It achieves a higher throughput, at the cost of a little extra delays. This is
because a longer queue can fully utilize the aggregation functionality of Wi-Fi. In fact,
in the phase of “bandwidth limited”, the Round-Trip Time (RTT) of BBR over Wi-Fi
is fluctuating. Despite this, BBR can always detect the RTTmin due to its ProbeRTT
state and the value of 0.75 for the pacing gain in ProbeBW state. And this is shown in
Figure 3(b). In Formula (7), it can be seen that BBR always uses the RTTmin instead of
the real-time fluctuating RTTs. Therefore, most of the time, each phase in the ProbeBW

{1.25, 0.75, 1, 1, 1, 1, 1, 1} lasts for the RTTmin (i.e., R̂TTmin = RTTmin).

(a)

0 10 20 30 40 50 60 70
0

2

4

6

8

10
ro

un
d-

tri
p 

tim
e 

(m
s)

Time (sec)

 bandwidth limited
 app limited

(b)

Figure 3. Characteristics of BBR over Wi-Fi: (a) Delivery rate and round-
trip time vs. the amount of data inflight; (b) experimental data: round-trip
time of BBR over Wi-Fi (IEEE 802.11ac)

4.2. Request aggregation. For efficiency, we introduce a request aggregation mecha-
nism to determine the amount of requested data of one request. And we further adjust
the degree of request aggregation to fit the wireless environment.

Request aggregation means that one request asks for more than 1× UNIT MSS bytes.
The motivations for request aggregation are as follows:

• In receiver-driven transmission, packets sending is limited by both sender and receiv-
er’s protocol stacks’ sending performance. For many end devices, requesting data
without aggregation cannot achieve high throughput anyway.

• One request just asking for UNIT MSS bytes will result in high communication
overheads of control frames.

• Since the requests pacing is based on hrtimer, too higher request frequency will
accumulate more hrtimer timer errors and take more CPU resources. This will affect
the accuracy of pacing and finally degrade the bandwidth.



862 Y. LIU, X. ZENG, R. HAN AND P. SUN

In Figure 4, we experimentally show how request aggregation affects the actual through-
put. With no limits of bottleneck bandwidth and congestion window, we use differ-
ent request rates (200Mbps, 400Mbps, 600Mbps and 800Mbps) to ask for data. Here,
UNIT MSS is set to be 1400 bytes. “Aggregation counts n” (n ∈ {1, 2, 8, 20, 40, 80})
means that each request asks for n×UNIT MSS bytes. It is obvious that requesting data
with low aggregation count (e.g., 1, 2) has poor scalability, especially in high-bandwidth
transmissions. It causes more “throughput loss” that the throughput cannot match the
request rate anyway. Moreover, without request aggregation, the degree of “throughput
loss” depends on the hardware performance of the receiver. The lower the performance,
the higher the degree of bandwidth loss.

200 400 600 800
0

200

400

600

800

Th
ro

ug
hp

ut
 (M

bp
s)

 Aggregation Counts: 1
 Aggregation Counts: 2
 Aggregation Counts: 8
 Aggregation Counts: 20
 Aggregation Counts: 40
 Aggregation Counts: 80

Requests Pacing Rate (Mbps)

throughput loss

throughput loss

Figure 4. Throughput under different request rates and aggregation
counts with no limits of bottleneck bandwidth and congestion window

However, high degree of request aggregation means that traffic seems like a burst in
small timescale. And it is harmful to the fine-gained control over the transmission. In
Wi-Fi networks, this may introduce packet loss, especially when multiple flows sharing a
bottleneck. In fact, the request aggregation should balance communication overheads and
control precision. We firstly set an aggregation count limit L which equals 64. It means
that the amount of data requested by one request (including length field and option field)
is no more than L × UNIT MSS bytes. Then, we use the following equation to determine
the aggregation count and the amount of data requested by one request is aggregation
counts × UNIT MSS bytes:

Aggregation count = max

(

min

(

request rate

UNIT MSS ∗ 1000
,L

)

, 1

)

(8)

where the request rate is in bytes/s and we prefer the amount of data requested per
millisecond (ms) for that the order of magnitude of transmission is usually 10−3(s). In
other words, we tend to request some data every millisecond rather than requesting a
large amount at a time. It is obvious that when request rate is low, we choose a low
aggregation count which is enough to achieve saturated throughput. And when request
rate is high, we use a high aggregation count to avoid “throughput loss”. Finally, we
utilize L (= 64) to limit the aggregation count in order to avoid serious bursty traffic.
Due to ICN’s ubiquitous caching, users tend to access NDOs nearby. Therefore, with

improvement of Wi-Fi efficiency, the transmission will be characterized by a very low
delay (e.g., 2ms) in the state of “app limited”. Given that the throughput of Wi-Fi is



ICN RECEIVER-DRIVEN TRANSMISSION MECHANISM 863

not as high as wired networks, aggregation count will be small (e.g., 60Mbps throughput
corresponds to the about 5 aggregation counts). And since each phase in the ProbeBW
{1.25, 0.75, 1, 1, 1, 1, 1, 1} lasts for the RTTmin (ms), receiver-based BBR only requests a
few more units (about 0.25×aggregation count×RTTmin) in the gain phase (pacing gain
equals 1.25) to detect the more bandwidth. In Formula (4), ∆t can be approximately
equal to the real-time RTT which is fluctuating. Therefore, in such case, the samplings
(deliveryRatei =

∆delivered
∆t

) are hard to detect the real maximum bandwidth because the
growth ratio of ∆delivered is likely to be offset by the fluctuation of real-time RTTs. In
other words, the ability of (receiver-based) BBR to detect maximum bandwidth is not
enough to make the transmission converge to the point B from A in Figure 3(a).

To solve this, we suggest enhancing the bandwidth detection capability in the context
of Wi-Fi when BBR is in ProbeBW state and the following condition is met

avg(rtti)

R̂TTmin

> 1.25×
R̂TTmin

1
(9)

where the meaning of rtti, R̂TTmin has been explained above (in Section 4.1) and they are

both in milliseconds. Besides the minimum RTT (R̂TTmin), we also record the average
RTT in the window of 10 estimated RTTs. Based on this, we make a rough estimate
that in the gain phase of ProbeBW, when the growth ratio of ∆delivered brought by
pacing gain of 1.25 is not obviously greater than the influence of RTT fluctuation, we

think it is time to try to detect more bandwidth. And it is obvious that when the R̂TTmin

is smaller and real-time RTT is more fluctuating, Inequality (9) is more likely to be true.
To try to detect more bandwidth, we increase the request aggregation count. It is simple

but effective. We increase the aggregate count by 3 folds and do not adjust the control
parameters of receiver-based BBR so that it keeps a similar behavior at the macro level.
For Wi-Fi, saturated throughput means full utilization of its aggregation functionality
(e.g., A-MPDU or A-MSDU). And it can be defined that each time the access point’s
Wi-Fi driver competes and gets an opportunity to transmit data to the user, its buffer
queue always has enough data whose size is greater than the maximum aggregation size.
However, BBR’s queue control may damage the throughput under the “noisy” of Wi-Fi’s
behaviors. In Figure 5, we give the waveform of packets arriving at access point’s Wi-Fi
driver queue in the small timescale. If the input rate of the queue is constant at the macro
level, the large aggregation count can generate a longer queue in a short time. And this is
more conducive to fully use the Wi-Fi’s aggregation functionality, because when the access
point obtains the transmit opportunities later, there is more likely to be enough data in
the queue. Besides, increasing the aggregation count further decreases the communication
overheads of control frames (requests), which is very meaningful in the context of Wi-Fi.
On the other hand, even the duration of gain phase of ProbeBW is very short, a large
aggregation count will not lead to a too weak ability of bandwidth detection.

4.3. Cwnd adjustment. Receiver-based BBR sometimes cannot achieve the maximum
throughput over Wi-Fi. The main reason is cwnd exhaustion caused by aggregation and
RTT variance. Normally, BBR set cwnd to be 2 × BDP. In the wired network which is
relatively stable, the amount of inflight data is usually near the BDP. There are enough
quotas (cwnd-infligh) for BBR to request data faster to detect higher bandwidth during
the gain phase where pacing gain is 1.25. However, in the context of Wi-Fi, the amount
of data inflight will achieve a high level which is far greater than one BDP. This is because
data requested before does not arrive in time while the receiver continues to request new
data. Therefore, there are likely no enough quotas in cwnd for receiver-based BBR to



864 Y. LIU, X. ZENG, R. HAN AND P. SUN

Figure 5. In small timescale, the waveform of packets arriving at access
point’s Wi-Fi driver queue is a series of pulses.

detect the maximum bandwidth of Wi-Fi. And when RTTmin is smaller, RTT variation
is greater than RTTmin, the cwnd exhaustion is more likely. It even can suppress data re-
questing in the whole cycle {1.25, 0.75, 1, 1, 1, 1, 1, 1}, which leads to link underutilization.
Thus, the key is to have enough cwnd. [35] and [36] propose an aggregation estimator
to estimate the degree of Wi-Fi aggregation. And it adds a value to the original cwnd
(2 × BDP) to avoid cwnd exhaustion under RTT variance. By contrast, we adopt a di-
rect and effective method for receiver-based BBR, namely ignoring cwnd’s restriction on
requesting data during the whole ProbeBW state. This adjustment does not degrade the
advantage of BBR in aspect of delay, because BBR bounds the amount of inflight data
through BDP instead of cwnd.

5. Evaluation and Analysis. In this section, we conduct extensive experiments to
evaluate the performance of our receiver-driven transmission. We test the performance of
receiver-driven transmission under various conditions, especially in the wireless network.
The experimental results and analysis show the high performance and robustness of our
receiver-driven transmission.

5.1. Experimental setting. In Figure 6, we build up a physical testbed, which involves
three nodes – one client (user), one forwarding device and one server. Our receiver-driven
transmission mechanism works in the client’s kernel space. And a receive program runs
on the client’s application layer to receive data through POSIX APIs. Through Wi-Fi
or Ethernet, the client connects to the forwarding device and continuously requests data
from the server.
For comparison’s sake, we mainly test TCP with BBR and TCP with CUBIC in our

testbed. And to simulate various link conditions (e.g., delay, bandwidth, jitters), we utilize
tc to set buffer queues, which have different QoS rules, to control traffic forwarding. The
tc acts on both eth1 and eth2 instead of eth0 or eth3 because TSQ may limit TCP
performance. During the transmission, we observe the size of buffer queue in data direction
and the throughput of client.



ICN RECEIVER-DRIVEN TRANSMISSION MECHANISM 865

Figure 6. Physical testbed layout

(a) (b)

Figure 7. Bandwidth utilization under different bottleneck bandwidth:
(a) Static tests; (b) dynamic tests in 35 seconds: RTT = 5ms, bottleneck
bandwidth = 200 → 500 → 800 → 1000 → 500 → 200 (Mbps)

5.2. Basic evaluation. Bandwidth utilization is key to transmission. Under various link
conditions, we test the throughput of our receiver-driven transmission at steady state. In
Figure 7(a), it can be seen that receiver-driven transmission achieves a high bandwidth
utilization same to TCP. Figure 7(b) shows the bandwidth utilization in 35 seconds under
dynamic bottleneck bandwidth. It is obvious that our receiver-driven transmission has
a good adaptability that it can fast converge to the high throughput when bottleneck
bandwidth changes.

Chunk-based storage in ICN means that clients can access different pieces of one re-
source from multiple nodes simultaneously. To distinguish different flows and print them
separately, we utilize docker to test. On the client, each container has its own virtual
NIC and runs the receive program to request data from the server. In Figure 8, we test 4
receiver-driven flows sharing a 100Mbps-20ms bottleneck, 200Mbps-20ms bottleneck and
300Mbps-20ms bottleneck, respectively. It can be seen that 4 flows will converge to a
fair share soon. The downward facing triangular structures are ProbeRTT states which
can accelerate final convergence. Moreover, when a flow ends, other flows will soon take
up the available bandwidth converging to a new fair share. And this does not cause the
bandwidth loss – the total throughput (“Total” in Figure 8) keeps constant during the
transmission.



866 Y. LIU, X. ZENG, R. HAN AND P. SUN

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

Th
ro

ug
hp

ut
 (K

B/
s)

Time (sec)

 Total
 Flow 1
 Flow 2
 Flow 3
 Flow 4

(a)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
0

5000

10000

15000

20000

25000

Th
ro

ug
hp

ut
 (K

B/
s)

Time (sec)

 Total
 Flow 1
 Flow 2
 Flow 3
 Flow 4

Flow 1 ends

(b)

0 5 10 15 20 25 30 35 40 45 50 55 60
0

5000

10000

15000

20000

25000

30000

35000

40000

Th
ro

ug
hp

ut
 (K

B/
s)

Time (sec)

 Total
 Flow 1
 Flow 2
 Flow 3
 Flow 4

Flow 1 ends

(c)

Figure 8. 4 receiver-driven flows sharing a bottleneck: (a) 100Mbps-20ms;
(b) 200Mbps-20ms; (c) 300Mbps-20ms

5.3. Evaluation over Wi-Fi. We first give the proof of our analysis of problem in
Section 4.2 and show the effectiveness of optimization. In Figure 9(a), the transmission
link includes about a 2ms-RTT wireless link (IEEE 802.11ac) and about 1ms-RTT wired
link. And in Figure 9(b), we set up a 5ms-RTT wired link. Along with the Wi-Fi hop,
the transmission link has about 7ms RTT. We compare the throughput and RTT of
receiver-driven transmission before and after optimization. It can be seen that compared
with 2ms link, non-optimized transmission on 7ms link (“Throughput: non-optimized” in
Figure 9(b)) can make better use of Wi-Fi’s aggregation functionality to achieve saturated
throughput. This is consistent with our previous analysis. The reason is that on 7ms link,
receiver-based BBR has a longer gain phase (pacing gain = 1.25) so that it can request
more data, in which it is more likely to detect more bandwidth in the wireless network. By
comparison, optimized receiver-driven transmission (“Thoughput: optimized” in Figure
9) does not have this problem. It can adapt to different Wi-Fi links achieving saturated
throughput. Meanwhile, it introduces very few extra delays (“RTT: optimized” in Figure
9).
Figure 10 gives the experiments of throughput, delay and multiple flows in both IEEE

802.11ac and IEEE 802.11n networks. For comparison’s sake, in addition to standard
TCP, we reproduce the BBRp algorithm [39] and applied it to the receiver-driven trans-
mission. We test two values of the parameter bbrp pace of BBRp, namely bbrp pace



ICN RECEIVER-DRIVEN TRANSMISSION MECHANISM 867

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

 Throughput: not optimized
 Throughput: optimized
 RTT: not optimized
 RTT: optimized
 RTT: idle state

Time (sec)

Th
ro

ug
hp

ut
 (K

B/
s)

0

5

10

15

20

25

30

35

40

 R
TT

 (m
s)

(a)

0 5 10 15 20 25 30 35 40 45 50
0

2000

4000

6000

8000

10000

12000

 Throughput: not optimized
 Throughput: optimized
 RTT: not optimized
 RTT: optimized
 RTT: idle state

Time (sec)

Th
ro

ug
hp

ut
 (K

B/
s)

0

5

10

15

20

25

30

35

40

R
TT

 (m
s)

(b)

Figure 9. Throughput and RTT of receiver-driven transmission before
and after optimization over IEEE 802.11ac. We take this to prove the
analysis and optimization. (a) Only IEEE 802.11ac. (b) An IEEE 802.11ac
hop along with a 5ms-RTT wired link.

= 6 and bbrp pace = 8. The two values correspond to the pacing gain of 1.5 and the
pacing gain of 2, respectively.

In Figures 10(a) and 10(d), it can be seen that our receiver-driven transmission achieves
the full Wi-Fi bandwidth even slightly outperforming TCP with CUBIC in the IEEE
802.11ac scenarios. By comparison, TCP with the standard BBR and BBRp have the
issue of cwnd exhaustion which limits data requesting and detecting maximum bandwidth.
Therefore, their throughputs are not very high. In terms of RTT, our receiver-driven
transmission just introduces slight extra delays, which is shown in Figures 10(b) and
10(e). By comparison, CUBIC brings a high delay in the lifetime of the transmission.
In Figures 10(c) and 10(f), it can be seen that multiple receiver-driven flows can fast
converge to a fair share soon.

5.4. Resource consumption. On a link with 500Mbps bottleneck bandwidth and 10ms
RTT, we simulate the scenario where the CR simultaneously sends data to 100 users for 60
seconds. Table 1 shows that our receiver-driven transmission has a low CPU consumption,
about 4.8%, while the TCP with BBR and TCP with CUBIC take 8.8% and 7.0%, respec-
tively. “Memory usage” represents the memory consumed by transmission. In addition
to the size of receiver queue, sender-based transmission mechanism must consume 3KB
memory for each connection to record the state information. By comparison, in receiver-
driven transmission, CRs are stateless and they just respond the content according to the
incoming requests. On the other hand, to realize a complete transmission functionality
on CR, receiver-driven transmission only needs about 500 extra lines of C code while
sender-based one like TCP needs about 15000 lines which is mainly to deal with state

Table 1. Resource consumption on the server

CPU usage Memory usage per
Code (lines) Stateful

(%) connection (bytes)
Ours 4.8± 0.4 0 ≈ 500 no

TCP with BBR 8.8± 0.6 ≈ 3000 > 15000 yes
TCP with CUBIC 7.0± 0.5 ≈ 3000 > 15000 yes



868 Y. LIU, X. ZENG, R. HAN AND P. SUN

(a) (b)

(c) (d)

(e) (f)

Figure 10. Throughput and delay evaluation over Wi-Fi: (a) Throughput
comparison over IEEE 802.11ac; (b) RTT comparison over IEEE 802.11ac;
(c) multiple flows in IEEE 802.11ac; (d) throughput comparison over IEEE
802.11n; (e) RTT comparison over IEEE 802.11n; (f) multiple flows in IEEE
802.11n



ICN RECEIVER-DRIVEN TRANSMISSION MECHANISM 869

management. All in all, compared with sender-based transmission, receiver-driven trans-
mission reduces the complexity and resource consumption of CR so that CR can focus on
forwarding traffic, caching content and serving consumers.

6. Conclusion. In this paper, we introduce a receiver-driven transmission mechanism
with BBR which is used in ICN over IP to provide pull-based, reliable, ordered deliv-
ery of streams of octets. We implement it in the Linux kernel space. Firstly, we show the
receiver-driven transmission stack and describe the details of key functionalities, especially
a receiver-based BBR algorithm with the pacing function. Then, we focus on transmission
in the context of Wi-Fi and explore some issues. Through analysis of the transport model,
we suggest adjusting degree of requests aggregation and increasing the congestion win-
dow (cwnd) to achieve saturated throughput. Extensive experiments are conducted on
a physical testbed under various scenarios. Experimental results show that our receiver-
driven transmission has a high bandwidth utilization, with low propagation delays and
less consumption on servers.

Future work should focus on two aspects. Firstly, limiting burst traffic means a lot for
transmission. The sender in our system just simply returns the requested data. This may
lead to packet loss at network card queue when many requests arrive at sender at the same
time. Thus, it is better to use a Token-Bucket based send queue to further limit serious
burst traffic. Secondly, we will study the effect of receiver-driven transmission on wireless
handoff, especially in the context where mobile hosts equip with multiple interfaces. We
expect that our mechanism can fast recover the data transmission when the path switches.

Acknowledgment. This work is partially supported by Strategic Leadership Project of
Chinese Academy of Sciences: SEANET Technology Standardization Research System
Development (Project No. XDC02070100).

REFERENCES

[1] G. Xylomenos et al., A survey of information-centric networking research, IEEE Commun. Surv.
Tutorials, vol.16, no.2, pp.1024-1049, doi: 10.1109/SURV.2013.070813.00063, 2014.

[2] L. Zhang et al., Named data networking, SIGCOMM Comput. Commun. Rev., vol.44, no.3, pp.66-73,
doi: 10.1145/2656877.2656887, 2014.

[3] A. Venkataramani, J. F. Kurose, D. Raychaudhuri, K. Nagaraja, M. Mao and S. Banerjee, Mobili-
tyFirst: A mobility-centric and trustworthy Internet architecture, SIGCOMM Computer Communi-
cation Review, vol.44, no.3, pp.74-80, doi: 10.1145/2656877.2656888, 2014.

[4] T. Koponen et al., A data-oriented (and beyond) network architecture, SIGCOMM Computer Com-
munication Review, vol.37, no.4, p.181, doi: 10.1145/1282427.1282402, 2007.

[5] SAIL Project, SAIL deliverable B.3 (3.3), Final NetInf Architecture, http://www.sail-project.eu/
deliverables/, 2013.

[6] D. Trossen, M. J. Reed, J. Riihijarvi, M. Georgiades, N. Fotiou and G. Xylomenos, IP over ICN
– The better IP, 2015 European Conference on Networks and Communications (EuCNC), Paris,
France, pp.413-417, 2015.

[7] M. Vahlenkamp, F. Schneider, D. Kutscher and J. Seedorf, Enabling ICN in IP networks using SDN,
2013 21st IEEE International Conference on Network Protocols (ICNP), Goettingen, Germany, pp.1-
2, 2013.

[8] L. Ding, J. Wang and Q. Yang, Survey on architecture design of cache node in information center
network, Journal of Network New Media, vol.8, no.3, pp.1-8, 2019.

[9] L. Ding, J. Wang, Y. Sheng and L. Wang, A split architecture approach to terabyte-scale caching in a
protocol-oblivious forwarding switch, IEEE Trans. Netw. Serv. Manage., vol.14, no.4, pp.1171-1184,
doi: 10.1109/TNSM.2017.2761894, 2017.

[10] M. A. Sayeed and R. Shree, Optimizing unmanned aerial vehicle assisted data collection in cluster
based wireless sensor network, ICIC Express Letters, vol.13, no.5, pp.367-374, 2019.



870 Y. LIU, X. ZENG, R. HAN AND P. SUN

[11] A. Kuzmanovic and E. W. Knightly, Receiver-centric congestion control with a misbehaving receiver:
Vulnerabilities and end-point solutions, Computer Networks, vol.51, no.10, pp.2717-2737, doi: 10.
1016/j.comnet.2006.11.021, 2007.

[12] Y. Liu, Receiver-Driven Transmission, https://github.com/liu-yi-feng/receiver-driven-transmission,
2020.

[13] D. D. Clark, M. L. Lambert and L. Zhang, NETBLT: A high throughput transport protocol, ACM
SIGCOMM Computer Communication Review, pp.353-359, 1988.

[14] P. Sinha, T. Nandagopal, N. Venkitaraman, R. Sivakumar and V. Bharghavan, WTCP: A reliable
transport protocol for wireless wide-area networks, Wireless Networks, vol.8, nos.2/3, pp.301-316,
doi: 10.1023/A:1013702428498, 2002.

[15] S. Floyd, M. Handley, J. Padhye and J. Widmer, Equation-based congestion control for unicast
applications, SIGCOMM Computer Communication Review, vol.30, no.4, pp.43-56, doi: 10.1145/
347057.347397, 2000.

[16] V. Tsaoussidis and C. Zhang, TCP-Real: Receiver-oriented congestion control, Computer Networks,
vol.40, no.4, pp.477-497, doi: 10.1016/S1389-1286(02)00291-8, 2002.

[17] P. Mehra, A. Zakhor and C. de Vleeschouwer, Receiver-driven bandwidth sharing for TCP, IEEE
INFOCOM 2003. 22nd Annual Joint Conference of the IEEE Computer and Communications Soci-
eties, San Francisco, CA, USA, pp.1145-1155, 2003.

[18] N. T. Spring, M. Chesire, M. Berryman, V. Sahasranaman, T. Anderson and B. Bershad, Receiver
based management of low bandwidth access links, Proc. of IEEE INFOCOM 2000. Conference on
Computer Communications. 19th Annual Joint Conference of the IEEE Computer and Communi-
cations Societies, Tel Aviv, Israel, pp.245-254, 2000.

[19] R. Gupta, M. Chen, S. McCanne and J. Walrand, A receiver-driven transport protocol for the web,
Telecommunication Systems, vol.21, nos.2/4, pp.213-230, doi: 10.1023/A:1020994414496, 2002.

[20] H.-Y. Hsieh, K.-H. Kim, Y. Zhu and R. Sivakumar, A receiver-centric transport protocol for mobile
hosts with heterogeneous wireless interfaces, Proc. of the 9th Annual International Conference on
Mobile Computing and Networking – MobiCom’03, San Diego, CA, USA, p.1, 2003.

[21] G. Carofiglio, M. Gallo and L. Muscariello, ICP: Design and evaluation of an Interest control pro-
tocol for content-centric networking, Proc. of the IEEE INFOCOM 2012. Conference on Computer
Communications Workshops, Orlando, FL, USA, pp.304-309, 2012.

[22] G. Carofiglio, M. Gallo, L. Muscariello and M. Papali, Multipath congestion control in content-
centric networks, 2013 IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), Turin, pp.363-368, 2013.

[23] R. A. Potys, N. M. Ali, I. Marsh and F. Osmani, NetInf TP: A receiver-driven protocol for ICN data
transport, 2015 IEEE 23rd International Symposium on Quality of Service (IWQoS), Portland, OR,
USA, pp.267-272, 2015.

[24] S. Ha, I. Rhee and L. Xu, CUBIC: A new TCP-friendly high-speed TCP variant, SIGOPS Oper.
Syst. Rev., vol.42, no.5, pp.64-74, doi: 10.1145/1400097.1400105, 2008.

[25] J. Gettys and K. Nichols, Bufferbloat: Dark buffers in the Internet, Queue, vol.9, no.11, p.40, doi:
10.1145/2063166.2071893, 2011.

[26] A. Aggarwal, S. Savage and T. Anderson, Understanding the performance of TCP pacing, Proc. of
IEEE INFOCOM 2000. Conference on Computer Communications. 19th Annual Joint Conference
of the IEEE Computer and Communications Societies, Tel Aviv, Israel, pp.1157-1165, 2000.

[27] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh and van Jacobson, BBR: Congestion-based
congestion control, Commun. ACM, vol.60, no.2, pp.58-66, doi: 10.1145/3009824, 2017.

[28] Google, bbr, https://github.com/google/bbr, 2016.
[29] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, I. Swett, J. Iyengar, V. Vasiliev and V.

Jacobson, BBR Congestion Control: IETF 100 Update: BBR in Shallow Buffers, https://datatrack
er.ietf.org/meeting/100/materials/slides-100-iccrg-a-quick-bbr-update-bbr-in-shallow-buffers, 2017.

[30] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, I. Swett, J. Iyengar, V. Vasiliev and V. Jacobson,
BBR Congestion Control: IETF 99 Update, https://www.ietf.org/proceedings/99/slides/slides-99-
iccrg-iccrg-presentation-2-00.pdf, 2017.

[31] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh and V. Jacobson, BBR Congestion Con-
trol: An Update, https://www.ietf.org/proceedings/98/slides/slides-98-iccrg-an-update-on-bbr-cong
estion-control-00.pdf, 2017.

[32] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh and V. Jacobson, BBR Congestion Control,
https://www.ietf.org/proceedings/97/slides/slides-97-iccrg-bbr-congestion-control-02.pdf, 2016.



ICN RECEIVER-DRIVEN TRANSMISSION MECHANISM 871

[33] N. Cardwell, Y. Cheng, S. H. Yeganeh and V. Jacobson, BBR Congestion Control: Draft-cardwell-
iccrg-bbr-congestion-control-00, https://tools.ietf.org/html/draft-cardwell-iccrg-bbr-congestion-con
trol-00, 2017.

[34] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, I. Swett, J. Iyengar, V. Vasiliev and V.
Jacobson, BBR Congestion Control Work at Google: IETF 102 Update, https://datatracker.ietf.
org/meeting/102/materials/slides-102-iccrg-an-update-on-bbr-work-at-google-00, 2018.

[35] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, I. Swett, J. Iyengar, V. Vasiliev and V. Ja-
cobson, BBR v2: A Model-Based Congestion Control, https://datatracker.ietf.org/meeting/104/
materials/slides-104-iccrg-an-update-on-bbr-00, 2019.

[36] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, I. Swett, J. Iyengar, V. Vasiliev and V.
Jacobson, BBR Congestion Control Work at Google: IETF 101 Update, https://www.ietf.org/
proceedings/101/slides/slides-101-iccrg-an-update-on-bbr-work-at-google-00, 2018.

[37] E. Atxutegi, F. Liberal, H. K. Haile, K.-J. Grinnemo, A. Brunstrom and A. Arvidsson, On the use
of TCP BBR in cellular networks, IEEE Commun. Mag., vol.56, no.3, pp.172-179, doi: 10.1109/M-
COM.2018.1700725, 2018.

[38] C. A. Grazia, N. Patriciello, M. Klapez and M. Casoni, BBR+: Improving TCP BBR performance
over WLAN, ICC 2020 – 2020 IEEE International Conference on Communications (ICC), Dublin,
Ireland, pp.1-6, 2020.

[39] C. A. Grazia, M. Klapez and M. Casoni, BBRp: Improving TCP BBR performance over WLAN,
IEEE Access, vol.8, pp.43344-43354, doi: 10.1109/ACCESS.2020.2977834, 2020.

[40] Y. Cheng, N. Cardwell, S. H. Yeganeh and V. Jacobson, Delivery Rate Estimation: Draft-cheng-iccrg-
delivery-rate-estimation-00, https://tools.ietf.org/html/draft-cheng-iccrg-delivery-rate-estimation-
00, 2017.

[41] V. Paxson, M. Allman and J. Chu, Computing TCP’s Retransmission Timer, https://datatracker.
ietf.org/doc/rfc6298/?include text=1, 2011.


