
International Journal of Innovative
Computing, Information and Control ICIC International c©2021 ISSN 1349-4198
Volume 17, Number 3, June 2021 pp. 887–903

PARALLEL CUCKOO SEARCH FOR GLOBAL OPTIMIZATION

Supaporn Suwannarongsri

Department of Materials Handling and Logistics Engineering
Faculty of Engineering

King Mongkut’s University of Technology North Bangkok
1518 Pracharaj-1 Rd., Bangsue, Bangkok 10800, Thailand

supaporn.s@eng.kmutnb.ac.th

Received December 2020; revised April 2021

Abstract. The cuckoo search (CS) has become acceptable worldwide as one of the most
efficient metaheuristic optimization search techniques applied to various real-world prob-
lems. Since the first appearance, many variants of the CS have been developed to improve
its search performance. In this paper, the newest modified version of the CS named the
parallel cuckoo search (PCS) is proposed for running on a single-CPU platform. Based
on the original CS by using the random process drawn from the Lévy distribution, the
proposed PCS contains the CS as its search core. In the PCS algorithm, the partitioning
strategy (PS) is conducted to divide an entire search space into many sub-search-spaces
for each CS. The sequencing strategy (SS) is employed to organize the search units to run
one-by-one on a single iteration/generation. Also, the discarding strategy (DS) is applied
to discarding some unlikely to be successful CS. To perform its search performance, the
proposed PCS is tested against ten selected benchmark optimization problems compared
with the original CS. As experimental results, the proposed PCS performs more efficient
in global optimization of ten selected benchmark optimization problems with higher suc-
cess rates, less search generations and less search times than the original CS.
Keywords: Parallel cuckoo search, Global optimization, Metaheuristic optimization
technique

1. Introduction. Metaheuristic algorithms have become powerful and popular in com-
putational intelligence and applications to almost all areas of real-world optimization
problems [1-3]. Recently, the most interesting metaheuristic algorithms are developed and
launched, for example, modified bat algorithm (MBA) [4], multiobjective Lévy-flight fire-
fly algorithm (mLFFA) [5], modified flower pollination algorithm (MoFPA) [6], improved
water evaporation optimization (IWEO) [7], hybrid gray wolf optimization and particle
swarm optimization (GWOPSO) [8], stingless bee algorithm (SBA) [9] and android-based
optimization [10]. Following the literature, the cuckoo search (CS) was firstly proposed by
Yang and Deb in 2009 as one of the most efficient nature-inspired metaheuristic algorithms
for numerical function optimization and continuous problems [11]. The CS algorithm was
developed by its inspiration from the brooding parasitism of cuckoo species in nature and
by using the random process drawn from the Lévy distribution. The algorithm of the CS
was proved for the global convergent property [12]. Moreover, it was tested many well-
known benchmark functions and compared with the genetic algorithm (GA) and particle
swarm optimization (PSO), and it was found that the CS performed promising results
better than the GA and PSO [11,13,14]. Since then, the CS has been applied in almost all
areas [15,16], such as function optimization, engineering optimization, image processing,
scheduling, planning, feature selection, forecasting and other real-world applications. In

DOI: 10.24507/ijicic.17.03.887

887

888 S. SUWANNARONGSRI

addition, many variants of the CS algorithm have been developed by many researchers
to improve its search performance [16]. The significant variant of the CS algorithm in-
cludes the discrete binary CS (BCS) algorithm developed to get binary solutions of bina-
ry real-world optimization problems, i.e., knapsack problems [17] and traveling salesman
problems [18]. The neural-swarm CS (NSCS) is one of the significant variants of the CS
algorithm developed by combining the artificial neural network (ANN) and CS algorithm
for health and safety diagnosis [19]. The quantum-inspired CS (QCS) was a new frame-
work of hybridization between quantum-inspired computing and bio-inspired computing
proposed for solving knapsack problems [20]. The emotional chaotic CS (ECCS) was de-
veloped based on the Lévy distribution of the CS and the psychology model of emotion
and chaotic sequence to enrich the searching behavior and avoid being trapped by local
optima of the reconstruction of chaotic Lorenz dynamic system [21]. The modified CS
(MCS) is another variant of the CS algorithm developed by adjusting the step size deter-
mined from the sorted rather than only permuted fitness matrix for solving unconstrained
optimization problems [22]. The multiobjective CS was one of the most efficiently vari-
ants of the CS algorithm developed to solve both standard and real-world multiobjective
optimization problems including welded beam design and disc brake design [14]. The hy-
brid CS/GA was proposed by using the crossover strategy of GA in order to lay more
eggs of CS for solving global optimization problems [23]. Also, the hybrid CS/PSO was
developed by using the swarm intelligence in PSO in order to reach to better solutions
and reduce the chance of the cuckoo eggs to be discovered by the host birds for solving
global optimization problems [24].
One of the most interesting variants of the CS algorithm is the parallel CS. From

literature review, the parallelized CS was proposed in 2012 for solving the unconstrained
optimization problems [25]. The algorithm of the parallelized CS in [25] consisting of
many original CS algorithms (CSs) was developed for running on multicore processors.
All CS algorithms in [25] were not modified. With their identical algorithms, all CSs
in [25] were defined for searching on the same entire search space. By this concept, it
does not differ from the parallel personal computer (PC) in which the original CS was
installed. Moreover, the parallelized CS in [25] needs high cost processor. Development
of the parallelized CS for running on a single-CPU is the challenging task because it is
more difficult but cheaper.
In order to improve the search performance of the CS as the parallelized manner for

running on a single-CPU, the newest modified version of the CS named the parallel cuckoo
search (PCS) is proposed in this paper. By using the original CS as its search core, the
proposed PCS contains the partitioning strategy (PS) to divide an entire search space
into many sub-search-spaces for each CS, the sequencing strategy (SS) to organize the
search units to run one-by-one on each iteration/generation and the discarding strategy
(DS) to discard some unlikely to be successful CS. This paper consists of five sections.
After an introduction presented in Section 1, the rest of the paper is arranged as follows.
The original CS and the proposed PCS algorithm are described in Section 2. Ten selected
benchmark optimization problems for global optimization (minimization) are detailed in
Section 3. Experimental results and discussions are illustrated in Section 4, while the
conclusions are followed in Section 5.

2. Parallel Cuckoo Search Algorithm. The algorithm of the original CS is briefly
described in this section. Then, the algorithm of the proposed PCS is elaborately given
as follows.

PARALLEL CUCKOO SEARCH FOR GLOBAL OPTIMIZATION 889

2.1. Original CS algorithm. The original CS algorithm mimics the obligate brood
parasitic behavior of some cuckoo species in nature by combination with the Lévy flight
behavior of some birds and fruit flies [11,26]. The algorithm of the original CS can be
represented by the flow diagram as visualized in Figure 1, where f(x) is the objective
function to be minimized, x = (x1, . . . , xd)

T is the solution vector in d dimensions, x∗ is
an initial solution, Max Gen is the maximum generation, Gen is the generation counter,
n is number of cuckoos and m is number of cuckoo’s eggs that were found by the host
bird. With the iteration process, n cuckoos will find the new nests by a random process
drawn from Lévy flight distribution and lay their eggs in the random nests to create new
solutions. After cuckoos lay their eggs, the host bird will check their nests with a fraction
pa ∈ [0, 1]. If the host bird discovers m (m ≤ n) cuckoo eggs, it will either throw these
m eggs away or simply abandon its nest and build a new nest. Then, m cuckoos need to
find the new nests by a random process drawn from Lévy flight distribution again and
lay their eggs in the new random nests to create new solutions. After that, all cuckoo’s
eggs (new solutions) will be evaluated by the objective function f(x) and the current best
solution will be updated by the better solution found. The CS algorithm will be iteratively
processed until the optimal solution is found or the termination criteria (TC) are met.
Generally, the TC will be set from the difference between Gen and Max Gen. If Gen ≤
Max Gen, the search process will continue. Otherwise the search process will be stopped.

In the original CS algorithm, new solutions x
(t+1) for cuckoo i can be calculated by

the current solutions x(t) for cuckoo i associated with a random process drawn from Lévy
flight distribution as stated in (1), where α > 0 is the step size (in most cases, α = 1),
⊕ means entrywise multiplication and Lévy(λ) represents a random process drawn from
Lévy flight distribution having an infinite variance with an infinite mean as expressed
in (2), where λ is the mean or expectation of the occurrence of the event during a unit
interval and β is an index of the Lévy distribution. The step length s of cuckoo flight can
be calculated by (3), where u and v are random processes drawn from normal distribution
as stated in (4). Standard deviations σu and σv of u and v are also expressed in (5), where
Γ is the standard Gamma function [11-14].

x
(t+1)
i = x

(t)
i + α⊕ Lévy(λ) (1)

Lévy ≈ u = t−λ = t−1−β , (1 < λ < 3), (0 < β ≤ 2) (2)

s =
u

|v|1/β
(3)

u ≈ N
(

0, σ2
u

)

, v ≈ N
(

0, σ2
v

)

(4)

σu = β

√

Γ(1 + β) sin(πβ/2)

Γ[(1 + β)/2]β2(β−1)/2
, σv = 1 (5)

2.2. Proposed PCS algorithm. In order to improve the search performance of the orig-
inal CS, the PCS is proposed by utilizing the exploration strategies. The PCS algorithm
proposed in this paper differs from the existing parallelized CS algorithm [25] in that the
PCS is developed for running on a single-CPU platform, while the parallelized CS [25]
was developed for running on multicore processors. By using the original CS algorithm
shown in Figure 1 as its search core, the proposed PCS algorithm consists of partitioning
strategy (PS), sequencing strategy (SS) and discarding strategy (DS), respectively.

2.2.1. Partitioning strategy (PS). The PS operates only once at the beginning of the
search to divide an entire search space into many sub-search-spaces. Symmetrical parti-
tioning can be easily made, whereas asymmetrical partitioning can be employed. However,
too many sub-search-spaces would result in a slow search process. The PS also defines

890 S. SUWANNARONGSRI

Figure 1. Flow diagram of CS algorithm

PARALLEL CUCKOO SEARCH FOR GLOBAL OPTIMIZATION 891

explicit boundaries for the sub-search-spaces, each of which is given an individual initial
solution for an independent CS. All CSs as the search cores of the PCS use the same set
of search parameters. Just before launching the search, the PS removes the predefined
boundaries such that all CSs could search freely on the originally entire search space. This
strategy helps to reduce any conflicts that may arise during the search along the border
lines. Figure 2 summarizes the PS procedures.

Figure 2. PS procedures

2.2.2. Sequencing strategy (SS). The SS is a time-sharing tactic to organize all CSs to
run one-by-one on a single iteration/generation approach providing the hardware has a
single-CPU. With the SS, all CSs in the PCS will be run one-by-one as sequential manner
on each iteration. The operation is repeated until one of the CSs hits the solution, and
requests for exiting the search according to the satisfied termination criterion (TC). Either
an equal or an unequal number of search rounds constitutes one search trial. The works
by this paper utilize an equal number of search rounds for all CSs to work on one search
trial. The SS will be interrupted by the DS for some information transferred between SS
and DS. With the DS, as time goes by, more and more CSs will be cut off from the search
process until only one CS is left to continue searching. However, an individual CS can
request for a complete termination once the global solution is found at any time. The SS
needs to communicate with the DS to learn about the existing and the forcedly terminated
some CSs. Thus, the SS can be summarized by the procedures shown in Figure 3.

Figure 3. SS procedures

2.2.3. Discarding strategy (DS). The DS serves to discard some unlikely to be successful
CS to reduce the overall search time of the PCS. Various possible approaches can be used
to implement this idea. In this paper, a simple implementation by using the evaluation of
the cost values of the current best solutions of the CSs is demonstrated associated with
the number of iterations/generations. In each time of the DS operates, the number of
CSs is reduced by half. After this forced termination made to the low-quality CSs, the
DS transfers the information concerning the being-terminated and the existing CSs to the
SS. Figure 4 summarizes the DS procedures.

By using the CS as the search core, the PCS procedures can be summarized in Figure
5. It can be noticed that during Step PCS3 the CSs as search cores work independently
without any modifications or intrusion. Hence, the convergent property of the CSs is

892 S. SUWANNARONGSRI

Figure 4. DS procedures

Figure 5. PCS procedures

always preserved. The flow diagram of the PCS algorithm can be represented by the flow
diagram as shown in Figure 6, where CS1,CS2, . . . ,CSN are the CS algorithms represented
in Figure 1.

3. Benchmark Optimization Problems. For global optimization by the proposed
PCS algorithm, ten well-known surface optimization problems are selected as the bench-
mark functions, i.e., Bohachevsky function (BF), De Jong function (DJF), Griewank
function (GF), Michaelwicz function (MF), Rastrigin function (RF), Salomon function
(SalF), Schwefel function (SchF), Sinusoid function (SiF), Shekel’s fox-holes function (SF)
and Yang function (YF) [27,28]. These benchmark functions are selected from the dif-
ference of their characteristics including linearity, symmetry and modality (basins and
valleys). Details of these selected functions are summarized in Table 1.

4. Experimental Results and Discussions. To perform its search performance, the
proposed PCS algorithm will be tested against ten selected benchmark functions as de-
tailed in the previous section, i.e., BF, DJF, GF, MF, RF, SalF, SchF, SiF, SF and YF.
Performance comparisons are made among the original CS and the proposed PCS with
2, 4 and 8 CSs denoted as PCS#2, PCS#4 and PCS#8, respectively. Both the original
CS and the proposed PCS algorithms were coded by MATLAB version 2018b run on the
Intel(R) Core(TM) i5-3470 CPU@3.60GHz, 4.0GB-RAM. The searching parameters of
all CSs are set by the recommendations of Yang and Deb [11,12] as the same values, i.e.,
number of cuckoos n = 40 and fraction pa = 0.2 (20%). 100 trials are conducted to find
the best solution of each function. Both the original CS and the proposed PCS will be
terminated once two termination criteria (TC) are satisfied, i.e., 1) the function values are
less than a given tolerance ε ≤ 10−6 from fmin of each function shown in Table 1 or 2) the
search meets the maximum generation (Max Gen = 2,000). The former criterion implies
that the search is successful, while the later means that the search is not successful. For
the PCS algorithm, the PS, SS and DS strategies are set as follows.

PARALLEL CUCKOO SEARCH FOR GLOBAL OPTIMIZATION 893

Figure 6. Flow diagram of the proposed PCS algorithm

894 S. SUWANNARONGSRI

Table 1. Ten selected benchmark functions

Names
Functions/ Search

Sketches
Minimum solutions spaces

Bohachevsky f1(x, y) = x2 + 2y2 − 0.3 cos(3πx)− 0.4 cos(4πy) + 0.7
[−100, 100]

function (BF) fmin(0, 0) = 0

De Jong

f2(x, y) =

[

1/500 +
25
∑

j=1

{

1/
(

j + (x− a1j)6 + (y − a2j)6
)}

]

−1

[−40, 40]

function (DJF) aij =

(

−32 −16 0 16 32 −32 · · · 0 16 32

−32 −32 −32 −32 −32 −16 · · · 32 32 32

)

fmin(−32,−32) = 0.9980

Griewank f3(x, y) =
1

4000

(

x2 + y2
)

− cos
(

x
√

2

)

cos
(

y
√

2

)

+ 1
[−100, 100]

function (GF) fmin(0, 0) = 0

Michaelwicz f4(x, y) = − sin(x) sin(x2/π)20 − sin(y) sin(2y2/π)20
[0, π]

function (MF) fmin(2.20319, 1.57049) = −1.8013

Rastrigin f5(x, y) = 20 + x2 + y2 − 10[cos(2πx) + cos(2πy)]
[−5.12, 5.12]

function (RF) fmin(0, 0) = 0

Salomon f6(x, y) = 1− cos
(

2π
√

x2 + y2
)

− 0.1
√

x2 + y2
[−100, 100]

function (SalF) fmin(0, 0) = 0

Schwefel f7(x, y) = 837.9658 −
(

x sin
√

|x|+ y sin
√

|y|
)

[−500, 500]
function (SchF) fmin(420.9687, 420.9687) = 0

Sinusoid f8(x, y) = x sin(4x) + 1.1y sin(2y)
[0, 10]

function (SiF) fmin(9.039, 8.668) = −18.5547

Shekel’s

f9(x, y) = −
30
∑

j=1

[

1/
{

cj + (x− a1j)2 + (y − a2j)2
}]

[0, 10]

fox-holes
aij =

(

9.6810 9.4000 8.0250 · · · 9.4960 4.1380

0.6670 2.0410 9.1520 · · · 4.8300 2.5620

)

function (SF) cj = (0.806 0.517 0.100 0.908 · · · 0.608 0.326)

fmin(8.0241, 9.1465) = −12.1190

Yang f10(x, y) = (|x|+ |y|) exp
[

−
(

sinx2 + sin y2
)]

[−2π, 2π]
function (YF) fmin(0, 0) = 0

The PS settings are explained by referring to Table 2, which declares the symmetrical
boundaries of the sub-search-spaces for 2, 4 and 8 CSs for each function. For example,
let us consider the BF having its entire search space defined by [xmax ymax; xmin ymin] =
[100 100;−100 −100]. For the PCS#4 consisting of 4 CSs, the BF is decomposed into
#1[0 100;−100 0] for the 1st sub-search-space, #2[100 100; 0 0] for the 2nd sub-search-
space, #3[0 0;−100 −100] for the 3rd sub-search-space and #4[100 0; 0 −100] for the 4th
sub-search-space, respectively. The similar approach for search space partitioning can be
applied to the other functions. In addition, other geometric partitioning techniques and
coordinates could be employed to suit particular applications.

PARALLEL CUCKOO SEARCH FOR GLOBAL OPTIMIZATION 895

Table 2. Sub-search-spaces partitioned by PS

Functions
Entire Sub-search-spaces defined by PS

search spaces PCS#2 PCS#4 PCS#8

[100 100; –100 –100]

#1[–50 100; –100 0]
#2[0 100; –50 0]

#1[0 100; –100 0] #3[50 100; 0 0]
BF, GF #1[0 100; –100 –100] #2[100 100; 0 0] #4[100 100; 50 0]
and SalF #2[100 100; 0 –100] #3[0 0; –100 –100] #5[–50 0; –100 –100]

#4[100 0; 0 –100] #6[0 0; –50 –100]
#7[50 0; 0 –100]
#8[100 0; 50 –100]

DJF [40 40; –40 –40]

#1[–20 40; –40 0]
#2[0 40; –20 0]

#1[0 40; –40 0] #3[20 40; 0 0]
#1[0 40; –40 –40] #2[40 40; 0 0] #4[40 40; 20 0]
#2[40 40; 0 –40] #3[0 0; –40 –40] #5[–20 0; –40 –40]

#4[40 0; 0 –40] #6[0 0; –20 –40]
#7[20 0; 0 –40]
#8[40 0; 20 –40]

MF [π π; 0 0]

#1[π/4 π; 0 π/2]
#2[π/2 π; π/4 π/2]

#1[π/2 π; 0 π/2] #3[3π/4 π; π/2 π/2]
#1[π/2 π; 0 0] #2[π π; π/2 π/2] #4[π π; 3π/4 π/2]
#2[π π; π/2 0] #3[π/2 π/2; 0 0] #5[π/4 π/2; 0 0]

#4[π π/2; π/2 0] #6[π/2 π/2; π/4 0]
#7[3π/4 π/2; π/2 0]
#8[π π/2; 3π/4 0]

RF [5.12 5.12; –5.12 –5.12]

#1[–2.56 5.12; –5.12 0]
#2[0 5.12; –2.56 0]

#1[0 5.12; –5.12 0] #3[2.56 5.12; 0 0]
#1[0 5.12; –5.12 –5.12] #2[5.12 5.12; 0 0] #4[5.12 5.12; 2.56 0]
#2[5.12 5.12; 0 –5.12] #3[0 0; –5.12 –5.12] #5[–2.56 0; –5.12 –5.12]

#4[5.12 0; 0 –5.12] #6[0 0; –2.56 –5.12]
#7[2.56 0; 0 –5.12]
#8[5.12 0; 2.56 –5.12]

SchF [500 500; –500 –500]

#1[–250 500; –500 0]
#2[0 500; –250 0]

#1[0 500; –500 0] #3[250 500; 0 0]
#1[0 500; –500 –500] #2[500 500; 0 0] #4[500 500; 250 0]
#2[500 500; 0 –500] #3[0 0; –500 –500] #5[–250 0; –500 –500]

#4[500 0; 0 –500] #6[0 0; –250 –500]
#7[250 0; 0 –500]
#8[500 0; 250 –500]

SiF and SF [10 10; 0 0]

#1[2.5 10; 0 5]
#2[5 10; 2.5 5]

#1[5 10; 0 5] #3[7.5 10; 5 5]
#1[5 10; 0 0] #2[10 10; 5 5] #4[10 10; 7.5 5]
#2[10 10; 5 0] #3[5 5; 0 0] #5[2.5 5; 0 0]

#4[10 5; 5 0] #6[5 5; 2.5 0]
#7[7.5 5; 5 0]
#8[10 5; 7.5 0]

YF [2π 2π; –2π –2π]

#1[–π 2π; –2π 0]
#2[0 2π; –π 0]

#1[0 2π; –2π 0] #3[π 2π; 0 0]
#1[0 2π; –2π –2π] #2[2π 2π; 0 0] #4[2π 2π; π 0]
#2[π π; π/2 0] #3[0 0; –2π –2π] #5[–π 0; –2π –2π]

#4[2π 0; 0 –2π] #6[0 0; –π –2π]
#7[π 0; 0 –2π]
#8[2π 0; π –2π]

896 S. SUWANNARONGSRI

The SS is simple set by a time-sharing technique for all CSs running one-by-one as
sequential manner in each generation based on a single-CPU. For example, let us consider
the PCS#4 consisting of 4 CSs. In the 1st generation, the CS1 will be run, while CS2,
CS3 and CS4 are in waiting state. Once the CS1 finishes its process, it goes to the waiting
state. At this time, the CS2 will be run, while the CS1, CS3 and CS4 are in waiting state.
The operation goes on in this manner until the CS4 finishes its process. Then, the 1st
generation is finished. Afterward, the CPU then returns to start the 2nd generation by
running CS1, CS2, CS3 and CS4 in sequential manner again. The operation is repeated
until one of the CSs hits the optimal solution or some CSs are discarded by the DS.
The DS settings are detailed by referring to Table 3 explaining the qth generation at

which the DS is invoked and the number of discarded CSs for all functions. In each time
of the DS operates, the number of CSs is discarded by half. The number of the CSs
being discarded can be set in the manner of a gradual cut, a moderate cut or a sudden
cut, depending on the problem of interests. In this paper, the moderate cut is simply
employed. For example in Table 3, let us consider the PCS#8. The DS will be activated
three times. The DS becomes active firstly at the 500th generation, and 4 low-quality CSs
are discarded. The DM becomes active secondly and thirdly at the 1000th and 1500th
generations; 2 and 1 CSs are forced to stop, respectively. Eventually, there is only one CS
left to continue searching.

Table 3. DS settings

For all functions

The qth generation at which the DS is
invoked and the number of discarded CSs
PCS#2 PCS#4 PCS#8

1st 1st 2nd 1st 2nd 3rd
qth generation 1,000 700 1,400 500 1,000 1,500

No. of discarded CSs 1 2 1 4 2 1

Figure 7 shows the convergent rates of the original CS and the proposed PCS#2, PCS#4
and PCS#8 over the BF (1 trial) as an example to demonstrate the DS settings and the
behavior of the search process of the original CS and the proposed PCS. Then, Figure
8 shows the convergent rates of the original CS and the proposed PCS#2, PCS#4 and
PCS#8 over the BF (100 trials) as an example. The convergent rates of other functions
are omitted because they have a similar form to those in Figure 8. Referring to Figure 8,
it can be observed that the PCS#8 in Figure 8(d) performs the better search performance
with the less average-search generation than the PCS#4 in Figure 8(c), the PCS#2 in
Figure 8(b) and the original CS in Figure 8(a), respectively.
Tables 4-9 reveal the obtained results over all functions in 100 trials. The percentages

of the success rate (PSR) of the original CS and the proposed PCS are summarized in
Table 4. Referring to Table 4, it was found that the proposed PCS can increase the
PSR, satisfactorily. The average values of PSR tabulated in Table 4 also confirm this.
The numeric data in Table 4 are converted into percentage increase of SR (PISR) of the
proposed PCS with-respect-to the original CS by using the following relation stated in
(6) for comparison purposes as summarized in Table 5. The numeric data in Table 5 are
displayed as bar graphs in Figure 9 to give a clear view of the merits of the proposed PCS
over ten selected benchmark functions. From Table 5 and Figure 9, it can be noticed that
the PCS#2, PCS#4 and PCS#8 can averagely increase the PSR by 15.96%, 39.61% and
50.30%, respectively, when compared with the original CS. This implies that the more

PARALLEL CUCKOO SEARCH FOR GLOBAL OPTIMIZATION 897

Figure 7. Convergent rates of the original CS and the proposed PCS over
BF (1 trial)

the number of CSs conducted in the PCS, the more the value of PISR.

PISRPCS = 100×

(

PSRPCS − PSRCS

PSRCS

)

(6)

Table 6 summarizes the average search generations (SG) of the original CS and the
proposed PCS over all functions in 100 trials. Referring to Table 6, it was found that the
proposed PCS consumes the SG less than the original CS. The numeric data in Table 6 are
transformed into percentage decrease of SG (PDSG) of the proposed PCS with-respect-to
the original CS by using the relation stated in (7) for comparison purposes as summarized
in Table 7. From Table 7, the PCS#2, PCS#4 and PCS#8 can averagely decrease the
SG by 18.39%, 37.83% and 63.05%, respectively, once compared with the original CS.
This implies that the more the number of CSs employed in the PCS, the more the value
of PDSG.

PDSGPCS = 100×

(

SGCS − SGPCS

SGCS

)

(7)

The average search times (ST) consumed by the original CS and the proposed PCS over
all functions in 100 trials are summarized in Table 8. It was found that the proposed PCS
consumes the ST greater than the original CS. This is because the PCS is proposed for

898 S. SUWANNARONGSRI

Figure 8. Convergent rates of the original CS and the proposed PCS over
BF (100 trials)

Table 4. PSR of the original CS and the proposed PCS

PSR (%) of the original CS and the proposed PCS

Functions Original CS
Proposed PCS

PCS#2 PCS#4 PCS#8
BF 61 72 91 100
DJF 64 82 100 100
GF 53 68 89 99
MF 75 87 100 100
RF 77 89 100 100
SalF 72 93 100 100
SchF 55 66 87 100
SiF 74 83 95 99
SF 71 91 100 100
YF 62 81 98 100

Averages 66.40% 77.00% 92.70% 99.80%

PARALLEL CUCKOO SEARCH FOR GLOBAL OPTIMIZATION 899

Table 5. PISR of the proposed PCS with-respect-to the original CS

PISR (%) of the proposed PCS with-respect-to the original CS

Functions Original CS
Proposed PCS

PCS#2 PCS#4 PCS#8
BF 0.0000 18.0328 49.1803 63.9344
DJF 0.0000 28.1250 56.2500 56.2500
GF 0.0000 28.3019 67.9245 86.7925
MF 0.0000 16.0000 33.3333 33.3333
RF 0.0000 15.5844 29.8701 29.8701
SalF 0.0000 29.1667 38.8889 38.8889
SchF 0.0000 20.0000 58.1818 81.8182
SiF 0.0000 12.1622 28.3784 33.7838
SF 0.0000 28.1690 40.8451 40.8451
YF 0.0000 30.6452 58.0645 61.2903

Averages 0.0000% 15.9639% 39.6084% 50.3012%

Table 6. Average search generations (SG) of the original CS and the pro-
posed PCS

Averages search generations (SG) of the original CS and the proposed PCS

Functions Original CS
Proposed PCS

PCS#2 PCS#4 PCS#8
BF 1422.18 1179.12 843.41 488.92
DJF 2568.73 2133.37 1786.60 1103.44
GF 4856.24 4207.36 3028.77 1410.28
MF 1675.37 1350.24 1056.99 778.50
RF 1977.39 1562.43 1180.20 699.31
SalF 2209.06 1978.34 1394.71 824.65
SchF 1818.56 1476.02 1025.19 642.04
SiF 2760.12 2231.89 1857.59 1086.75
SF 1558.28 1209.56 998.87 549.16
YF 1764.23 1317.33 1002.78 601.23

Averages 2261.07 1864.57 1417.51 818.43

use on a single-CPU platform. The ST of the PCS can be reduced by implementation for
running on multicore processors. To prove this, the numeric data in Table 8 are converted
into the equivalent averages of the ST (EAST) with-respect-to the original CS by using
the relation stated in (8). The percentage decrease of ST (PDST) of the equivalent PCS
with-respect-to the original CS by using the relation stated in (9) for comparison purposes
is detailed in Table 9. It can be noticed that the equivalent PCS#2, PCS#4 and PCS#8
averagely consume the ST less than the original CS by 21.29%, 48.25% and 68.80%,
respectively. This implies that the more the number of CSs utilized in the PCS, the more
the value of PDST.

EASTPCS#N =
STPCS#N

N
(8)

PDSTPCS = 100×

(

STCS − STPCS

STCS

)

(9)

900 S. SUWANNARONGSRI

Figure 9. Bar graphs of PISR of the proposed PCS with-respect-to the
original CS

From Tables 5, 7 and 9, it was found that the proposed PCS algorithm performs more
efficient in global optimization of ten selected benchmark optimization problems than the
original CS algorithm. As experimental results, the more the number of CSs conducted
in the PCS, the higher the search performance for global optimization. As defined earlier,

PARALLEL CUCKOO SEARCH FOR GLOBAL OPTIMIZATION 901

Table 7. PDSG of the proposed PCS with-respect-to the original CS

PDSG (%) of the proposed PCS with-respect-to the original CS

Functions Original CS
Proposed PCS

PCS#2 PCS#4 PCS#8
BF 0.0000 17.0907 40.6960 65.6218
DJF 0.0000 16.9485 30.4481 57.0434
GF 0.0000 13.3618 37.6314 70.9594
MF 0.0000 19.4065 36.9101 53.5327
RF 0.0000 20.9852 40.3153 64.6347
SalF 0.0000 10.4443 36.8641 62.6696
SchF 0.0000 18.8358 43.6263 64.6951
SiF 0.0000 19.1379 32.6989 60.6267
SF 0.0000 22.3785 35.8992 64.7586
YF 0.0000 25.3312 43.1605 65.9211

Averages 0.0000% 18.3920% 37.8250% 63.0463%

Table 8. Averages search times (ST) of the original CS and the proposed PCS

Averages ST (sec.) of the original CS and the proposed PCS

Functions Original CS
Proposed PCS

PCS#2 PCS#4 PCS#8
BF 3.6430 × 10−1 5.0048 × 10−1 6.7639 × 10−1 8.9897 × 10−1

DJF 5.6572 × 10−1 7.4429 × 10−1 10.2017 × 10−1 13.3450 × 10−1

GF 8.9217 × 10−1 10.7652 × 10−1 18.0224 × 10−1 21.2382 × 10−1

MF 4.1022 × 10−1 7.6761 × 10−1 9.8977 × 10−1 11.0021 × 10−1

RF 4.3238 × 10−1 7.8905 × 10−1 10.0281 × 10−1 13.0426 × 10−1

SalF 5.2398 × 10−1 8.2910 × 10−1 9.9989 × 10−1 12.0229 × 10−1

SchF 4.0124 × 10−1 7.3216 × 10−1 9.6764 × 10−1 10.7883 × 10−1

SiF 5.4513 × 10−1 8.7023 × 10−1 9.8993 × 10−1 11.2929 × 10−1

SF 3.9974 × 10−1 7.0235 × 10−1 9.0102 × 10−1 9.9094 × 10−1

YF 4.2045 × 10−1 7.8894 × 10−1 9.9967 × 10−1 12.0405 × 10−1

Averages 4.9553 × 10−1 7.8007 × 10−1 10.3495 × 10−1 12.3672 × 10−1

the DS setting with a moderate cut is utilized to discard some unlikely to be successful
CSs for all test functions. However, DS setting depends on the problems of interest.
During test process, it was found that if the function (problem of interests) possesses a
small number of local optima (close to unimodal function), DS setting with a sudden cut
is more suitable. On the other hand, if the function has a large number of local optima
(close to highly multi-modal function), DS setting with a gradual cut is more suitable.

5. Conclusions. The novel modified version of the CS named the PCS has been pro-
posed for global optimization running on a single-CPU platform. By using the original CS
as its search core, the proposed PCS consists of three distinguished strategies, i.e., the PS
conducted to divide an entire search space into many sub-search-spaces for all CSs, the
SS employed to organize the search units to run one-by-one on each iteration/generation
and the DS applied to discard some unlikely to be successful CS. The proposed PCS
has been tested against ten selected benchmark optimization problems for global mini-
mization compared with the original CS. As results, the proposed PCS performs more
efficient with higher success rates, less search generations and less search times, than

902 S. SUWANNARONGSRI

Table 9. Equivalent averages of the ST (EAST) with-respect-to the orig-
inal CS

EAST (sec.) of the proposed PCS with-respect-to the original CS

Functions Original CS
Proposed PCS

PCS#2 PCS#4 PCS#8
BF 3.6430 × 10−1 2.5024 × 10−1 1.6910 × 10−1 1.1237 × 10−1

DJF 5.6572 × 10−1 3.7215 × 10−1 2.5504 × 10−1 1.6681 × 10−1

GF 8.9217 × 10−1 5.3826 × 10−1 4.5056 × 10−1 2.6548 × 10−1

MF 4.1022 × 10−1 3.8381 × 10−1 2.2444 × 10−1 1.3753 × 10−1

RF 4.3238 × 10−1 3.9453 × 10−1 2.5070 × 10−1 1.6303 × 10−1

SalF 5.2398 × 10−1 4.1455 × 10−1 2.4997 × 10−1 1.5029 × 10−1

SchF 4.0124 × 10−1 3.6608 × 10−1 2.4191 × 10−1 1.3485 × 10−1

SiF 5.4513 × 10−1 4.3512 × 10−1 2.4748 × 10−1 1.4116 × 10−1

SF 3.9974 × 10−1 3.5118 × 10−1 2.2526 × 10−1 1.2387 × 10−1

YF 4.2045 × 10−1 3.9457 × 10−1 2.4992 × 10−1 1.5051 × 10−1

Averages 4.9553 × 10−1 3.9004 × 10−1 2.5644 × 10−1 1.5459 × 10−1

PDST (%) 0.00% 21.2883% 48.2493% 68.8031%

the original CS. It can be concluded that the proposed PCS is one of the most efficient
metaheuristic optimization techniques for global optimization running on a single-CPU.
In addition, the more the number of CSs utilized in the PCS, the higher the search per-
formance. For future research, the proposed PCS will be applied to various real-world
and practical optimization problems including the scheduling problem (SP), assembly line
balancing problem (ALBP), multiple traveling salesman problem (MTSP) and multiple
vehicle routing problems (MVRP).

Acknowledgment. This paper was funded by King Mongkut’s University of Technology
North Bangkok with contract no. KMUTNB-64-DRIVE-25.

REFERENCES

[1] E. G. Talbi, Metaheuristics: From Design to Implementation, John Wiley & Sons, 2009.
[2] F. Glover and G. A. Kochenberger, Handbook of Metaheuristics, Kluwer Academic Publishers, 2003.
[3] T. Ganesan, P. Vasant and I. Elamvazuthi, Advances in Metaheuristics: Applications in Engineering

Systems, CSC Press Taylor & Francis Group, 2017.
[4] K. Lurang and D. Puangdownreong, Two-degree-of-freedomPIDA controllers design optimization for

liquid-level system by using modified bat algorithm, International Journal of Innovative Computing,
Information and Control, vol.16, no.2, pp.715-732, 2020.

[5] S. Sumpunsri and D. Puangdownreong, Multiobjective Lévy-flight firefly algorithm for optimal PIDA
controller design, International Journal of Innovative Computing, Information and Control, vol.16,
no.1, pp.173-187, 2020.

[6] N. Pringsakul and D. Puangdownreong, MoFPA-based PIDA controller design optimization for elec-
tric furnace temperature control system, International Journal of Innovative Computing, Informa-
tion and Control, vol.16, no.6, pp.1863-1876, 2020.

[7] Y. Wang and X. Che, An improved water evaporation optimization algorithm, International Journal
of Innovative Computing, Information and Control, vol.16, no.1, pp.107-122, 2020.

[8] S. El-Kenawy and M. Eid, Hybrid gray wolf and particle swarm optimization for feature selection,
International Journal of Innovative Computing, Information and Control, vol.16, no.3, pp.831-844,
2020.

[9] E. Joelianto, A. Nainggolan and Y. A. Hidayat, Stingless bee algorithm for numerical optimization
problems, International Journal of Innovative Computing, Information and Control, vol.16, no.6,
pp.2063-2081, 2020.

PARALLEL CUCKOO SEARCH FOR GLOBAL OPTIMIZATION 903

[10] G. Seannery, Yacob, N. Chandra and D. David, Optimization of hospital patient management in
hospitals with android-based applications, ICIC Express Letters, vol.14, no.3, pp.211-217, 2020.

[11] X. S. Yang and S. Deb, Cuckoo search via Lévy flights, Proc. of the World Congress on Nature &
Biologically Inspired Computing (NaBIC 2009), pp.210-214, 2009.

[12] X. S. Yang, Cuckoo search and firefly algorithm: Overview and analysis, in Cuckoo Search and
Firefly Algorithm. Studies in Computational Intelligence, Cham, Springer, 2014.

[13] X. S. Yang and S. Deb, Engineering optimisation by cuckoo search, International Journal of Math-
ematical Modelling and Numerical Optimisation, vol.1, no.4, pp.330-343, 2010.

[14] X. S. Yang and S. Deb, Multiobjective cuckoo search for design optimization, Computers and Oper-
ations Research, vol.40, no.6, pp.1616-1624, 2013.

[15] A. S. Joshi, O. Kulkarni, G. M. Kakandikar and V. M. Nandedkar, Cuckoo search optimization – A
review, Proc. of Materials Today, vol.4, pp.7262-7269, 2017.

[16] I. Fister Jr., X. S. Yang, D. Fister and I. Fister, Cuckoo search: A brief literature review, in Cuckoo
Search and Firefly Algorithm. Studies in Computational Intelligence, Cham, Springer, 2014.

[17] A. Gherboudj, A. Layeb and S. Chikhi, Solving 0-1 knapsack problems by a discrete binary version of
cuckoo search algorithm, International Journal of Bio-Inspired Computation, vol.4, no.4, pp.229-236,
2012.

[18] A. Ouaarab, B. Ahiod and X. S. Yang, Discrete cuckoo search algorithm for the travelling salesman
problem, Neural Computing and Applications, vol.24, nos.7-8, pp.1659-1669, 2014.

[19] K. Khan and A. Sahai, Neural-based cuckoo search of employee health and safety, International
Journal of Intelligent Systems and Applications, vol.5, no.2, pp.76-83, 2013.

[20] A. Layeb, A novel quantum inspired cuckoo search for knapsack problems, International Journal of
Bio-Inspired Computation, vol.3, no.5, pp.297-305, 2011.

[21] J.-H. Lin and I-H. Lee, Emotional chaotic cuckoo search for the reconstruction of chaotic dynamics,
Latest Advances in Systems Science & Computational Intelligence, pp.123-128, 2012.

[22] M. Tuba, M. Subotic and N. Stanarevic, Modified cuckoo search algorithm for unconstrained op-
timization problems, Proc. of the 5th European Conference on European Computing Conference,
pp.263-268, 2011.

[23] A. Ghodrati and S. Lotfi, A hybrid CS/GA algorithm for global optimization, Proc. of the Interna-
tional Conference on Soft Computing for Problem Solving (SocProS-2011), pp.397-404, 2012.

[24] A. Ghodrati and S. Lotfi, A hybrid CS/PSO algorithm for global optimization, Proc. of the Intelligent
Information and Database Systems, pp.89-98, 2012.

[25] M. Subotic, M. Tuba, N. Bacanin and D. Simian, Parallelized cuckoo search algorithm for uncon-
strained optimization, Proc. of the 5th WSEAS Congress on Applied Computing Conference, and
the 1st International Conference on Biologically Inspired Computation, pp.151-156, 2012.

[26] T. Jitwang and D. Puangdownreong, Application of cuckoo search to robust PIDA controller design
for liquid-level system, International Journal of Innovative Computing, Information and Control,
vol.16, no.1, pp.189-205, 2020.

[27] M. M. Ali, C. Khompatraporn and Z. B. Zabinsky, A numerical evaluation of several stochastic
algorithms on selected continuous global optimization test problems, Journal of Global Optimization,
vol.31, pp.635-672, 2005.

[28] M. Jamil, X. S. Yang and H.-J. Zepernick, Test functions for global optimization: A comprehensive
survey, Swarm Intelligence and Bio-Inspired Computation Theory and Applications, pp.193-222,
2013.

