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Abstract. It is well known that the study of many processes of the natural sciences
can be reduced to solve integro-differential equations with variable boundaries. Recently,
studies on certain problems of the environment, such as the corona virus, the emergence
of new diseases, and diseases associated with mutations of viruses, have become relevant.
A solution to such problems is associated with finding solutions of integro-differential
equations. For the last few years, researchers have been paying attention to the newly
discovered fractional operators involving nonsingular kernels. The Caputo fractional de-
rivative is the one of these operators which has captured the interest of scientists the
most because of the many interesting results reported when this derivative is used in
modelling some real-world phenomena. However, the theory of these operators is still
to be addressed. In this paper, we establish some new conditions for the existence and
uniqueness of solutions for a class of nonlinear Caputo fractional Volterra-Fredholm
integro-differential equations with nonlocal conditions. The desired results are proved by
using theory of fractional calculus aid of fixed point theorems due to Banach and Kras-
noselskii in Banach spaces.
Keywords: Volterra-Fredholm integro-differential equation, Caputo fractional deriva-
tive, Fixed point method

1. Introduction. Fractional calculus is predominately description of the fractional order
of integral and derivative operator. It has a lengthy history in mathematics as much as
old as differential calculus [1, 2]. Several researchers described that the fractional integral
and derivative are suitable for modelling to define the memory and hereditary properties
of different substances or system and other real world problem. Many types of fractional
operators and definition are obtained. This fact enables the researches to pick up the
most convenient fractional derivative for the sake of achieving better results in modeling
the real world problem under consideration. Integro-differential equations with nonlocal
conditions have attracted the attention of many researchers in the last decades as seen
in [1, 2, 3, 4, 5, 6], because of their applications in numerous fields of science, engineer-
ing, physics, economy and so on. In the last years, with the development of theorems
of fractional integro-differential equations, many authors investigated the existence of so-
lutions of abstract fractional integro-differential equations with nonlocal conditions by
using semigroups theorems, solution operator theorems and the relation between solution
operators and semigroups constructing by probability density functions as well as fixed
point techniques [7, 8, 9, 10, 11, 12, 13].
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Recently, Baleanu et al. [14], by using fixed-point methods, studied the existence and
uniqueness of a solution for the nonlinear fractional boundary value problem given by

cDνx(t) = f(t, x(t)), t ∈ J = [0, T ], 0 < ν < 1,

x(0) = x(T ), x(0) = β1x(η), x(T ) = β2x(η), 0 < η < T, 0 < β1 < β2 < 1.

Devi and Sreedhar [15] used the monotone iterative technique to the Caputo fractional
integro-differential equation of the type

cDνx(t) = f(t, x(t), Iνx(t)), t ∈ J = [0, T ], 0 < ν < 1,

x(0) = x0.

Wang and Zhou [16] studied the Ulam stability and data dependence for a Caputo
fractional differential given by

cDνx(t) = f(t, x(t)), t ∈ J = [a,+∞), 0 < ν < 1,

x(a) = ξ.

Dong et al. [17] established the existence and uniqueness of solutions via Banach and
Schaude fixed point techniques for the problem given by

cDν
0+x(t) = f(t, x(t)) +

∫ t

0

G(t, s, x(s))ds, t ∈ J = [0, T ], 0 < ν ≤ 1,

x(0) = ξ.

Benchohra and Bouriahi [18] investigated existence and stability of solutions for a class
of boundary value problem for implicit Caputo fractional differential equations of the type

cDνx(t) = f(t, x(t), cDνx(t)), t ∈ J := [0, T ], T > 0 , 0 < ν ≤ 1,

x(0) + g(x) = x0.

In this paper, we extend the results in [16, 17] by proving the existence and unique-
ness of solutions for the following nonlinear Caputo fractional Volterra-Fredholm integro-
differential equations

cDνx(t) = f

(
t, x(t),

∫ t

0

k(t, s)x(s)ds,

∫ T

0

h(t, s)x(s)ds

)
, t ∈ J := [0, T ], (1)

x(0) + g(x) = x0, (2)

where cDν is the Caputo fractional derivative of order ν, 0 < ν ≤ 1, f : J × X × X ×
X −→ X is a continuous function, k, h : J × J −→ X is a continuous function, and
kT = sup{|k(t, s)| : 0 ≤ s ≤ t ≤ T}, hT = sup{|h(t, s)| : 0 ≤ s ≤ t ≤ T}, g(x) :
C(J,X) −→ X, and x0 ∈ X. To prove the existence and uniqueness of solutions, we
transform (1) into an equivalent integral equation and then use the Krasnoselskii and
Banach fixed point theorems.
The paper is organized as follows. Section 2 presents, as preliminaries, the definition

of the fractional derivative, the fractional integral of Riemann-Liouville with respect to
another function, and some important results, given as theorems, as well as the spaces
in which such operators and theorems are defined. In Section 3, we use the fixed point
theorems due to Banach and Krasnoselskii to prove the existence and uniqueness results
for the problem (1)-(2). In the special case, when k = h = g = 0 in the problem (1)-(2)
then the results of [16] appear as a special case of our results and when h = g = 0 in the
problem (1)-(2) then the results of [17] appear as a special case of our results. Then, the
results presented in this paper extend the main results in [16, 17]. The application of our
main results is established in Section 4. Concluding remarks close the paper in Section 5.
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2. Preliminaries. The mathematical definitions of fractional derivative and fractional
integration are the subject of several different approaches. The most frequently used
definitions of the fractional calculus involve the Riemann-Liouville fractional derivative
and Caputo derivative [9, 10, 13].

Definition 2.1. [13] (Riemann-Liouville fractional integral). The Riemann-Liouville frac-
tional integral of order ν > 0 of a function u ∈ C([0, T ]) is defined as

Jνu(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1u(s)ds,

where Γ denotes the Gamma function.

Definition 2.2. [9] (Caputo fractional derivative). The fractional derivative of u(t) in
the Caputo sense is defined by

cDνu(t) = Jm−νDmu(t) =


1

Γ(m− ν)

∫ t

0

(t− s)m−ν−1∂
mu(s)

∂sm
ds, m− 1 < ν < m,

∂mu(t)

∂tm
, ν = m, m ∈ N,

where the parameter ν is the order of the derivative and is allowed to be real or even
complex. In this paper, only real and positive ν will be considered.

Hence, we have the following properties:

1) JνJvu = Jν+vu, ν, v > 0.

2) Jνuβ = Γ(β+1)
Γ(β+ν+1)

uβ+ν.

3) Dνuβ = Γ(β+1)
Γ(β−ν+1)

uβ−ν, ν > 0, β > −1.

4) JνDνu(t) = u(t)− u(a), 0 < ν < 1.

5) JνDνu(t) = u(t)−
∑m−1

k=0 u(k)(0+) (t−a)k

k!
, t > 0.

Definition 2.3. [10] The Riemann Liouville fractional derivative of order ν > 0 is nor-
mally defined as

LDνu(t) =
1

Γ(n− ν)

dm

dtm

∫ t

0

u(s)

(t− s)ν+1−m
ds, m− 1 < ν ≤ m, m ∈ N.

Definition 2.4. [10] The Caputo derivative of order ν for a function u : [0,∞) −→ R
can be written as

cDνu(t) = LD
ν

[
u(t)−

m−1∑
k=0

tk

k
u(k)(0)

]
.

Theorem 2.1. [19] Suppose ν > 0, ã(t) is a nonnegative function locally integrable on J
and g̃(t) is a nonnegative, nondecreasing continuous function defined on g̃(t) ≤ M , t ∈ J,
and suppose u(t) is nonnegative and locally integrable on J with

u(t) ≤ ã(t) + g̃(t)

∫ t

0

(t− s)ν−1u(s)ds, t ∈ J.

Then

u(t) ≤ ã(t) +

∫ t

0

[
∞∑

m=1

(g̃(t)Γ(ν))m

Γ(mν)
(t− s)mν−1ã(s)

]
ds, t ∈ J.
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Remark 2.1. Under the hypothesis of Theorem 2.1, let ã(t) be a nondecreasing function
on J . Then we have

u(t) ≤ ã(t)Eα(g̃(t)Γ(α)t
α), (3)

where Eα is the Mittag-Leffler function defined by

Eα(t) =
∞∑

m=0

tα

Γ(mα + 1)
. (4)

Lemma 2.1. [13] (Bochner theorem). A measurable function f : J −→ X is a Bochner
integral if ∥f∥ is lebegue integrable.

Lemma 2.2. [13] (Mazur lemma). If A is a compact subset of X, then its convex closure
¯convA is compact.

Lemma 2.3. [10] (Ascoli-Arzela theorem). Let S = {s(t)} be a function family of con-
tinuous mappings s : J −→ X. If S is uniformly bounded and equicontinuous, and for
any t∗ ∈ J, the set {s(t∗)} is relatively compact, then there exists a uniformly convergent
function sequence {sn(t)} (n = 1, 2, . . . , t ∈ J) in S.

Theorem 2.2. [13] (Banach). Let (X, d) be a nonempty complete metric space with T :
X −→ X as a contraction mapping. Then map T has a fixed point x∗ ∈ X such that
Tx∗ = x∗.

Theorem 2.3. [10] (Krasnoselskii). Let M be a closed convex and nonempty subset of a
Banach space X. Let A,B be two operators such that

1) Ax+By ∈ M whenever x, y ∈ M.
2) A is compact and continuous.
3) B is a contraction mapping.

Then there exists z ∈ M such that z = Az +Bz.

3. Existence and Uniqueness of Solutions. In this section, we shall give existence
and uniqueness results of Equation (1), with the conditions (2). Before starting and prov-
ing the main results, we introduce the following hypotheses.
(A1) For each x, y ∈ X, f(t, x, y, z) is strongly measurable w.r.t. t on J .
(A2) For each t ∈ J , f(t, x, y, z) is continuous w.r.t. x and y on X.
(A3) There exist constants af > 0, ag ∈ (0, 1) for arbitrary u, v, y ∈ X such that

∥f(t, u, v, y)∥ ≤ af [1 + ∥u∥+ ∥v∥+ ∥y∥].
∥g(u)∥ ≤ ag[1 + ∥u∥C ].

(A4) There exist constants Lf (ρ) > 0, Lg ∈ (0, 1) for arbitrary ui, vi, yi ∈ X, i = 1, 2,
satisfying ∥u1∥, ∥v1∥, ∥y1∥, ∥u2∥, ∥v2∥, ∥y2∥ ≤ ρ such that

∥f(t, u1, v1, y1)− f(t, u2, v2, y2)∥ ≤ Lf (ρ)[∥u1 − u2∥+ ∥v1 − v2∥+ ∥y1 − y2∥],
∥g(u)− g(v)∥ ≤ Lg∥u− v∥C , u, v ∈ X.

(A5) For any t ∈ J , the set

K =

{
(t− s)ν−1f

(
s, x(s),

∫ s

0

k(s, τ)x(τ)dτ,

∫ T

0

h(s, τ)x(τ)dτ

)
: x ∈ C(J,X), s ∈ [0, t]

}
is relatively compact.
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Lemma 3.1. Let 0 < ν ≤ 1. Assume that f ∈ C[J,X]. If x ∈ C[J,X] then x satisfies
the problem (1)-(2) if and only if x satisfies the mixed type integral equation

x(t) = x0 − g(x)

+
1

Γ(ν)

∫ t

0

(t− s)ν−1f

(
s, x(s),

∫ s

0

k(s, τ)x(τ)dτ,

∫ T

0

h(s, τ)x(τ)dτ

)
ds. (5)

Proof: Define Br = {x ∈ C(J,X) : ∥x∥C ≤ r}, for any r > 0. Making use of hypotheses
(A1)-(A2), we have f is measurable function on J . Now for x ∈ Br and t ∈ J , we obtain∫ t

0

(t− s)ν−1

∥∥∥∥f (s, x(s),∫ s

0

k(s, τ)x(τ)dτ,

∫ T

0

h(s, τ)x(τ)dτ

)∥∥∥∥ ds
≤ af (1 + r + rTkT + rThT )

[
T ν

ν

]
.

Thus ∥∥∥∥(t− s)ν−1f

(
s, x(s),

∫ s

0

k(s, τ)x(τ)dτ,

∫ T

0

h(s, τ)x(τ)dτ

)∥∥∥∥
is Lebegue integrable with respect to s ∈ [0, t], for all t ∈ J and x ∈ Br. Then from
Bochner’s theorem it follows that

(t− s)ν−1f

(
s, x(s),

∫ s

0

k(s, τ)x(τ)dτ,

∫ T

0

h(s, τ)x(τ)dτ

)
is Bochner integrable with respect to s ∈ [0, t] for all t ∈ J . Let G(τ, s) = (t − τ)−ν |τ −
s|ν−1. Since G(τ, s) is a nonnegative measurable function on D = [0, t] × [0, t] for t ∈ J ,
we have∫

D

G(τ, s)dτ =

∫ t

0

(t− τ)−ν

(∫ τ

0

(τ − s)ν−1ds

)
dτ +

∫ t

0

(t− τ)−ν

(∫ t

τ

(s− τ)ν−1ds

)
dτ

≤ 2T

ν(1− ν)
,

and using hypothesis (A3), we obtain

(t− τ)−ν(τ − s)ν−1f

(
s, x(s),

∫ s

0

k(s, τ)x(τ)dτ,

∫ T

0

h(s, τ)x(τ)dτ

)
is a Lebesgue integrable function and hence we get

LDν

[
Iνf

(
t, x(t),

∫ t

0

k(t, s)x(s)ds,

∫ T

0

h(t, s)x(s)ds

)]
= f

(
t, x(t),

∫ t

0

k(t, s)x(s)ds,

∫ T

0

h(t, s)x(s)ds

)
.

We claim that x(t) is absolutely continuous on J . For any disjoint family of open intervals
{(ai, bi)}ni=1 on J with

∑n
i=1(bi − ai) −→ 0, we have

n∑
i=1

∥x(bi)− x(ai)∥ ≤ af (1 + r + rTkT + rThT )

Γ(ν)

n∑
i=1

∫ bi

ai

(bi − s)ν−1ds

+
af (1 + r + rTkT + rThT )

Γ(ν)

n∑
i=1

∫ ai

0

(
(ai − s)ν−1 − (bi − s)ν−1

)
ds

≤ 2af (1 + r + rTkT + rThT )

Γ(ν + 1)

n∑
i=1

(bi − ai)
ν
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−→ 0.

Thus x(t) is differential for almost all t ∈ J. According to Definition 2.2, we have

cDνx(t) = cDν

[
Iνf

(
s, x(s),

∫ s

0

k(s, τ)x(τ)dτ,

∫ T

0

h(s, τ)x(τ)dτ

)]
= LDν

[
Iνf

(
t, x(t),

∫ t

0

k(t, τ)x(τ)dτ,

∫ T

0

h(t, τ)x(τ)dτ

)]
− t−ν

Γ(1− ν)

[
Iνf

(
t, x(t),

∫ t

0

k(t, τ)x(τ)dτ,

∫ T

0

h(t, τ)x(τ)dτ

)]
t=0

.

Since (t−s)ν−1f
(
s, x(s),

∫ s

0
k(s, τ)x(τ)dτ,

∫ T

0
h(s, τ)x(τ)dτ

)
is Lebesgue integrable w.r.t.

s ∈ [0, t], for all t ∈ J, we know that Iνf
(
t, x(t),

∫ t

0
k(t, τ)x(τ)dτ,

∫ T

0
h(t, τ)x(τ)dτ

)
t=0

= 0

which implies that cDνx(t) = f
(
t, x(t),

∫ t

0
k(t, s)x(s)ds,

∫ T

0
h(t, s)x(s)ds

)
, a.e. for t ∈ J .

Moreover, x(0) + g(x) = x0. Thus, x ∈ C(J,X) is a solution of the problem (1)-(2).
On the other hand, if x ∈ C(J,X) is a solution of the problem (1)-(2), then x satisfies
Equation (5). �
Theorem 3.1. Suppose the problem (1)-(2) has a solution x on J . If hypothesis (A3)
holds, then there exists a constant ρ > 0 such that ∥x(t)∥ ≤ ρ, ∀t ∈ J .

Proof: By Lemma 3.1, the solution of the problem (1)-(2) is equivalent to the solution
of integral Equation (5). Using hypothesis (A3), we have

∥x(t)∥ ≤ ∥x0∥+ ag + ag∥x∥C +
afT

ν

Γ(ν + 1)
+

af
Γ(ν)

∫ t

0

(t− s)ν−1∥x(s)∥ds

+
afkT
Γ(ν)

∫ t

0

(t− τ)ν

ν
∥x(τ)∥dτ +

afhT

Γ(ν)

∫ T

0

(t− τ)ν

ν
∥x(τ)∥dτ

≤ ∥x0∥+ ag + ag∥x∥C +
afT

ν

Γ(ν + 1)

+
af
Γ(ν)

[
1 +

kTT

Γ(ν)
+

hTT

Γ(ν)

] ∫ T

0

(t− τ)ν−1∥x(τ)∥dτ.

Hence

∥x(t)∥C ≤ Γ(ν + 1)(∥x0∥+ ag) + afT
ν

(1− ag)Γ(ν + 1)

+
af

(1− ag)Γ(ν)

[
1 +

kTT

Γ(ν)
+

hTT

Γ(ν)

] ∫ T

0

(t− τ)ν−1∥x∥Cdτ.

Applying the singular Gronwall inequality stated in Theorem 2.1, we obtain

∥x(t)∥C ≤ Γ(ν + 1)(∥x0∥+ ag) + afT
ν

(1− ag)Γ(ν + 1)

 ∞∑
n=0

(
afT

ν
[
1 + kTT

Γ(ν)
+ hTT

Γ(ν)

])n
(1− ag)nΓ(nν + 1)

 ,

where
∑∞

n=0

(
afT

ν
[
1+

kT T

Γ(ν)
+

hT T

Γ(ν)

])n

(1−ag)nΓ(nν+1)
is the well known Mittag-Leffler function. Thus there

exists a constant ρ > 0 such that ∥x(t)∥ ≤ ρ, for t ∈ J. �
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Theorem 3.2. Assume that hypotheses (A1)-(A4) are fulfilled. If

ag +
afT

ν(1 + kTT + hTT )

Γ(ν + 1)
< 1, (6)

γT,ν,ρ = Lg +
T νLf (ρ)(1 + kTT + hTT )

Γ(ν + 1)
< 1, (7)

then there exists a unique solution for the problem (1)-(2).

Proof: Consider the operator Υ : Cρ −→ Cρ defined by

(Υx)(t) = x0 − g(x)

+
1

Γ(ν)

∫ t

0

(t− s)ν−1f

(
s, x(s),

∫ s

0

k(s, τ)x(τ)dτ,

∫ T

0

h(s, τ)x(τ)dτ

)
ds, (8)

where Cρ := {x ∈ C(J,X) : ∥x(t)∥ ≤ ρ, t ∈ J}, and∥x0∥+ ag +
(

afT
ν [1+kTT+hTT ]

Γ(ν+1)

)
1−

(
ag +

afT ν [1+kTT+hTT ]

Γ(ν+1)

)
 ≤ ρ.

By Theorem 3.1, it is obvious that Υ is well defined on Cρ in the sense of Bochner
integrable. First we prove that Υx ∈ Cρ, for x ∈ Cρ. For every x ∈ Cρ, we have

∥(Υx)(t+ δ)− (Υx)(t)∥

≤ af (1 + ∥x(s)∥+ ρkTT + ρhTT )

Γ(ν)

∫ t

0

[
(t− s)ν−1 − (t+ δ − s)ν−1

]
ds

+
af (1 + ∥x(s)∥+ ρkTT + ρhTT )

Γ(ν)

∫ t+δ

0

(t+ δ − s)ν−1ds

≤ af (1 + ρ+ ρkTT + ρhTT )

Γ(ν)

[
tν

ν
− (t+ δ)ν

ν
+

δν

ν

]
+

af (1 + ρ+ ρkTT + ρhTT )

Γ(ν)

[
δν

ν

]
≤ 2af (1 + ρ+ ρkTT + ρhTT )

Γ(ν + 1)
δν

−→ 0 as δ −→ 0.

This shows that Υx ∈ C(J,X).
Now, for all t ∈ J and x ∈ Cρ, we have

∥(Υx)(t)∥ ≤ ∥x0∥+ ag(1 + ρ) +
af (1 + ρ+ ρkTT + ρhTT )

Γ(ν)

∫ t

0

(t− s)ν−1ds

≤ ∥x0∥+ (1 + ρ)

[
ag +

af (1 + kTT + hTT )T
ν

Γ(ν + 1)

]
. (9)

Making use of condition (6) in Equation (9), we obtain ∥(Υx)(t)∥ ≤ ρ, which implies that
Υx ∈ Cρ. Making hypothesis (A4) for any x, y ∈ Cρ, we have

∥(Υx)(t)− (Υy)(t)∥ ≤ Lg∥x− y∥C +
Lf (ρ)

Γ(ν)

∫ t

0

(t− s)ν−1∥x(s)− y(s)∥ds

+
Lf (ρ)T (kT + hT )

Γ(ν)

∫ t

0

(t− s)ν−1∥x(s)− y(s)∥ds

≤
[
Lg +

T νLf (ρ)[1 + T (kT + hT )]

Γ(ν + 1)

]
∥x− y∥C

≤ γT,ν,ρ∥x− y∥C .
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Since γT,ν,ρ < 1, Υ is a contraction map on Cρ and by applying Banach’s contraction
mapping principle the operator Υ has a unique fixed point on Cρ. Hence the problem
(1)-(2) has a unique solution, and the proof is completed. �

Theorem 3.3. Assume that (A1), (A3), (A4) and (A5) hold, and let the condition (6)
hold, then the problem (1)-(2) has at least one solution.

Proof: Consider the operator Υ defined by Theorem 3.2. We assume that the operator
Υ = P +Q on Cρ

(Px)(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1f

(
s, x(s),

∫ s

0

k(s, τ)x(τ)dτ,

∫ T

0

h(s, τ)x(τ)dτ

)
ds,

(Qx)(t) = x0 − g(x), t ∈ J,

where Cρ is given in Theorem 3.2. Therefore, to prove the existence of a solution of the
problem (1)-(2) is equivalent to proving that the operator P +Q has a fixed point on Cρ.
The proof is divided into several steps.
Step 1. Px+Qy ∈ Cρ. For every pair x, y ∈ Cρ, we have

∥(Px)(t) + (Qy)(t)∥ ≤ ∥x0∥+ ag(1 + ρ) +
af (1 + ρ)(1 + kTT + hTT )T

ν

Γ(ν + 1)

≤ ∥x0∥+ (1 + ρ)

[
ag +

af (1 + kTT + hTT )T
ν

Γ(ν + 1)

]
.

Making use of condition (6) in above equation, we obtain ∥(Px)(t)+ (Qy)(t)∥ ≤ ρ, which
implies that Px+Qy ∈ Cρ.
Step 2. Q is a contraction mapping on Cρ. For every y1, y2 ∈ Cρ,

∥Qy1 −Qy2∥ = ∥g(y1)− g(y2)∥ ≤ Lg∥y1 − y2∥C .

From hypothesis (A4), Lg ∈ (0, 1) and hence Q is a contraction mapping.
Step 3. P is a continuous operator. Let {xn} be a sequence of Cρ such that xn −→ x

in Cρ. Then by hypotheses (A2) and (A3), for all t ∈ J , we have

∥(Pxn)(t)− (Px)(t)∥

≤ 1

Γ(ν)

∫ t

0

(t− s)ν−1Lf (ρ)

[
∥xn(s)− x(s)∥+ kT

∫ s

0

∥xn(τ)− x(τ)∥dτ

+hT

∫ T

0

∥xn(τ)− x(τ)∥dτ
]
ds

−→ 0 as n −→ ∞.

Thus, Pxn −→ Px as n −→ ∞ which implies that P is continuous.
Step 4. P is a compact operator. Let {xn} be a sequence of Cρ.

∥(Pxn)(t)∥ ≤ af (1 + ρ+ ρkTT + ρhTT )

Γ(ν)

∫ t

0

(t− s)ν−1ds

≤ af (1 + ρ+ ρkTT + ρhTT )T
ν

Γ(ν + 1)
.

Thus {xn} is uniformly bounded.
Now we prove that {Pxn} is equicontinuous. For 0 ≤ t1 < t2 ≤ T , we get

∥(Pxn)(t1)− (Pxn)(t2)∥ ≤ af
Γ(ν)

∫ t1

0

[
(t1 − s)ν−1 − (t2 − s)ν−1

]
(1 + ρ+ ρkTT + ρhTT )ds
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+
af
Γ(ν)

∫ t2

t1

(t2 − s)ν−1(1 + ρ+ ρkTT + ρhTT )ds

≤ 2af (1 + ρ+ ρkTT + ρhTT )

Γ(ν + 1)
(t2 − t1)

ν

−→ 0 as t2 −→ t1.

Therefore, {Pxn} is equicontinuous. In view of the condition (A5) and Lemma 2.2, we
know that ¯conv is compact. For any t∗ ∈ J , we have

(Pxn)(t
∗) =

1

Γ(ν)

∫ t∗

0

(t∗ − s)ν−1f

(
s, xn(s),

∫ s

0

k(s, τ)xn(τ)dτ,

∫ T

0

h(s, τ)xn(τ)dτ

)
ds

=
1

Γ(ν)
lim

k−→∞

k∑
i=0

t∗

k

(
t∗ − it∗

k

)ν−1

× f

(
it∗

k
, xn

(
it∗

k

)
,

∫ it∗
k

0

k

(
it∗

k
, τ

)
xn(τ)dτ,

∫ T

0

h

(
it∗

k
, τ

)
xn(τ)dτ

)

=
t∗

Γ(ν)
ζn,

where

ζn = limk−→∞
∑k

i=0
1
k

(
t∗ − it∗

k

)ν−1
f

(
it∗

k
, xn

(
it∗

k

)
,
∫ it∗

k

0
k
(
it∗

k
, τ
)
xn(τ)dτ,

∫ T

0
h
(
it∗

k
, τ
)
xn(τ)dτ

)
.

Since ¯conv is convex and compact, we know that ζn ∈ ¯conv. Hence, for any t∗ ∈ J ,
the set {Pxn} (n = 1, 2, . . .) is relatively compact. From Ascoli-Arzela theorem every
{Pxn(t)} contains a uniformly convergent subsequence {Pxnk(t)} (k = 1, 2, 3, . . .) on J .
Thus, the set {Px : x ∈ Cρ} is relatively compact. Therefore, the continuity of P and
relatively compactness of the set {Px : x ∈ Cρ} imply that P is a completely continuous
operator. By Krasnoselskii’s fixed point theorem, we get that P +Q has a fixed point on
Cρ. Hence the problem (1)-(2) has at least one solution. This completes the proof. �

4. Application. The solution of integro-differential equations has a major role in the
fields of science and engineering. When a physical system is modeled under the differential
sense, it finally gives an integral equation or an integro-differential equation [20, 21, 22, 23].
In this section, we give the application of our main results established in previous sec-
tion. We consider the nonlinear Caputo fractional Volterra-Fredholm integro-differential
equations (1)-(2), with

f(t, x(t), Kx(t), Hx(t)) =
e−t|x(t)|

(5 + et)(1 + |x(t)|)
+

1

9

∫ t

0

1

(2 + t)2
x(s)ds

+
1

9

∫ 1

0

1

(2 + t)
x(s)ds.

g(x) =
m∑
j=0

λjx(tj), x0 = 0, ν =
1

2
, λj > 0, 0 < t1 < t2 < · · · < tm < 1.

For x, y ∈ X and t ∈ J = [0, 1],

∥f(t, x(t), Kx(t), Hx(t))− f(t, y(t), Ky(t), Hy(t))∥

≤ e−t

(5 + et)
∥x− y∥+ 1

9
∥Kx−Ky∥+ 1

9
∥Hx−Hy∥



1038 K. H. HUSSAIN

≤ 1

6
[∥x− y∥+ ∥Kx−Ky∥+ ∥Hx−Hy∥]. (10)

Similarly, for all x ∈ X and each t ∈ J,

∥f(t, x(t), Kx(t), Hx(t))∥ ≤ 1

6

∥∥∥∥ |x(t)|
(1 + |x(t)|)

∥∥∥∥+ 1

9
∥Kx∥+ 1

9
∥Hx∥

≤ 1

6
[∥x∥+ ∥Kx∥+ ∥Hx∥]. (11)

Also

∥g(x)− g(y)∥ ≤
m∑
j=0

λj∥x(tj)− y(tj)∥ ≤
m∑
j=0

λj max
tj∈J

∥x(tj)− y(tj)∥ (12)

and

∥g(x)∥ ≤

∥∥∥∥∥
m∑
j=0

λjx(tj)

∥∥∥∥∥ ≤ ∥x(tj)− y(tj)∥ ≤
m∑
j=0

λj∥x(tj)∥ ≤
m∑
j=0

λj max
tj∈J

∥x(tj)∥. (13)

From (10)-(13), we observe that the assumptions of Theorem 3.2 and Theorem 3.3 can
be satisfied by choosing a sufficiently small value of λj, and hence the given problem has
a solution and this solution is unique.

5. Conclusions. In this paper, we establish some new conditions for the existence,
uniqueness and boundedness of solutions to the nonlocal Caputo fractional Volterra-
Fredholm integro-differential equations in Banach spaces. The desired results are proved
by using Ascoli-Arzela theorem, aid of fixed point theorems due to Banach and Krasnosel-
skii in Banach space. Our results extend and unify many existing results in the literature.
This paper contributes to the growth of the fractional calculus, especially in the case frac-
tional differential equations involving a general formulation of Caputo fractional derivative
with respect to another function.
The problem considered in this paper can be generalized to a higher dimension involving

a general formulation of Hilfer fractional derivative with respect to another function. Also,
to study nonlinear fractional systems of Volterra-Fredholm integro-differential equations
with nonlocal conditions is a direction which we are working on.
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