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Abstract. Multi-sensor state fusion and measurement fusion focus on the minimum of
fusion variance and the sensor that suffers from less input noise will contribute more to
the fusion result. However, if the measurement of the sensor which includes systematic
error obviously discriminates against that of the others, it should play a non-significant
role in the fusion process despite lower variance. Therefore, this paper proposes a new
data fusion method, called Dynamic Weighted Fusion (DWF). Differing from the exist-
ing minimum variance fusion methods, it tunes the weighted coefficients calculated in
terms of optimal variance through the dynamic similarity degree among all the sensors’
measurement values that reflect the real-time contextual information. DWF fusion co-
efficients varying along with the sample time are non-constants. The sensor with lower
input noise may be placed in a non-essential position if its output value differs from the
other one. The proposed approach can be readily extended to output voting occurring in
safety instrument systems. We show through simulations that DWF generally outper-
forms previous fusion methods.
Keywords: Data fusion, Similarity, Contextual information, Dynamic weighted coeffi-
cients

1. Introduction. Information fusion or multi-sensor data fusion, which concerns the
problem of integrating data from multiple and distinct sensors in order to achieve more
accurate and specific inferences than those available by processing data from a single
sensor, has been widely applied to many fields, such as military, target tracking, GPS po-
sitioning, and the process of control [1-5]. Data from diverse sensors are combined using
techniques related to several disciplines: signal processing, statistics, artificial intelligence,
pattern recognition, and information theory. The fusion strategy based on Kalman filter
is one of the most significant methods and has been deeply investigated in different com-
munities [6-8]. If state transition matrix and input noise vector equal identity matrix and
zero vector respectively, then Kalman filter is reduced to least-square unbiased estimation
[9]. This paper is limited to the multi-sensor fusion estimation.

For Kalman-filtering-based fusion, there are two different types of methods to cope with
the measure, i.e., centralized (or measurement) and distributed (or weighted) fusion meth-
ods, depending on whether raw data are used directly for fusion center or not [10]. The
centralized fusion method can give the globally optimal state estimation by directly com-
bining local measurement data in an augment equation. The centralized fusion method
generally involves minimal information loss in linear minimum mean square error, for all
measured sensor data are communicated to the central site processing. However, it may
result in disadvantages that 1) high dimension measurement vector and matrices require a
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larger computational burden on inverse matrices and high data rates for communication;
2) the fusion may suffer from poor accuracy and stability if some measurements have some
delay or even missing. The weighted fusion method includes the state-vector and mea-
surement weighted fusion methods [11]. The weighted measurement fusion method weighs
the local sensor measurements to obtain a weighted measurement fusion equation, which
accompanies the state equation to obtain a final weighted measurement fusion Kalman
filter by using a single estimator. The state-vector weighted fusion method uses a group
of estimators to obtain an individual sensor-based estimate. In the state-vector fusion,
only a smaller computational burden is required because of the lower dimension of the
fused measurement vector. Furthermore, it readily leads to fault detection and isolation.
It is well known that, under the linear-Gaussian assumption, the distributed fusion has

global optimality, i.e., it is algebraically equivalent to centralized fusion if measurement
noises are uncorrected across for all the sensors. Various distributed fusion algorithms
have been reported over the last decades. Carlson [12] developed a federated architecture
applicable to distributed sensor systems with parallel processing capabilities. In [13], the
functional equivalence between the weighted measurement fusion method and the cen-
tralized fusion method was proved using the information filter method and the method
of computing the inverse of the partitioned matrix. Kim [14] proposed an optimal fu-
sion filter under the assumption of normal distribution based on the maximum likelihood
sense for systems with multiple sensors and assumed the process noise to be independent
of measurement noise. An optimal distributed fusion steady-state Kalman in [15] was
proposed for multi-sensor systems with colored measurement noises and different local dy-
namic models. Weighted measurement fusion fractional-order Kalman filter was presented
under the independent white noises situation in [16]. Optimal sequential Kalman filter-
ing was presented for discrete time-varying linear control systems with cross-correlated
measurement noises in [17]. It is known that the existing methods are concerned with un-
biased estimation and fusion strategies are limited to the minimum covariance framework.
However, we have to face the problem that some sensors with smaller variance may be
not reliable because their measurement data contaminated by systematic error resulting
from the working environment is seriously distinct from that of the others in the fusion
system.
Up to now, the issue of multi-sensor data fusion including the contextual information

has not been fully investigated and remains to be improved. When the sensor is initially
used, it can be considered that the accuracy of its measurement data is the same, but the
performance index of the sensor declines over time, which eventually leads to a difference
in its real-time data measurement. So we need to consider the contextual information
contained in the real-time data. We develop an efficient computational method for recal-
culating the optimal weighted assignment strategy by introducing the similarity between
two different sensors into the fusion process. The degree of similarity reflects distinction
to some extent. The new data fusion method, called Dynamic Weighted Fusion (DWF),
combines the inherent variance of each sensor and contextual information. The results
of mathematic analysis and simulation show that the proposed fusion method is more
effective and reasonable than the existing fusion method.
The remainder of this paper is organized as follows. In Section 2 the problem formu-

lation is presented. A distributed fusion estimator with independent noise is proposed
in Section 3 and the equivalence between centralized fusion estimator and distributed
fusion estimator is proved. The dynamic reliability is researched in Section 4, and Dy-
namic Weighted Fusion Estimation (DWFE) is presented in Section 5. Section 6 gives the
application to the single variable measurement based on the multi-sensor system. The
conclusions are presented in Section 7.
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2. Problem Formulation. Consider the multi-sensor linear discrete stochastic system
with the same measurement matrix

yi(k) = Hx(k) + vi(k), i = 1, . . . , N, (1)

where k is the discrete-time, and i denotes the ith sensor. x(k) ∈ Rn is the unknown
parameter vector to be estimated, yi(k) ∈ Rm is the observed data, H is the mi×n known
measurement matrix (we always assume that mi > n), and vi(k) ∈ Rm is a zero-mean
Gaussian noise vector. Given the data yi(k), we seek a fusion estimator x̂(k) of x that
is close to x in some sense. This estimation problem arises in a large variety of areas
in science and engineering, e.g., communication, signal processing and process control.
In the following, I and 0 denote the identity matrix and zero matrix with compatible
dimensions, respectively.

Because vi(k) ∈ Rm approximately obeys the distribution of Gaussian white noise, the
following assumptions are made.

Assumption 2.1. vi(k) and vj(k) are mutually independent white noises with zero mean,
i.e.,

E

{[
vi(t)
vj(t)

] [
vTi (k), vTj (k)

]}
=

[
Ri

Rj

]
δtk, (2)

where E denotes the mathematical expectation, the superscript T denotes the transpose,
and δtk is the Kronecker delta function.

Assumption 2.2. vi(k), i = 1, . . . , N and x(t) are mutually independent, i.e.,

E
[
vi(k)x

T
j (t)

]
= 0. (3)

The problem is based on the above information, using distributed fusion estimations,
presenting an efficient computational method for recalculating the optimal weighted as-
signment strategy by introducing the similarity between two different sensors into the
fusion process.

3. Two Kinds of Fusion Estimations. Centralized fusion estimation and distributed
fusion estimation are two commonly used fusion methods, and centralized fusion estima-
tion has problems such as heavy computational burden [18]. Centralized fusion estimation
has theoretical significance and distributed fusion estimation is more in line with practi-
cal applications. Real-time data is updated iteratively over time. It is proved that their
equivalence reduces the computational burden to a certain extent.

3.1. Centralized fusion estimation. Introducing an augmented measurement vector
y(C)(k), then we combine all measurement equations to obtain a centralized measurement
fusion equation as

y(C)(k) = H(C)x(k) + v(C)(k), (4)

with the definitions
y(C)(k) =

[
yT1 (k), y

T
2 (k), . . . , y

T
N(k)

]T
, (5)

H(C)(k) =
[
HT

1 (k), H
T
2 (k), . . . , H

T
N(k)

]T
, (6)

v(C)(k) = diag
[
vT1 (k), v

T
2 (k), . . . , v

T
N(k)

]T
(7)

and the variance matrix is given as follows

R(C) = diag
[
RT

1 , R
T
2 , . . . , R

T
N

]T
. (8)

For the centralized fusion estimation system (4), applying Gaussian-Markov estimation,
we can obtain a centralized fusion estimator; for convenience, time k is omitted from
Equation (9) to Equation (23)
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x̂(C) =
[
H(C)TR(C)−1

H(C)
]−1

H(C)TR(C)−1
y(C). (9)

The centralized fusion method has the minimized estimator error variance matrix as

R
(
x̂(C)

)
=

[
H(C)TR(C)−1

H(C)
]−1

. (10)

It is globally optimal in the sense that its precision is higher than that of each local
estimator.

3.2. Distributed fusion estimation.

Lemma 3.1. Let x̂i be the unbiased estimators of n dimension stochastic vector x. Let
the estimation errors be x̃i = x̂i − x, i = 1, . . . , N . Assuming that x̃i and x̃j (i ̸= j), are
uncorrelated, i.e., E

[
xix

T
j

]
= 0 and E

[
xix

T
i

]
= Pi, then the optimally distributed fusion

(i.e., linear minimum variance) estimator [19] with matrix weights is given as

x̂0 = A1x̂1 + A2x̂2 + · · ·+ AN x̂N , (11)

where the optimal matrix weights Ai, i = 1, . . . , N are computed as follows

Ai =

[
N∑
i=1

P−1
i

]−1

P−1
i (12)

and its error variance matrix is given by

P0 =

[
N∑
i=1

P−1
i

]−1

. (13)

Based on Gaussian-Markov Theorem and Equation (1), we have N unbiased estimators
of the n dimension stochastic vector x denoted by x̂i, i = 1, . . . , N

x̂i =
[
HT

i R
−1
i Hi

]−1
HT

i R
−1
i yi, (14)

R(x̃i) =
[
HT

i R
−1
i Hi

]−1
. (15)

Directly applying Lemma 3.1, we have the distributed fusion estimator denoted by

x̂(D) = W1x̂1 +W2x̂2 + · · ·+WN x̂N , (16)

where the optimal matrix weights Wi, i = 1, . . . , N are computed as follows

Wi =

[
N∑
i=1

R−1(x̃i)

]−1

R−1(x̃i) (17)

and its error variance matrix is given by

R
(
x̂(D)

)
=

[
N∑
i=1

R−1(x̃i)

]−1

. (18)

Comparing Equations (16)-(18) with Equations (4)-(10), we note that the treatment in the
two measurement fusion methods is quite different. However, we find that there exists a
form of functional equivalence between the two methods, proved by the following theorem.

Theorem 3.1. If the N sensors are used for data fusion, with different and independent
noise characteristics, then the distributed fusion estimation is functionally equivalent to
the centralized fusion estimation.



MULTI-SENSOR DATA FUSION 1011

Proof: Equation (10) can be reformed as

R
(
x̂(C)

)
=

[
HT

1 , . . . , H
T
N

]
diag

(
R−1

i

) H1
...

HN


−1

=

[
N∑
i=1

HT
i R

−1
i Hi

]−1

. (19)

Combining Equation (15) and (18), we can get

R
(
x̂(D)

)
=

[
N∑
i=1

HT
i R

−1
i Hi

]−1

. (20)

It is easy to find that the two fusion methods have the same fusion variance and

x̂(C) =

[
N∑
i=1

HT
i R

−1
i Hi

]−1 N∑
i=1

HT
i R

−1
i yi, (21)

x̂(D) =

[
N∑
i=1

HT
i R

−1
i Hi

]−1 N∑
i=1

R−1(x̃i)x̂i

=

[
N∑
i=1

HT
i R

−1
i Hi

]−1 N∑
i=1

R−1(x̃i)
[
HT

i R
−1
i Hi

]−1
HT

i R
−1
i yi. (22)

Considering Equation (15), Equation (22) can be simplified as

x̂(D) =

[
N∑
i=1

HT
i R

−1
i Hi

]−1 N∑
i=1

R−1(x̃i)x̂i =

[
N∑
i=1

HT
i R

−1
i Hi

]−1 N∑
i=1

HT
i R

−1
i yi. (23)

Comparing with Equation (21), we immediately know that x̂(D) is equal to x̂(C).
The distributed fusion estimation avoids the inverse of the higher dimension matrix.

The functional equivalence between x̂(D) and x̂(C) implies a functional equivalence between
the two measurement fusion methods based on standard fusion estimation.

Analyzing Equations (16) and (17), it is clear that the optimal matrix weight Wi is
only dependent on the variance R(x̃i), which can be regarded as prior static reliability of
the sensor [21]. However, the static evaluation does not take account of the change of the
sensor reliability in varying environments. Because environmental uncertainty and oppo-
site disturbance may cause the sensors to degrade or fail, it must be able to dynamically
monitor and assess them in the multi-sensor fusion system. Otherwise, the data with
large variation will affect the result devastatingly and decrease the performance of the
fusion system. So the information contained in the actual values x̂1 should be extracted
to determine its influence on the fusion process, and can be regarded as dynamic reliabil-
ity, which is used to evaluate the ability of the sensor to understand a dynamic working
environment [21]. For instance, one sensor has higher static reliability (less variance), its
contribution to the fusion result may be degraded for lower dynamic reliability. To deal
with this problem, similarity applied to measuring the degree of consensus among a group
of sensors is introduced in this paper.

4. Similarity for Quantifying Dynamic Reliability. Intuitively, for a given sensor,
the concepts of distance and similarity are related to the other sensor in an inverse way,
i.e., the less the distance between the sensor readings and that of the others, the greater
the similarity degree of this sensor [22].
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Definition 4.1. For time k, the similarity measure between x̂l
i and x̂l

j, denoted by slij(k),
can be obtained from the distance measure as

slij(k) = exp
(
−a

∣∣x̂l
i(k)− x̂l

j(k)
∣∣a) , a > 0, (24)

where l, l = 1, . . . , n denotes the lth element of the given sensor’s estimation value.

slij(k) is a quantifying index describing the similarity degree between the two sensors.

When
∣∣x̂l

i(k)− x̂l
j(k)

∣∣ = 0, then slij(k) is 1, which implies the two sensors have the highest

similarity degree; otherwise, slij(k) is always less than 1. a is a tuning parameter.
Now, we can construct a similarity matrix for the lth element with identity diagonal

elements denoted by SM l(k) given time k

SM l(k) =


1 sl12(k) · · · sl1N(k)

sl21(k) 1 · · · sl2N(k)
...

...
. . .

...
slN1(k) slN2(k) · · · 1

 . (25)

Not that
∑N

j=1 s
l
ij(k) represents the total similarity degree for the ith sensor and sat-

isfies the properties of symmetry, reflexivity and transitively as similarity relationship
introduced by Zadeh [23]. If the value of

∑N
j=1 s

l
ij(k) is larger, it indicates that the mea-

surement value of the ith sensor is nearer to those of the other sensors. Otherwise, it
deviates from the others’ measurement values, and its dynamic reliability should be low-
er. We define the total similarity degree for the lth element of the ith sensor, i = 1, . . . , N
as

SM l
i (k) =

N∑
j=1

slij(k). (26)

SM l
i (k) illustrates the ith sensor compatibility with the others, so the dynamic reliability

associated with a sensor is directly related to the compatibility. Now, update the total
similarity degree up to a normalizing relative one indicating the relatively dynamic reli-
ability. According to Equations (25) and (26), the normalizing relative similarity can be
obtained as

Rl
i(k) =

SM l
i (k)∑N

i=1 SM
l
i (k)

. (27)

Rl
i(k) only represents the dynamic reliability of given time k. However, the reliability

may be lower during all the observation time, even though the normalizing total similarity
is higher given time k. The dynamic reliability of the sensor should be shown by the
consistent similarity along all the samples time.

Definition 4.2. Up to time k, the consistency normalizing relative similarity for the lth
element of the ith sensor is defined as follows

R
l

i(k) =

∑k
t=1R

l
i(t)

k
. (28)

R
l

i(k) decreases the effect caused by measurement value fluctuation on the dynamic
reliability. For instance, the reading dramatically changes for a certain time, so the Rl

i(k)

will be great small. In this situation, R
l

i(k) can resist this unnormal phenomenon. The

recursive method for R
l

i(k) is described as follows to save the computational expenditure

R
l

i(k) =
k − 1

k
R

l

i(k − 1) +
1

k
Rl

i(k). (29)
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Now, we can construct a dynamic similarity matrix for sensor i given time k

Ri(k) =


R

1

i (k) 0 · · · 0

0 R
2

i (k) · · · 0
...

...
. . .

...

0 0 · · · R
n

i (k)

 . (30)

The matrix R
l

i(k) including the dynamic reliability information on the estimation x̂i will
be used to obtain adjusted fusion matrix composing variances and readings information.
Ri(k), i = 1, . . . , N satisfy the normalization, i.e.,

N∑
i=1

Ri(k) = I. (31)

The online data of the sensor fusion process is dynamic, and the dynamic similarity
matrix between different sensors can be obtained based on the above information. In order
to obtain the best fusion results, this paper considers a new fusion method including static
and dynamic reliability.

5. Novel Fusion Method Including Static and Dynamic Reliability. Once the
degree of similarity is obtained, the problem of how to incorporate it into the fusion process
may arise. It stands to reason to believe that the sensor with smaller variance and larger
dynamic reliability should contribute more to the fusion estimation result. The variance
function and the dynamic reliability can be quantified by the optimal matrix weights
Wi and dynamic similarity matrix Ri(k), respectively. Now, combining Wi and Ri(k), we
obtain a novel fusion process embodying static and dynamic reliability information. Time
k is omitted in the following. The new weighted matrix for the sensor i is defined as

W
(R)
i = Ri ×Wi. (32)

The coefficient W
(R)
i means that the role of x̂i in the fusion result is proportional to

the dynamic reliability and its inherent character expressed by variance. Normalize new
weighted matrix

W
(R)

i = Ri ×Wi ×

[
N∑
i

Ri ×Wi

]−1

. (33)

Considering Equation (16), we can get the novel fusion method as follows

x̂(R) = W
(R)

1 x̂1 +W
(R)

2 x̂2 + · · ·+W
(R)

N x̂N . (34)

6. Case Study. We take the single variable measurement suffered from noise as an
example to illustrate the new fusion method proposed in this paper. Assuming there are
two measurement systems, each measurement system comprises three sensors, and all the
sensors have the same observation model given by

yi(k) = x(k) + vi(k), i = 1, 2, 3. (35)

Model (35) is widely used in process measurements, such as temperature, pressure, and
flow rate measure. We assume vi, i = 1, 2, 3 is independent normal observed noise with
zero mean and known variance σ2

i . If the variance is unknown, it can be estimated
appealing to the complete algorithm of least square estimations.

σ̂2
i =

[yi −Hx̂i(ko)]
T [yi −Hx̂i(ko)]

ko − 1
, (36)
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where ko is the number of samples and x̂i(ko) is the estimation value of the complete
algorithm of LS. yi and H are defined as follows with the corresponding dimension.

yi = [yi(1), . . . , yi(ko)]
T , H = [1, . . . , 1]T (37)

After getting the variance information, the simulation experiment can be carried out.
Assuming the true value of x and the variance of the three sensors are known. The
simulation measurement data is generated by the model (35). The observed data applied
to fusion is updated by the moving horizon method, and the fusion estimator starts when
getting 4 measurement data. Assumed moving step is 1 and sample size k is 100.
Note that if all the sensors have the same variance, the fusion method based on static

reliability is equivalent to the average method on measure value. In this situation, we
can immediately obtain the optimally weighted coefficient Wi based on Equation (17)
before multi-sensor data fusion. So Equation (16) does not read information reflecting
the environment changing in a round-about way.
Suppose the true values of x in the two measurement systems are 30 and 31, the

simulation experiment includes two parts: 1) assuming all the sensors have the same
variance 0.1, and the measurement value of the first sensor is obviously larger or smaller
than the other two sensors readings; 2) the first sensor variance is lessened to be 0.05,
and that of the others remains the value 0.1. The readings of the three sensors have the
same scope. The results are compared with Equation (16) in terms of absolute error. The
simulation results are shown as Figure 1 to Figure 4.

6.1. Part one. From Figure 1(a), we know that the value of the novel fusion method
is less than that of the old method, and is closer to sensor 2 and sensor 3. From Figure
1(b), we know that the value of the novel fusion method is greater than that of the old
method, and is also closer to sensor 2 and sensor 3. Comparing Figure 1(a) with Figure
1(b), this phenomenon implies that the function of sensor 1 with un-normal measured
value is reduced in the fusion results. That is to say, the sensor with the higher similarity
plays the main role in the fusion process. Besides, it can be found that the fusion result
of the novel method is closer to the true value than the old method.
Figure 2 shows that the fusion method combining dynamic measurement information is

superior to the one obtained by static variance characters in absolute error sense, because

(a) When the true value of x is 30 (b) When the true value of x is 31

Figure 1. The comparison curves of fusion results between novel and old
fusion methods when all the sensors have the same variance 0.1
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(a) When the true value of x is 30 (b) When the true value of x is 31

Figure 2. The comparison curves of errors between novel and old fusion
methods when all the sensors have the same variance 0.1

the contribution of contextual disturbance on the fusion results is diminished by the tuned
fusion matrix in Equation (34).

6.2. Part two. Comparing Figure 3 with Figure 1, we can know that although the
variance of sensor 1 is reduced, the fusion result of Figure 3 deviates from the true value
more than the fusion result of Figure 1. So we can obtain that the proposed method
satisfies the conclusion that the less the variance of one sensor, the more the contribution
of the sensor to the fusion results. However, the new fusion method can further adjust
the output of the multi-sensor measurement system to be near to the sensors that possess
the coincident tendency of readings.

(a) When the true value of x is 30 (b) When the true value of x is 31

Figure 3. The comparison curves of fusion results between novel and old
fusion methods when the variance of sensor 1 is 0.05 and that of the others
is 0.1

Figure 4 shows that the absolute error is larger than that of Figure 2 because the
variance of sensor 1 is less and its contribution to the fusion results is enlarged. In this
case, environment information plays a more significant role in the properties of the fusion
method, and the alternative fusion method on the reduction of systematic error of con-
textual disturbance is required to be proposed. At the same time, it can also be seen from



1016 Y. YUE, Y. ZHANG AND X. ZUO

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Error of Novel Method

Error of Old Method

A
bs

ol
ut

e 
 E

rro
r

 

 

Samples

(a) When the true value of x is 30

0 10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

Error of Novel Method

Error of Old Method

A
bs

ol
ut

e 
 E

rro
r

 

 

Samples

(b) When the true value of x is 31

Figure 4. The comparison curves of errors between novel and old fusion
methods when the variance of sensor 1 is 0.05 and that of the others is 0.1

Figure 4 that the fusion method combining dynamic measurement information proposed
in this paper is superior to the one obtained by static variance characters in absolute error
sense and is more suitable for practical applications.

7. Conclusions. The classical multi-sensor data fusion method is optimal in the mini-
mum mean square sense. However, the precision of the fusion results is constant when all
the variance is known, even if the estimation of the variance cannot exclude the contex-
tual disturbance from the output of the measurement system either. All these drawbacks
result from that the variance is the static reliability depending on the physical properties
before application, so the static fusion weighted coefficient can be regarded as a sensor
performance index or prior knowledge for any application environment. Intuitively, when
the sensor is used in different situations or at different stages, its reliability will change. In
order to deal with these questions, the dynamic reliability index proposed in this paper is
used to evaluate environmental information. Quantifying dynamic reliability is described
through the similarity among the group of sensors. Then the novel fusion process includ-
ing the dynamic reliability is discussed. The contextual information is combined into the
fusion process. So it can degrade the absolute error, and enhance the fusion precision by
adjusting fusion coefficients dynamically.
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