
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2021 ISSN 1349-4198
Volume 17, Number 3, June 2021 pp. 949–957

THE BALANCING BIPOLAR CHOQUET INTEGRALS

Jabbar Abbas

Department of Applied Sciences
University of Technology

Al Sina’a Street, Baghdad 10066, Iraq
100033@uotechnology.edu.iq

Received October 2020; revised February 2021

Abstract. Mesiarova-Zemankova et al. have proposed a new type of discrete extension
of the Choquet integral that merges positive and negative inputs together, called the bal-
ancing Choquet integral for capacities. In this paper, we first introduce an alternative
definition of the balancing Choquet integral based on binary-element sets. Then, we pro-
pose the balancing bipolar Choquet integral for bi-capacities, which is an extension of
balancing Choquet integral. In the second half of the paper, we present a form of the
balancing Choquet integral on fuzzy sets, and we extend our model to balancing bipolar
Choquet integral on fuzzy sets. Finally, we give basic properties of balancing bipolar Cho-
quet integral on fuzzy sets.
Keywords: Capacities, Bi-capacities, Balancing Choquet integral, Bipolar balancing
Choquet integral, Balancing Choquet integral on fuzzy sets

1. Introduction. Choquet integrals defined with respect to capacities [2] (fuzzy mea-
sures [3, 4] or non-additive measures [5]) are powerful tools in multiple criteria decision
making problems and there are a growing number of publications on the topic (see e.g.,
[6, 7, 8]). The Choquet integral has been generalized by Wu and Huang [9] on fuzzy
sets. Mesiarova-Zemankova et al. [1] have introduced the balancing Choquet integral in
order to ensure compensation by the extended discrete Choquet integral. The concept
of bi-capacity has been proposed by Grabisch and Labreuche [10] as a generalization of
capacity. The bipolar Choquet integral has been proposed in [11] as an extension of
the Choquet integral for cases in which the underlying scale is bipolar. In recent litera-
ture, bipolarity and its possible applications have been discussed by various researchers
[12, 13, 14].

In [15, 16], a new approach for studying the bipolar Choquet integral has been proposed
through introducing a concept of ternary-element sets. In this study, we develop this
approach to the aggregation on bipolar scales for studying balancing bipolar Choquet
integral. This approach is fully different from those methods in previous studies ([1, 9, 11]),
and it allows a simple way to introduce new results on bi-capacity and balancing Choquet
integral. The proposed results in this paper are as follows.

• The first result introduces a definition of the balancing Choquet integral based
on binary-element sets, which is an alternative definition from that defined by
Mesiarova-Zemankova et al. [1].

• The second result proposes the balancing bipolar Choquet integral based on ternary-
element sets, which is an extension of balancing Choquet integral with respect to
bi-capacity.
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• The third result presents a form of balancing Choquet integral on fuzzy sets, which
is an alternative approach from that defined by Wu and Huang [9].

• The fourth result proposes a model to the aggregation on bipolar scales for study-
ing the balancing bipolar Choquet integral on fuzzy sets and discusses the basic
properties of this integral.

The paper is organized as follows. The next section recalls the basic definitions that
are needed in this paper. Section 3 presents the balancing bipolar Choquet integral.
In Section 4, we propose the balancing Choquet integral on fuzzy sets. In Section 5,
we propose balancing bipolar Choquet integral on fuzzy sets. Finally, the conclusions
are made in Section 6. Throughout the paper, we will consider [0, 1] to be prototypical
unipolar scale, while [−1, 1] with 0 as neutral level will be considered as prototypical
bipolar scale.

2. Capacities and Bi-capacities. In this section, we begin by recalling basic concepts
of the equivalent definitions of capacities based on binary-element sets and bi-capacities
based on ternary-element sets (for more details, see [15, 16, 17]).
The binary-element set (or simply bi-element set) S is a set of the form S := {τ1, . . . , τi,

. . . , τn} where τi = i+ or i−, for all i, i = 1, . . . , n. Hence, we can represent the set of all
possible combinations of bi-element sets by

B̧ :=
{
{τ1, . . . , τi, . . . , τn}

∣∣τi ∈ {
i+, i−

}
, ∀i = 1, . . . , n

}
.

The inclusion relation ⊆ on B̧ is defined as follows. For S, T ∈ B̧, then, S ⊆ T iff
∀i = 1, . . . , n,

if i+ ∈ S =⇒ i+ ∈ T. (1)

Based on the notion of bi-element sets, the following definition gives an equivalent
definition of capacity.

Definition 2.1. Let B̧ be the set of all bi-element sets. A set function µ : B̧ → [0, 1] is
called capacity if it satisfies the following requirements:
1) µ(X+) = µ({1+, . . . , n+}) = 1 and µ(X−) = µ({1−, . . . , n−}) = 0.
2) ∀S, T ∈ B̧, S ⊆ T =⇒ µ(S) ≤ µ(T ).

The ternary-element set (or simply ter-element set) S is a set of the form S := {τ1, . . .,
τi, . . . , τn} where τi = i+, i−, or i∅, ∀i = 1, . . . , n. Hence, we present the set of all possible
combinations of ter-elements by

Ţ :=
{
{τ1, . . . , τi, . . . , τn}

∣∣τi ∈ {
i+, i−, i∅

}
,∀i = 1, . . . , n

}
.

The order ⊑ on structure of Ţ is given by the following definition.

Definition 2.2. Suppose S and T are ter-element sets of Ţ. Then, S ⊑ T iff ∀i = 1, . . . ,
n,

“if i+ ∈ S implies i+ ∈ T”, and “if i∅ ∈ S implies i+ or i∅ ∈ T”. (2)

The following definition is equivalent definition of bi-capacities based on notion of ter-
element sets.

Definition 2.3. Let Ţ be the set of all ter-element sets. A set function ν : Ţ → [−1, 1]
is called bi-capacity if it satisfies the following requirements:
1) ν (X+) = ν ({1+, . . . , n+}) = 1, ν

(
X∅) = ν

({
1∅, . . . , n∅}) = 0, and ν (X−) =

ν ({1−, . . . , n−}) = −1,
2) ∀S, T ∈ Ţ, S ⊑ T =⇒ ν(S) ≤ ν(T ).
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In the following definition, and we give an another order relation on structure Ţ, and
we will denote it by ⊆, which is an equivalent relation to Bilbao order [18].

Definition 2.4. Suppose S and T are ter-element sets of Ţ. Then, S ⊆ T iff ∀i =
1, . . . , n

“if i+ ∈ S implies i+ ∈ T” and “if i− ∈ S implies i− ∈ T”. (3)

In this order, for all S, T ∈ Ţ, the union, S ∪ T of S and T is given by

S ∪ T = {τj ∨ τk : τj ∈ S, τk ∈ T}, (4)

for all j = 1, . . . , n, k = 1, . . . , n with i+ ∨ i− = i+, i+ ∨ i∅ = i+, i− ∨ i∅ = i−, i = 1, . . . , n.

3. The Balancing Bipolar Choquet Integral. In [1], Mesiarova-Zemankova et al.
have proposed the balancing Choquet integral for capacities. This integral is a discrete
extension of Choquet integral that merges positive and negative inputs together, thus
allowing a compensation effect. In this section, we first define an equivalent expression
of “balancing Choquet integral” for capacities µ. Then, we propose a balancing bipolar
Choquet integral with respect to bi-capacities ν.

We can describe the balancing Choquet integral for capacity µ based on bi-element sets
of real input a by the following definition.

Definition 3.1. (i) For a real input a = (a1, . . . , ai, . . . , an) we consider a bi-element sets
C1, . . . , Cp with Ck ⊆ {1+, . . . , i+, . . . , n+} and ∪p

k=1Ck = {1+, . . . , i+, . . . , n+} such that
1) |ai| = |aj| for all τi, τj ∈ Ck,
2) |ai| < |aj| for all τi ∈ Ck, τj ∈ Cr with k < r.
Denote |Ck|a = |ai| for τi ∈ Ck and Dk = ∪p

j=kCj. The sets Ck, k = 1, . . . , p are value
classes of a.

(ii) Let µ : B̧ → [0, 1] be a capacity. “The balancing Choquet integral” of input a for
the capacity µ is defined by

BChµ(a) =

p∑
k=1

|Ck|a
[
µ
(
C+

k ∪Dk

)
− µ

(
C−

k ∪Dk+1

)]
, (5)

where C+
k , C

−
k ⊆ Ck such that ∀i+ ∈ Ck, i

+ ∈ C+
k if ai > 0 and i+ ∈ C−

k if ai ≤ 0, with
the convention that Dp+1 = X−.

In expression of Choquet integral, the permutation used in the formula of Choquet
integral (see e.g., [2, 5, 19]) need not be unique, but it has no influence on the resulting
output. While in the formula of bipolar Choquet integral for bi-capacity ([11]) again
permutation need not be unique and then it has influence on the resulting output. For
this reason, we propose the balancing bipolar Choquet integral for bi-capacity based on
ter-element set, where the permutation has no influence on the resulting output.

For an input vector a = (a1, . . . , ai, . . . , an), ai ∈ Ŗ, we assume a ter-element set
X∗ := {τ1, . . . , τn} with τi = i+ if ai > 0, τi = i− if ai < 0, and τi = i∅ if ai = 0; for all
i = 1, . . . , n. Hence, we describe “the balancing bipolar Choquet integral” of bi-capacity
ν of real input a by the following definition.

Definition 3.2. (i) For an input vector a = (a1, . . . , ai, . . . , an) consider sets C1, . . . , Cp

with Ck ⊆ X∗ and ∪p
k=1Ck = X∗ such that

1) |ai| = |aj| for all τi, τj ∈ Ck,
2) |ai| < |aj| for all τi ∈ Ck, τj ∈ Cr with k < r.
Denote |Ck|a = |ai| for τi ∈ Ck and Dk = ∪p

j=kCj.
(ii) Let ν : Ţ → [−1, 1] be a bi-capacity. “The balancing bipolar Choquet integral” of

input a is given by
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BChν(a) =

p∑
k=1

|Ck|a[ν(Dk)− ν(Dk+1)], (6)

where Dp+1 = X∅.

For the sake of clarity, let us give the following numerical example.

Example 3.1. For n = 6, and suppose a = (3,−8,−3, 5,−8, 3). Then X∗ = {1+, 2−, 3−,
4+, 5−, 6+}, and the set of all value classes are C1 =

{
1+, 2∅, 3−, 4∅, 5∅, 6+

}
, C2 =

{
1∅, 2∅,

3∅, 4+, 5∅, 6∅
}
, C3 =

{
1∅, 2−, 3∅, 4∅, 5−, 6∅

}
.

Using Equation (6) we obtain BChν(a) = 3
[
ν ({X∗})− ν

({
1∅, 2−, 3∅, 4+, 5−, 6∅

})]
+

5
[
ν
({

1∅, 2−, 3∅, 4+, 5−, 6∅
})

− ν
({

1∅, 2−, 3∅, 4∅, 5−, 6∅
})]

+8
[
ν
({

1∅, 2−, 3∅, 4∅, 5−, 6∅
})

−
ν
(
X∅)] = 3ν ({X∗}) + 2ν

({
1∅, 2−, 3∅, 4+, 5−, 6∅

})
+ 3ν

({
1∅, 2−, 3∅, 4∅, 5−, 6∅

})
.

4. The Balancing Choquet Integral on Fuzzy Sets. In this section, we propose a
new approach for studying the balancing Choquet integral on fuzzy sets through intro-
ducing a notion of fuzzy binary-element sets, which is an alternative approach from that
defined by Wu and Huang [9].
For any S ∈ B̧, we can define the characteristic function by χS(i) = 1 if and only if

i+ ∈ S, and χS(i) = 0 if and only if i− ∈ S. The fuzzy bi-element set is a bi-element set
with a degree of membership in [0, 1], as shown in the following definition.

Definition 4.1. The fuzzy bi-element set S̃ is the set S̃ =
{(

τi, χS̃(i)
)
|τi ∈ {i+, i−} , i =

1, . . . , n
}
, where χS̃(i) is called degree of membership of i in S̃ with χS̃(i) ∈ (0, 1] if and

only if τi = i+, and χS̃(i) = 0 if and only if τi = i−.

For X := {1, . . . , n}, let us denote the set of all fuzzy bi-element sets by B̧̃(X). The
operations on fuzzy bi-element sets of B̧̃(X) are introduced in [15]. We will denote by B̧̃
for a fuzzy algebra of fuzzy bi-element sets, and define the fuzzy algebra as follows.

Definition 4.2. A nonempty subclass of B̧̃(X) is called fuzzy algebra B̧̃ if it satisfies the
following requirements:
1) {(1−, 0), . . . , (n−, 0)} and = {(1+, 1), . . . , (n+, 1)} ∈ B̧̃,
2) If S̃, T̃ ∈ B̧̃, then S̃ ∪ T̃ ∈ B̧̃,
3) If S̃ ∈ B̧̃ then S̃c ∈ B̧̃.

The definition of the fuzzy algebra B̧̃ permits us to introduce capacity on fuzzy sets.

Definition 4.3. A capacity on fuzzy sets is a fuzzy set function µ̃ : B̧̃ → [0,∞] satisfies
the following conditions:
1) µ̃ ({(1−, 0) , . . . , (n−, 0)}) = 0,

2) µ̃
(
S̃
)
≤ µ̃

(
T̃
)
whenever S̃, T̃ ∈ B̧̃ with S̃ ⊆ T̃ .

Now, we can extend the balancing Choquet integral to capacity of fuzzy sets µ̃. The
balancing Choquet integral of fuzzy sets is an alternative integral from that introduced
by Wu and Huang [9].

Definition 4.4. (i) For an input vector a = (a1, . . . , ai, . . . , an) we assume a fuzzy bi-
element set S̃+ = {(i+, χS̃+(i)) |ai ∈ Ŗ, i ∈ {1, . . . , n}}, and fuzzy bi-element sets C̃1, . . . ,

C̃p with C̃k ⊆ S̃+ and ∪p
k=1C̃k = S̃+ such that χC̃k

(i) ≤ χC̃r
(j) for all i+ ∈ C̃k, j

+ ∈ C̃r

with k < r.

Denote
[
C̃k

]
a
= χC̃k

(i) for i+ ∈ C̃k and D̃k = ∪p
j=kC̃j. The sets C̃k, k = 1, . . . , p are

value classes of a.
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(ii) The balancing Choquet integral of a for capacity on fuzzy sets µ̃ is given by

BCµ̃(a) =

p∑
k=1

[
C̃k

]
a

[
µ̃
(
D̃k

)
− µ̃

(
D̃k+1

)]
, (7)

where D̃p+1 = X̃−.

The special case of Definition 4.4 is the balancing Choquet integral of capacity on
classical crisp set whenever µ̃ is a capacity on classical crisp set.

Example 4.1. For n = 3, let us consider fuzzy set S̃ with membership function

χS̃(i) =


0.5 iff τi = 1+,

0.8 iff τi = 2+,

0.2 iff τi = 3+.

Hence, C1 = {(1−, 0), (2−, 0), (3+, 0.2)}, C2 = {(1+, 0.5), (2−, 0), (3−, 0)}, C3 = {(1−, 0),
(2+, 0.8), (3−, 0)}. Applying Formula (7) we obtain BCµ̃(a) = 0.2[µ((1+, 0.5), (2+, 0.8),
(3+, 0.2)) − µ((1+, 0.5), (2+, 0.8), (3−, 0))] + 0.5[µ((1+, 0.5), (2+, 0.8), (3−, 0)) − µ((1−, 0),
(2+, 0.8), (3−, 0))]+0.8[µ((1−, 0), (2+, 0.8), (3−, 0))−µ(X−)] =0.2µ((1+, 0.5), (2+, 0.8), (3+,
0.2)) + 0.3µ((1+, 0.5), (2+, 0.8), (3−, 0)) + 0.3µ((1−, 0), (2+, 0.8), (3−, 0)).

5. The Balancing Bipolar Choquet Integral on Fuzzy Sets. There are several
possible symmetric extensions of the Choquet integral and the actual choice of the relevant
one depends on the modeled situation and the constraints of decision maker. In this
section, we can generalize the definition of the balancing Choquet integral to bi-capacities
on fuzzy sets, which is a new approach to the aggregation on bipolar scales for studying
the balancing bipolar Choquet integral on fuzzy sets.

In the same way that we presented the balancing Choquet integral on fuzzy sets (Section
4), we can extend the scope of balancing Choquet integral to bi-capacity on fuzzy sets as
follows.

Fot S ∈ Ţ, we can define the characteristic function by χS(i) = 1 if and only if i+ ∈ S,
χS(i) = −1 if and only if i− ∈ S, and χS(i) = 0 if and only if i∅ ∈ S. The fuzzy ter-
element set is a ter-element set with different degree of membership in [−1, 1], as shown
in the following definition.

Definition 5.1. The fuzzy ter-element set S̃ is the set S̃ =
{
(τi, χS̃(i))

∣∣τi ∈ {
i+, i−, i∅

}
,

i = 1, . . . , n
}
, where χS̃(i) is called degree of membership i in S̃ with χS̃(i) ∈ [−1, 0) if

and only if τi = i−, χS̃(i) ∈ (0, 1] if and only if τi = i+, and χS̃(i) = 0 if and only if
τi = i∅.

For X := {1, . . . , n}, let us denote the set of all fuzzy ter-element sets by Ţ̃(X), and
we define the operations on the sets of Ţ̃(X) as follows.

• For S̃ ∈ Ţ̃(X), the complement S̃c of S̃ is defined by the following membership
function

χS̃c(i) =


1− χS̃(i) if τi = i+ and χS̃(i) ∈ (0, 1),

0 if τi = i∅,

−1− χS̃(i) if τi = i− and χS̃(i) ∈ (−1, 0).

• For S̃, T̃ ∈ Ţ̃(X), S̃ ⊆ T̃ holds “if i+ ∈ S implies i+ ∈ T”, “if i− ∈ S implies i− ∈
T”, and “if i∅ ∈ S implies i+, or i−, or i∅ ∈ T”.
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• For S̃, T̃ ∈ Ţ̃(X), the union S̃ ∪ T̃ of S̃ and T̃ is defined by S̃ ∪ T̃ =
{(

τj ∨ τk,

χS̃∪T̃ (i)
)
: τj ∈ S̃, τk ∈ T̃

}
, for all j = 1, . . . , n, k = 1, . . . , n with i+ ∨ i− = i+,

i+ ∨ i∅ = i+, i− ∨ i∅ = i−, i = 1, . . . , n, and

χS̃∪T̃ (i) =

{
χS̃(i) if τj ∨ τk = τj,

χT̃ (i) if τj ∨ τk = τk.

• For S̃, T̃ ∈ Ţ̃(X), the intersection S̃ ∩ T̃ of S̃ and T̃ is defined by S̃ ∩ T̃ ={(
τj ∧ τk, χS̃∩T̃ (i)

)
: τj ∈ S̃, τk ∈ T̃

}
, for all j = 1, . . . , n, k = 1, . . . , n with i+∧ i− =

i−, i+ ∧ i∅ = i∅, i− ∧ i∅ = i∅, i = 1, . . . , n, and

χS̃∩T̃ (i) =

{
χS̃(i) if τj ∧ τk = τj,

χT̃ (i) if τj ∧ τk = τk.

Let us denote the fuzzy algebra of “fuzzy ter-element sets” by Ţ̃, and we define the
fuzzy algebra as follows.

Definition 5.2. A nonempty subclass of Ţ̃(X) is fuzzy algebra Ţ̃ if it satisfies the following
requirements:
1) {1−, . . . , n−},

{
1∅, . . . , n∅}, and {1+, . . . , n+} ∈ Ţ̃,

2) If S̃, T̃ ∈ Ţ̃, then S̃ ∪ T̃ ∈ Ţ̃,
3) If S̃ ∈ Ţ̃ then S̃c ∈ Ţ̃.

The definition of the fuzzy algebra Ţ̃ permits us to introduce “bi-capacity on fuzzy
sets”.

Definition 5.3. A bi-capacity on fuzzy sets is a fuzzy set function ν̃ : Ţ̃ → Ŗ satisfying
the following conditions:
1) ν̃

({
1∅, . . . , n∅}) = 0,

2) ν̃
(
S̃
)
≤ ν̃

(
T̃
)
whenever S̃, T̃ ∈ Ţ̃ with S̃ ⊆ T̃ .

Now, for an input vector a = (a1, . . . , ai, . . . , an), ai ∈ Ŗ and i ∈ {1, . . . , n}, we assume
a ter-element set S̃∗ = {(τi, χS̃∗(i))} with τi = i+ if ai > 0, τi = i− if ai < 0, and τi = i∅

if ai = 0; ∀i = 1, . . . , n. The following is definition of balancing bipolar Choquet integral
of a for bi-capacity on fuzzy sets ν̃.

Definition 5.4. (i) For an input vector a = (a1, . . . , ai, . . . , an) we assume fuzzy ter-
element sets C̃1, . . . , C̃p with C̃k ⊆ S̃∗ and ∪p

k=1C̃k = S̃∗ such that
∣∣χC̃k

(i)
∣∣ ≤ ∣∣χC̃r

(j)
∣∣ for

all τi ∈ C̃k, τj ∈ C̃r with k < r.

And
∣∣∣C̃k

∣∣∣
a
=

∣∣χC̃k
(i)

∣∣ for τi ∈ C̃k and D̃k = ∪p
j=kC̃j. The sets C̃k, k = 1, . . . , p are

value classes of a.
(ii) The balancing bipolar Choquet integral of a for bi-capacity on fuzzy sets ν̃ is given

by

BCν̃(a) =

p∑
k=1

∣∣∣C̃k

∣∣∣
a

[
ν̃
(
D̃k

)
− ν̃

(
D̃k+1

)]
, (8)

where D̃p+1 = X̃∅.

For the sake of clarity, let us give the following numerical example.
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Example 5.1. For n = 3, let us consider fuzzy ter-element set S̃ with membership func-
tion

χS̃(i) =


0.6 if τi = 1+,

−0.5 if τi = 2−,

0.8 if τi = 3+.

Then, C̃1 =
{(

1∅, 0
)
, (2−,−0.5),

(
3∅, 0

)}
, C̃2 =

{
(1+, 0.6),

(
2∅, 0

)
,
(
3∅, 0

)}
, C̃3 =

{(
1∅,

0
)
,
(
2∅, 0

)
, (3+, 0.8)

}
. Using Equation (8) we obtain, BCν̃(a) = 0.5

[
ν̃
(
(1+, 0.6) , (2−,

−0.5), (3+, 0.8)
)
− ν̃

(
(1+, 0.6) ,

(
2∅, 0

)
, (3+, 0.8)

)]
+ 0.6

[
ν̃
(
(1+, 0.6) ,

(
2∅, 0

)
, (3+, 0.8)

)
−

ν̃
((
1∅, 0

)
,
(
2∅, 0

)
, (3+, 0.8)

)]
+ 0.8

[
ν̃
((
1∅, 0

)
,
(
2∅, 0

)
, (3+, 0.8)

)
− ν̃

(
X∅)] = 0.5ν̃

((
1+,

0.6
)
, (2−,−0.5) , (3+, 0.8)

)
+0.1ν̃

(
(1+, 0.6) ,

(
2∅, 0

)
, (3+, 0.8)

)
+0.2ν̃

((
1∅, 0

)
,
(
2∅, 0

)
, (3+,

0.8)
)
.

The special case of Definition 5.4 is the balancing bipolar Choquet integral for bi-
capacity on crisp set whenever ν̃ is a bi-capacity on crisp set. The balancing bipolar
Choquet integral on fuzzy sets ν̃ satisfies the following basic properties.

Proposition 5.1. To any bi-capacity on fuzzy sets (ν̃) on Ţ̃, the balancing bipolar Cho-
quet integral

Cν̃

(
1S̃,−1S̃, 0S̃

)
= ν̃(S), ∀S ∈ Ţ, S̃ ∈ Ţ̃.

Proof: For input (1S̃,−1S̃, 0S̃),∣∣χC̃k
(i)

∣∣ = 1 or
∣∣χC̃k

(i)
∣∣ = 0, ∀τi ∈ C̃k

and ν̃
(
D̃k

)
− ν̃

(
D̃k+1

)
= ν̃

({
(i+, χS (i

+)) , (i−, χS (i
−)) ,

(
i∅, 0

)})
− ν̃

(
X̃∅

)
= ν̃

({
(i+ ,

χS (i
+)) , (i−, χS (i

−)) ,
(
i∅, 0

)})
= ν̃

({
(i+, 1) , (i−,−1) ,

(
i∅, 0

)})
= ν̃

(
S̃
)
= ν̃(S).

Hence, from the definition of balancing bipolar Choquet integral for bi-capacity on
fuzzy sets (Equation (8)), we have

BCν̃

(
1S̃,−1S̃, 0S̃

)
=

p∑
k=1

∣∣∣C̃k

∣∣∣
a

[
ν̃
(
D̃k

)
− ν̃

(
D̃k+1

)]
Thus,

BCν̃ (1S̃,−1S̃, 0S̃) = ν̃(S), ∀S ∈ Ţ, S̃ ∈ Ţ̃.

The following result shows that “the balancing bipolar Choquet integral for bi-capacity
on fuzzy sets” satisfies the monotonicity property.

Proposition 5.2. To any bi-capacity of fuzzy sets ν̃ on Ţ̃, ∀a, a′ ∈ Ŗ, if ai ≤ a′i, ∀i ∈
{1, . . . , n}, then BCν̃(a) ≤ BCν̃ (a

′).

Proof: First, we consider that ai < a′i, and for all k ∈ {1, . . . , i − 1, i + 1, . . . , n},
ak = a′k. And, we assume that |χC̃k

(1)| ≤ · · · ≤ |χC̃k
(n)| and |χC̃′

k
(1)| ≤ · · · ≤ |χC̃′

k
(n)|.

For this case, we prove the monotonicity as follows.
By the balancing bipolar Choquet integral for bi-capacity on fuzzy sets (Equation (8)),

we have

BCν̃(a) =

p∑
k=1

∣∣∣C̃k

∣∣∣
a

[
ν̃
(
D̃k

)
− ν̃

(
D̃k+1

)]
, (9)

also

BCν̃ (a
′) =

p∑
k=1

∣∣∣C̃ ′
k

∣∣∣
a′

[
ν̃
(
D̃′

k

)
− ν̃

(
D̃′

k+1

)]
. (10)
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Since D̃k and D̃k+1 are the fuzzy ter-element sets and D̃k+1 ⊆ D̃k, ν̃
(
D̃k

)
−ν̃

(
D̃k+1

)
≥ 0.

Similraly, ν̃
(
D̃′

k

)
− ν̃

(
D̃′

k+1

)
≥ 0.

Now, since ai ≤ a′i implies
∣∣∣C̃k

∣∣∣
a
≤

∣∣∣C̃ ′
k

∣∣∣
a′
, it is clear that BCν̃(a) ≤ BCν̃ (a

′). So, if

ai < a′i then BCν̃(a) ≤ BCν̃ (a
′) is proved within the range that the order of a and a′ does

not change. Therfore, by iterating the procedures 2 times at element of the change of the
order, if ai < a′i then BCν̃(a) ≤ BCν̃ (a

′). Using this procedure for each i, the result can
be proved.

6. Conclusions. This paper first presented a framework for extending capacity and bal-
ancing Choquet integral for definition of “bi-capacities based on ter-element sets” and
“the balancing bipolar Choquet integral”. According to this framework, we have intro-
duced an expression of the balancing bipolar Choquet integral. Then we have extended
“the balancing bipolar Choquet integral” to fuzzy sets, and we have given the basic prop-
erties of this integral. The balancing Choquet integral can be applied in any aggregation
when the zero is expected to be the center of symmetry of the input axis, and some kind
of the mentioned compensation effect, for example, applications of the balancing Choquet
integral in sentiment analysis, especially in sentiment classification. Sentiment classifica-
tion is mostly focused on methods that assign sentiment degrees (where to each feature
a sentiment degree from [−1, 1] is assigned) to individual features (for more details, see
[1, 20, 21, 22]). Since the balancing bipolar Choquet integrals were introduced in Sections
4 & 5 as a generalization of the balancing Choquet integral, the application of balancing
bipolar Choquet integral in the field sentiment analysis (or, in all decision and evaluation
problems where the bipolar scales for input values are taken into account) is an open
question for future research.
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