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Abstract. This article proposes a new method to solve the linear optimal control prob-
lem, namely the rational homotopy perturbation method (RHPM). RHPM is the pro-
motion of homotopy perturbation method (HPM). First of all, we introduce the RHPM.
Then by solving the Riccati equation using RHPM and HPM, we find that the RHPM
has the advantages of less iterations, fast convergence and high precision compared with
the HPM. Finally we introduce the Pontryagin maximum principle and the basic con-
cept of the linear quadratic optimal control problem, and illustrate the specific process
of RHPM solving the linear quadratic optimal control problem by enumerating a second-
order control system example. In the process of using RHPM, the difficulty is to find
the parameters by nonlinear fitting. This requires us to find the numerical solution of
the differential equation firstly, and then use the numerical solution for fitting to find the
parameters.
Keywords: Rational homotopy perturbation method, Homotopy perturbation method,
Pontryagin minimum principle, Linear quadratic, Optimal control problems

1. Introduction. In the past several decades, the optimal control has played an impor-
tant role in modern control theory, not only in all areas of physics, but also in ecconmy,
aerospace, chemical engineering [1], robotic [2], etc. However, we know that in many cas-
es, analytical solutions to differential equations evolved from optimal control problems are
difficult to find. The method of solving differential equation and optimal control problems
in current research still has limitations. Nowadays many experts and scholars are based
on Pontryagin minimum principle [3] and Hamilton-Jacobi-Bellman equation [4], and put
forward some related calculation methods to solve the optimal control problem, such as
Adomian decomposition method (ADM [5]), modal series method (MSM [6]), homotopy
analysis method (HAM [7,31]), variational iteration method (VIM [8,32]), and homotopy
perturbation method (HPM [9]). The HPM is an effective tool for solving various linear
and nonlinear problems.

The perturbation method is the most widely used method for solving approximate so-
lutions [18-20]. Many nonlinear problems in science and astronomy have been successfully
solved. However, in recent years, the emergence of so-called singular perturbation prob-
lems caused by many physical problems, experts and scholars has generated new interest
in the equation solving process involving small parameters. Like the HPM [10-17,21-24], it
is not based on small parameters, but on artificial parameters. This has greatly improved
the original perturbation method. In 2013, Sargolzaei et al. proposed using the homotopy
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perturbation method to solve the optimal control problem of linear time-delay systems.
Mainly use the principle of maximum value, the necessary optimal conditions and the
homotopy perturbation method to transform the problem into a linear time-invariant
two-point boundary value problem [7]. Of course, the HPM still has disadvantages such
as slower solution speed, more iterations and larger errors when faced with more types
of nonlinear equations with more complex nature [25,26]. To this end, many experts
and scholars have revised the HPM, and then proposed the RHPM. RHPM [27-30] is a
method based on HPM. It uses the power series quotient to improve the HPM. When
solving nonlinear problems, the computational efficiency is also greatly improved, and
the accuracy of the solution is also improved. Especially in the optimal control linear
quadratic problem solving [33,34], the RHPM is a very effective method. In 2019, Sun
proposed the rational homotopy perturbation method used to solve the optimal control
problem of linear systems in her master’s thesis [40].
In this paper, we mainly apply RHPM to solving the optimal control problem of linear

systems. The difference from Sun Yubo is that when solving the optimal control problem,
the numerical solution of the differential equation is used instead of the exact analytical
solution when fitting the parameters. First, we use RHPM and traditional HPM to
solve the Riccati equation and compare them to find that RHPM is closer to the exact
solution. Then we use RHPM to solve a second-order control system problem. During
the application of RHPM, we solve differential equations and obtain numerical solutions
using MATLAB. Next use numerical scatter points to fit and find parameters by using
MAPLE and then obtain the final solution of the linear optimal control system. The main
framework of this article is as follows. Section 2 mainly introduces the basic concepts of the
rational homotopy perturbation method. Section 3 is the proof of convergence of RHPM.
Section 4 uses HPM and RHPM respectively to solve a Riccatti equation, comparing the
two results and exact solution. Section 5 mainly introduces the Pontryagin minimum
principle and the basic concept of the linear quadratic optimal control problem, and
an example of optimal control of a second-order linear system is given to illustrate the
application of RHPM in linear quadratic optimal control. Finally, Section 6 concludes
the paper.

2. Rational Homotopy Perturbation Method. To illustrate the basic ideas of this
method, we first consider the following nonlinear differential equations:

A(u)− f(r) = 0, u(0) = u0, r ∈ Ω (1)

with boundary conditions

B

(
u,

∂u

∂n

)
= 0, r ∈ Γ (2)

where A is an ordinary differential operator, u0 is an initial approximation of Equation
(1), B is a boundary operator, and f(r) is a known analytic function. Γ is the boundary
of Ω, where Ω is the domain. Operator A can be divided into two parts, L and N , where
L is linear and N is nonlinear, so (1) can be written in the following form:

L(u) +N(u)− f(r) = 0, r ∈ Ω (3)

Through homotopy perturbation techniques, we construct a homotopy v(r, p): Ω ×
[0, 1] → R, which satisfies

H(v, p) = (1− p)[L(v)− L(u0)] + p[A(v)− f(r)] = 0, p ∈ [0, 1], r ∈ Ω (4)

where p is an embedded parameter and u0 is the initial approximate solution of (1).
Obviously from (4) we can get

H(v, 0) = L(v)− L(u0) = 0, H(v, 1) = A(v)− f(r) = 0 (5)
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When p continuously changes from 0 to 1, v(r, p) changes from the initial approximate
solution u0(r) to u(r). In topology, this change is called deformation, and L(v) → L(u0),
A(v) → f(r) is called a homotopy function.

In the HPM, we assume that the solution of (4) is about the power series form of p:

V =
∞∑
i=0

pivi = v0 + pv1 + p2v2 + · · · (6)

Setting p = 1, we obtain the approximate solution of (1).

v(t) = lim
p→1

V = v0 + v1 + v2 + · · ·

However, in the RHPM, we assume that the solution of Equation (4) is in the form of
two power series quotients of p, namely:

U =

∑∞
i=0 p

ivi∑∞
i=0 p

iwi

=
v0 + pv1 + p2v2 + · · ·
w0 + pw1 + p2w2 + · · ·

(7)

where vi is an unknown but determinable function, and wi is a known function for the
argument.

In general, we take w0 = 1, wi = αit
i.

When p → 1, the approximate solution of (7) is

u(t) = lim
p→1

U =
v0 + v1 + v2 + v3 + · · ·
w0 + w1 + w2 + w3 + · · ·

(8)

If both limp→1

∑∞
i=0 vi and limp→1

∑∞
i=0 wi limits exist, and

∑∞
i=0wi ̸= 0, then the limit

of (8) exists.

3. Proof of Convergence of Rational Homotopy Perturbation Method. To an-
alyze the convergence of the rational homotopy perturbation method (RHPM), we write
(4) in the following form:

L(v) = L(u0) + p[f(r)−N(v)− L(u0)] = 0 (9)

Apply the inverse operator L−1 to both sides of (9) and we can get

v = u0 + p
[
L−1f(r)− L−1N(v)− u0

]
(10)

If

v =

∑∞
i=0 p

ivi∑∞
i=0 p

iwi

(11)

substituting (11) into the right side of (10) has the following form:

v = u0 + p

{
L−1f(r)−

(
L−1N

) [∑∞
i=0 p

ivi∑∞
i=0 p

iwi

]
− u0

}
(12)

When the limit p → 1, the exact solution of (1) can be obtained from (12), namely:

u = lim
p→1

(
u0 + p

{
L−1f(r)−

(
L−1N

) [∑∞
i=0 p

ivi∑∞
i=0 p

iwi

]
− u0

})
= L−1f(r)−

[
∞∑
i=0

(
L−1N

)(vi
β

)]
, β =

∞∑
i=0

wi

(13)

We use the Banach theorem to study the convergence of RHPM, which solves the fixed
point problem of the nonlinear operator N in (1).
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Theorem 3.1. (Convergence condition) [35]. X and Y are Banach spaces, and N :
X → Y is a contracted nonlinear map, then

∀w,w∗ ∈ X, ||N(w)−N(w∗)|| ≤ γ||w − w∗||; 0 < γ < 1 (14)

According to Banach’s fixed point theorem, N has a unique fixed point u, and N(u) = u,
assuming that the sequence generated by RHPM can be expressed as:

Wn = N(Wn−1), Wn−1 =
n−1∑
i=0

(
vi
β

)
, n = 1, 2, 3, . . . (15)

Under the conditions of W0 =
(

v0
β

)
∈ Br(u) and Br(u) = {w∗ ∈ X|||w∗ − u|| < r}, there

are
(i) Wn ∈ Br(u).
(ii) limn→∞ Wn = u (u is the RHPM analytical approximate solution of (1)).

Prove by inductive method
(i) When n = 1

||W1 − u|| = ||N(W0)−N(u)|| ≤ γ||w0 − u|| (16)

If ||Wn − u|| ≤ γn−1||w0 − u|| is an induction hypothesis, then

||Wn − u|| = ||N(Wn−1)−N(u)|| ≤ γ||Wn−1 − u|| ≤ γn||w0 − u|| (17)

Using (i), we can get

||Wn − u|| ≤ γn||w0 − u|| ≤ γnr < r ⇒ Wn ∈ Br(u) (18)

(ii) Because ||Wn − u|| ≤ γn||w0 − u|| and limn→∞ γn = 0, limn→∞ ||Wn − u|| = 0,

lim
n→∞

Wn = u (19)

Because Wn is convergent, when n → ∞, Wn = u, u is convergent. Therefore, the
solution obtained by using RHPM to solve (1) has convergence.

4. Comparison of RHPM and HPM. Consider the Riccatti equation{
y′(t)− y2(t) + 1 = 0

y(0) = 0
(20)

Find the approximate solution of (20).
The exact solution of this differential equation can be obtained as:

y(t) = − tanh(t) (21)

4.1. Implementation of RHPM. We use the rational homotopy perturbation method
to find the approximate solution of (20).
Let L(v) = v̇ + v + 1, construct a homotopy map:

H(v, p) = (1− p)(v̇ + v + 1) + p
(
v̇ − v2 + 1

)
= v̇ + v + 1 + p

(
−v2 − v

)
= 0 (22)

If we use [M,N ] order approximation in the RHPM method, we can suppose that the
solution for system (22) has the following form:

V[M,N ] =

∑M
i=0 p

ivi

1 +
∑N

i=1 αitipi
(23)
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Substitute (23) into Equation (22) and compare the same power coefficients of p:

p0 :

{
v′0 + v0 + 1 = 0

v0(0) = 0

p1 :

{
v′1 + v′0α1t− v0α1 + v0α1t+ v1 + 2α1t− v20 − v0 = 0

v1(0) = 0

p2 :


v′0α2t

2 + v′1α1t+ v′2 − 2v0α2t− v1α1 + v0α2t
2 + v1α1t+ v2 + α2

1t
2 + 2α2t

2

− 2v0v1 − v0α1t− v1 = 0

v2(0) = 0

...

Solving the above formula, we obtain

v0 = e−t − 1

v1 = −α1t+ e−tα1t− e−2t − e−tt+ e−t

v2 = e−t

(
e−2 t − e−t(t(α1 − 2) + 1) + t(α1 − 1) + t2

(
α2 − α1 +

1

2

)
− α2t

2et
)

Substituting these results into (23), we obtain

v[2,1] = lim
p→1

V[2,1] = lim
p→1

1

1 + α1t

(
v0 + pv1 + p2v2

)
=

1

1 + α1t
(v0 + v1 + v2)

=
1

1 + α1t

[
2e−t + e−3t − e−2tα1t+ 2e−2tt− 2e−2t + 2e−tα1t− 2e−tt

− e−tt2α1 + e−tα2t
2 +

1

2
e−tt2 − α2t

2 − α1t− 1

]
(24)

For the exact solution function y(t) = − tanh(t), the image is centrally symmetric, we
only need to study the positive semi-axis of the x-axis, and the function image basically
tends to be horizontal after t = 5, and little research value. Therefore, we can select
the interval t ∈ [0, 5]. Then compare the errors of various methods and exact solutions.
In order to make RHPM achieve higher accuracy, we use the NonlinearFit command in
MAPLE to perform nonlinear fitting. Select the initial value of t as 0, the step size is 0.1
(the smaller the step size, the more precise), and the boundary value is 5. The specific
solution process is as follows:

1) We use MATLAB to find the numerical solution of (20), and get a set of scattered
points;

2) Then import these scattered points into the MAPLE, and use the NonlinearFit
command to fit;

3) If the error is too large, reduce the step size and repeat the first two steps.
Finally, we can find the adjustment parameter as

α1 = 0.1419, α2 = −0.0009 (25)

The approximate solution of Equation (20) can be obtained by substituting (25) into
(24).

v[2,1] =
2e−t + e−3t + 1.858e−2tt− 1.716e−tt+ 0.359e−tt2 − 0.1419t− 2e−2t − 0.009t2 − 1

0.1419t+ 1
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4.2. Implementation of HPM. In addition, we use the homotopy perturbation method
to solve. Let L(v) = v̇ + v + 1, and construct a homotopy map:

H(v, p) = (1− p)(v̇ + v + 1) + p
(
v̇ − v2 + 1

)
= v̇ + v + 1 + p

(
−v2 − v

)
= 0

(26)

Suppose
v = v0 + pv1 + p2v2 + · · · (27)

Substitute (27) into (26) to compare the same power coefficients of p:

p0 :

{
v′0 + v0 + 1 = 0

v0(0) = 0

p1 :

{
v′1 + v1 − v20 − v0 = 0

v1(0) = 0

p2 :

{
v′2 + v2 − 2v0v1 − v1 = 0

v2(0) = 0

...

Solving the above formula can obtain

v0 = e−t − 1

v1 = e−t − e−t
(
t+ e−t

)
v2 = e−t

[
e−2t − t+ e−t(2t− 1) +

1

2
t2
]

Then its second-order approximate solution is

u = lim
p→1

v = lim
p→1

(
v0 + pv1 + p2v2

)
= v0 + v1 + v2

= 2e−t + e−3t − 2te−t − 2e−2t + 2te−2t +
1

2
t2e−t − 1

(28)

4.3. Comparison and discussion. The difference between the RHPM and the HPM is
that RHPM leads into adjustment parameters, which can be obtained by fitting using the
numerical solution of the differential equation. It is precisely because of the introduction of
these parameters that the accuracy of RHPM is improved. The reason for using numerical
solutions is that many differential equations cannot be solved analytically. In this section,
we have selected a typical Riccati equation with analytical solutions as an example for
comparison with the analytical approximate solutions obtained by HPM and RHPM.
It can be seen from Figure 1 and Table 1 that the rational homotopy perturbation

method is obviously closer to the exact solution than the homotopy perturbation method,
and the rational homotopy perturbation method has smaller error in solving the nonlinear
differential equation. The number of iterations is smaller and the solution is more accurate.

5. Application of Rational Homotopy Perturbation Method in Linear Qua-
dratic Problems. The linear quadratic optimal control is of importance in modern
control theory. It is the most active subject in control theory. In this section, we will use
RHPM to solve the linear quadratic optimal control.
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Figure 1. Exact solution and approximate solution curve of Equation (20)

Table 1. Exact and approximate solutions of Equation (20)

t Exact RHPM HPM
0 0 0 0
0.5 −0.4621 −0.4622 −0.4624
1.0 −0.7616 −0.7670 −0.7663
1.5 −0.9051 −0.9173 −0.9112
2.0 −0.9640 −0.9761 −0.9609
2.5 −0.9866 −0.9935 −0.9690
3.0 −0.9951 −0.9966 −0.9651
3.5 −0.9982 −0.9968 −0.9614
4.0 −0.9993 −0.9979 −0.9613
4.5 −0.9998 −1.0003 −0.9644
5.0 −0.9999 −1.0037 −0.9693

5.1. Pontryagin maximum principle. The equation of state of the system is

Ẋ = f(X,U, t), X(t) ∈ Rn (29)

Initial conditions

X(t0) = X0 (30)

Control vector U(t) ∈ Rm, and subject to the following constraints:

U ∈ Ω (31)

Terminal constraint

G[X(tf ), tf ] = 0 (32)

Indicator function

J = ϕ[X(tf ), tf ] +

∫ tf

t0

F (X,U, t)dt (33)
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Hamiltonian function

H(X,U, λ, t) = F [X,U, t] + λTf(X,U, t) (34)

To find the optimal control U∗(t), let J take the minimum value. The necessary con-
ditions for J to take the minimum value are X(t), U(t), λ(t) and tf satisfy the following
set of equations
1◦ Regular equation

λ̇ = −∂H

∂X
(Coordinated equation) (35)

Ẋ =
∂H

∂λ
(Equation of state) (36)

2◦ Boundary conditions

X(t0) = X0, G[X(tf ), tf ] = 0 (37)

3◦ Cross-sectional condition

λ(tf ) =
∂ϕ

∂X(tf )
+

∂Gᵀ

∂X(tf )
ν (38)

4◦ Optimal terminal time condition

H(tf ) = − ∂ϕ

∂tf
− ∂Gᵀ

∂tf
ν (39)

5◦ On the optimal trajectory X∗(t) and the optimal control U∗(t), the Hamilton function
takes the minimum value

minH(X∗, λ∗, U, t) = H(X∗, λ∗, U∗, t) (40)

5.2. A reference to the linear quadratic problem. In general, the linear quadratic
problem can be expressed as follows: Let the equation of the linear time-varying system
be

Ẋ(t) = A(t)X(t) +B(t)U(t)

Y (t) = C(t)X(t)
(41)

where X(t) is an n-dimensional state vector, U(t) is an m-dimensional control vector, and
Y (t) is an l-dimensional output vector; let U(t) be unconstrained.
Let the error vector e(t) be

e(t) = Z(t)− Y (t) (42)

where Z(t) is a 1-dimensional ideal output vector. Find the optimal control to minimize
the following performance indicators

J(u) =
1

2
eᵀ(tf )Pe(tf ) +

1

2

∫ tf

t0

[eᵀ(t)Q(t)e(t) + Uᵀ(t)R(t)U(t)]dt (43)

where t0 is the initial moment, tf is the end moment, P is an l× l symmetric semi-positive
constant matrix, Q(t) is an l × l symmetric semi-positive array, and R(t) is an m × m
symmetric positive fixed matrix. Generally, P , Q(t), and R(t) are taken as diagonal
arrays.
Here are a few special cases:
1) Regulator problem. At this time, C(t) = I (unit matrix), ideal output Z(t) = 0,

then Y (t) = X(t) = −e(t). At this time, the problem comes down to using little control.
The amount keeps X(t) near zero. It is therefore called a state regulator problem.
2) Servo problems. At this time, Z(t) ̸= 0, e(t) = Z(t)− Y (t), then Y (t) is followed by

Z(t) with a small amount of control, hence the name is track issue.
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This article focuses on the state regulator problem, which is known as the following
constant system:

Ẋ(t) = AX(t) + BU(t), X(t0) = X0, t ∈ [t0, tf ]

J =
1

2
Xᵀ(tf )PX(tf ) +

1

2

∫ tf

t0

(XᵀQX + UᵀRU)dt
(44)

Find the optimal control U(t) to minimize J , X is n-dimensional, and U ism-dimension.
If t is continuous for ∀t ∈ [t0, tf ], then the control function U(t) is controllable. When
tf is a finite value, it is a finite continuous state regulator problem; when tf → ∞, it is
a steady state regulator problem. Suppose the control is bounded, U is a closed subset
on R+. By taking the extreme values of the performance index, we can get the optimal
control input u(t), where P is a symmetric semi-positive definite matrix and Q and R are
constant symmetric positive definite matrices. Or you can change the requirement for Q
to Q symmetric semi-positive.

According to the system (44) we consider the following Hamiltonian function:

H =
1

2
(XᵀQX + UᵀRU) + λᵀ(AX +BU) (45)

where λ is a covariate variable. When U(t) is unconstrained, according to the Pontryagin
maximum principle, the optimal control rate can be obtained by the following equation.

∂H

∂U
= RU +Bᵀλ = 0 (46)

Optimal control rate is

U∗(t) = −R−1Bᵀλ(t) (47)

According to the cross-sectional conditions

λ(tf ) =
∂ϕ

∂X(tf )
=

∂

∂X(tf )

[
1

2
Xᵀ(tf )PX(tf )

]
= PX(tf ) (48)

It is found that the coordination state λ(t) and the state X(t) are linear in the terminal
time tf , which inspires us to assume

λ(t) = K(t)X(t) (49)

Substituting it into (35) can be obtained

U(t) = −R−1BᵀK(t)X(t) = −G(t)X(t) (50)

where G(t) = R−1BᵀK(t) is called the optimal feedback gain matrix, and K(t) is the
n× n dimensional positive definite symmetric matrix.

Next, our goal is to find K(t) and then find the optimal control. According to the
maximum principle, we can find the regular equation

λ̇(t) = −∂H

∂X
= −QX(t)− Aᵀλ(t) = −QX(t)− AᵀK(t)X(t) (51)

Ẋ(t) =
∂H

∂λ
= AX(t) +BU(t) = AX(t)−BR−1BᵀK(t)X(t) (52)

Derive both sides of λ(t) = K(t)X(t) and substitute (51):

λ̇(t) = K̇(t)X(t) +K(t)Ẋ(t) = −QX(t)− AᵀK(t)X(t) (53)

Substitute (52) into (53)[
K̇(t) +K(t)A−K(t)BR−1BᵀK(t) + AᵀK(t) +Q

]
X(t) = 0 (54)
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The above formula should be true for any X(t), so the term in square brackets should be
zero, which leads to

K̇(t) = −K(t)A− AᵀK(t) +K(t)BR−1BᵀK(t)−Q (55)

The above equation is a nonlinear matrix differential equation of K(t), called the Ric-
cati matrix differential equation. In order to find K(t), we need to know its boundary
conditions. We compare (48) and (49)

K(tf ) = P (56)

In [22], K(t) can be composed of the following forms:

K(t) = W (t)V −1(t) (57)

where (
V̇ (t)

Ẇ (t)

)
=

(
A −BR−1BT

−Q −AT

)(
V (t)
W (t)

)
(58)

which is
V̇ (t) = AV (t)−BR−1BᵀW (t)

Ẇ (t) = −QV (t)− AᵀW (t)
(59)

with conditions V (tf ) = I, W (tf ) = P .

5.3. A case study of rational homotopy perturbation method in linear qua-
dratic problems. Let the system state equation be [34]

ẋ1 = x2, x1(0) = 1

ẋ2 = u, x2(0) = 0
(60)

Find the optimal control u(t) to minimize the following performance indicators

J =
1

2

∫ π
2

0

[
x2
1(t) + u2(t)

]
dt (61)

Solution: Compare the equation of state (60) with the performance indicators (61)
and (44).

A =

(
0 1
0 0

)
, B =

(
0
1

)
, P = 0, Q =

(
1 0
0 0

)
, R = 1 (62)

According to (59)

V̇ (t) =

(
0 1
0 0

)
V (t)−

(
0 0
0 1

)
W (t)

Ẇ (t) = −
(

1 0
0 0

)
V (t)−

(
0 0
1 0

)
W (t)

(63)

According to the homotopy perturbation method to construct homotopy functions, there
are

H1 (V,W, p) = (1− p)

(
V̇ (t)−

(
0 1
0 0

)
V (t)

)
+ p

(
V̇ (t)−

(
0 1
0 0

)
V (t) +

(
0 0
0 1

)
W (t)

)
= 0

H2 (V,W, p) = (1− p)

(
Ẇ (t) +

(
0 0
1 0

)
W (t)

)
+ p

(
Ẇ (t) +

(
1 0
0 0

)
V (t) +

(
0 0
1 0

)
W (t)

)
= 0

(64)
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simplified to

V̇ (t)−
(

0 1
0 0

)
V (t) + p

(
0 0
0 1

)
W (t) = 0

Ẇ (t) +

(
0 0
1 0

)
W (t) + p

(
1 0
0 0

)
V (t) = 0

(65)

According to (7), the approximate solution of the [M,N ] order in the rational homotopy
perturbation method can be expressed as

V[M,N ] =

∑M
i=0 p

ivi(t)

1 +
∑N

i=1 αitipi
, W[M,N ] =

∑M
i=0 p

iwi(t)

1 +
∑N

i=1 βitipi
(66)

Substituting (66) into (65), comparing the same power coefficients of p, there are

p0 :


v′0(t)−

(
0 1

0 0

)
v0(t) = 0

w′
0(t) +

(
0 0

1 0

)
w0(t) = 0

p1 :


v′1(t)−

(
0 1

0 0

)
v1(t)− v0(t)α1 +

(
0 0

0 1

)
w0(t) = 0

w′
1(t) +

(
0 0

1 0

)
w1(t)− w0(t)β1 +

(
1 0

0 0

)
v0(t) = 0

p2 :



v′2(t)−

(
0 1

0 0

)
v2(t) +

[
v′1(t)−

(
0 1

0 0

)
v1(t)

]
α1t− v1(t)α1

−2v0(t)α2t+

(
0 0

0 1

)
w1(t) = 0

w′
2(t) +

(
0 0

1 0

)
w2(t) +

[
w′

1(t) +

(
0 0

1 0

)
w1(t)

]
β1t− w1(t)β1

−2w0(t)β2t+

(
1 0

0 0

)
v1(t) + (2β1t− α1t)

(
1 t

0 0

)
= 0

...

Initial condition v0(0) =

(
1 0
0 1

)
, w0(0) =

(
0 0
0 0

)
. Combined with the boundary

conditions, we can solve
v0(t) =

(
1 t

0 1

)

w0(t) =

(
0 0

0 0

)
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v1(t) =

(
α1t α1t

2

0 α1t

)

w1(t) =

 −t −1

2
t2

1

2
t2

1

6
t3




v2(t) =

 α2t
2 − 1

24
t4 α2t

3 − 1

120
t5

−1

6
t3 α2t

2 − 1

24
t4



w2(t) =

 −β1t
2 −1

2
β1t

3

1

2
β1t

3 1

6
β1t

4


...

Substitute the above formula into (66) and let p take the limit p → 1

V[2,1] =
1

1 + α1t

 − 1

24
t4 + α2t

2 + α1t+ 1 − 1

120
t5 + α2t

3 + α1t
2 + t

−1

6
t3 − 1

24
t4 + α2t

2 + α1t+ 1


W[2,1] =

1

1 + β1t

 −β1t
2 − t −1

2
β1t

3 − 1

2
t2

1

2
β1t

3 +
1

2
t2

1

6
β1t

4 +
1

6
t3


(67)

According to Formula (57), we obtain

G∗(t) = R−1BᵀW (t)V −1(t) = (G∗
1(t), G

∗
2(t)) (68)

Among

G∗
1(t) =

20t2(α1t+1)(t4+72α2t2+72α1t+72)
M+240α2t6+240α1t5+2880α2

2t4+5760α2α1t3+2880α1
2t2+5760α2t2+5760α1t

G∗
2(t) =

−8t3(α1t+1)(t4+120α2t2+120α1t+120)
M+240α2t6+240α1t5+2880α2

2t4+5760α2α1t3+2880α1
2t2+5760α2t2+5760α1t

where M = t8 + 240t4 + 2880.
First use MATLAB to find the numerical solution of V (t) and W (t). Then, use the

NonlinearFit command in MAPLE to perform nonlinear fitting, and fit v11 and v12 in
V[1,2] respectively. The initial value of time t is 0, the boundary value is 1.8, and then the
adjustment parameter in v11 can be determined as

α̂1 = 0.006178, α̂2 = −0.0004946 (69)

In order to distinguish, here we use the symbol of ‘*’, and get the adjustment parameters
of v12 as:

α∗
1 = 0.00363, α∗

2 = −0.000091 (70)

Substituting α1 =
α∗
1+α̂1

2
, α2 =

α∗
2+α̂2

2
into G∗

1(t), G
∗
2(t), get the analytical approximate

solution.
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Through (65) and boundary conditions we can find the exact solution as:

G1(t) = −
e

√
2

2
t

[
4e

√
2

2
t cos

(√
2
2
t
)2

− e
3
√
2

2
t − 2e

√
2

2
t − e−

√
2

2
t

]
4e

√
2t cos

(√
2
2
t
)2

+ 2e
√
2t + e2

√
2t + 1

(71)

G2(t) =

√
2e

√
2
2
t
[
4e

√
2

2
t cos

(√
2
2
t
)
sin
(√

2
2
t
)
− e

3
√

2
2

t + e−
√

2
2
t
]

4e
√
2t cos

(√
2
2
t
)2

+ 2e
√
2t + e2

√
2t + 1

(72)

It can be seen from Figure 2 and Table 2 that the RHPM has a small error from the
exact solution when solving the linear quadratic problem. To minimize J , use the formula

u(t) = −Gx(t) =

[
−1

2
t2,−1

6
t3
]

J =
1

2

∫ π
2

0

[
x2
1(t) + u2(t)

]
dt = 1.774712332× 1010 +

1

1280
π5 +

1

64512
π7

(73)

Figure 2. Comparison of exact solutions of G1, G2 and RHPM solutions

In the traditional solving of the quadratic optimal control problem of the second-order
linear system, the Riccati differential equation is generally used directly to solve the
problem. Riccati differential equations have a shaping theory and calculations are more
convenient. However, it is difficult to obtain analytical expressions using this method,
and the numerical solution can only be calculated using computer programs. Therefore,
we use RHPM to solve the above linear quadratic optimal control problem [37]. Through
comparison, it is found that RHPM perfectly solves the problem that the Riccati equation
[38] cannot be solved in an analytical expression, and the approximate solution obtained
by RHPM is quite close to the exact solution. RHPM is a particularly effective method
in solving linear optimal control problems.
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Table 2. Comparison of exact solutions of G1, G2 and RHPM solutions

G1 G2
t RHPM Exact [34] RHPM Exact [34]
0 0 0 0 0
0.2 0.020 0.020 −0.003 −0.003
0.4 0.080 0.080 −0.021 −0.021
0.6 0.178 0.178 −0.071 −0.071
0.8 0.311 0.311 −0.166 −0.165
1.0 0.468 0.467 −0.310 −0.309
1.2 0.631 0.628 −0.499 −0.496
1.4 0.780 0.772 −0.731 −0.704
1.6 0.896 0.884 −0.924 −0.906
1.8 0.973 0.955 −1.109 −1.076

6. Conclusions. In this paper, the concept of RHPM and the proof of convergence are
introduced in detail. This method is used to solve the approximate solution of nonlin-
ear differential equations. It can be found by comparison with homotopy perturbation
method, the rational homotopy perturbation method is much better than the homotopy
perturbation method, and its solution speed is fast, the number of iterations is small, and
the error is small. Of course, through this paper, it can be found that it is very convenient
to solve the linear quadratic problem by using the RHPM.
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