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Abstract. As of November 2020, the COVID-19 pandemic continues to rage across the
world. One of the measures that has been taken to curb the spread of the virus is blanket
stay-at-home orders. Staying at home significantly limits close contact with others and
can, thus, decrease the number of new cases. However, if people refrain from going out,
this will cause significant economic damage. For this reason, some people think that these
orders should be revoked after a short period of time, and people should get out more of-
ten. However, if blanket stay-at-home restrictions are lifted before a significant decrease
is seen in the number of new cases, the number of infected people is likely to increase
within a short period. This will, in turn, hasten the next round of blanket stay-at-home
orders and lead to a further reduction in people who can leave their home. Against this
backdrop, this study examines below phenomena, through a multi-agent simulation. The
early removal strategies of stay-at-home orders for increasing the number of people leav-
ing their homes have the effect of both increasing and decreasing the number of such
people. Therefore, we consider the strategies do not lead to a sufficient increase in the
overall number of people leaving their homes. To examine these phenomena, we conduct-
ed the simulations that consist of six scenarios with the different removal condition of
stay-at-home orders. As a result, we could confirm that when more removal conditions
of stay-at-home orders were eased, the tendencies of more number of infected people and
death people were increasing with some exceptions. In contrast, there were almost no
differences among the numbers of people leaving their home of these scenarios. Based on
the results, we also examined the possibility of a strategy that covers both infected people
and the number of people allowed to leave their homes.
Keywords: COVID-19 infection, Blanket stay-at-home orders, Declared state of emer-
gency, Multi-agent simulation

1. Introduction. The COVID-19 pandemic is spreading across the globe in November
2020. Particularly in Japan, the virus has infected 140,000 people in total and killed
more than 2,000 people as of November 30, 2020 [1]. For this reason, Japan has imposed
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a variety of measures. One such measure is the blanket stay-at-home order that was
introduced after the country declared a state of emergency (imposed: April 7, 2020;
lifted: May 25, 2020). This was a blanket call from the government for citizens to stay at
home. The number of domestic confirmed cases reported in the week prior to the declared
state of emergency was 300 per day, whereas the number reported the week right after
was ∼ 40 per day [2]. This allows us to conclude that blanket stay-at-home orders have
had a significant effect on reducing the number of new cases.
However, stay-at-home orders imply that people do not go shopping, eat outside, and

travel, thus causing major economic losses to the society as a whole. As the length of time
of the blanket stay-at-home restrictions increases, society’s demand for the removal of the
restrictions is expected to increase. In such a case, we can speculate that the number of
new cases will increase at a relatively faster pace. This means that the period wherein
people are required to stay at home again will be earlier. Therefore, removing the blanket
stay-at-home restrictions at an early stage may have the effectiveness of decreasing the
number of people leaving their home – or increasing it.
It is difficult to assess whether this phenomenon could actually take place in modern

society. In such a case, it is necessary to conduct simulations for verification. As previous
researches, there are many cases developing virus infection simulators [3, 4, 5, 6]. By
following these findings, the development of COVID-19 simulators that model infection
transmission rates could be performed at a comparatively early stage. Examples include
Hou et al. [7] for Wuhan, China, Prasse et al. [8] and Yang et al. [9] for Hubei, China,
Chatterjee et al. [10] for India, Achterberg et al. [11] for Holland, and Liu et al. [12],
for South Korea, Italy, and France. Moreover, Albahar et al. [13] conducted COVID-19
simulations with USA, Saudi Arabia and China using the ensemble machine learning.
From these previous researches, it was clarified that the measures to isolate those infected
with COVID-19 effectively reduce the number of infected people at the peak hours [7]
and that city blockades can reduce the damage caused by infection by 90% [10]. In terms
of assessing other benefits, Kurahashi [14] reported that working from home, staggered
commuting self-isolation at home when running a fever, and other such measures were
effective in reducing the number of new cases. Niwa et al. [15] reported that quarantining
travelers at airports reduced the number of new cases by 90%. Certain studies also
assessed the effectiveness of apps that notify users if they have been in contact with
people infected with COVID-19 [16, 17, 18, 19, 20, 21]. Additionally, Yang et al. [22] and
He et al. [23] have conducted COVID-19 infection transmission simulations. These results
have enabled us to clarify the trends toward growth and suppression of the COVID-19
infection.
Thus far, these studies have focused on predicting the number of infected people and

verifying the effectiveness of some measures on decreasing new infectors. Although these
focuses are important, we consider increasing the number of people leaving their home is
also important from the view point of economic activity. However, these previous studies
did not evaluate the number of people leaving their home. Therefore, in this study, we
take up stay-at-home orders which is one of measures and evaluate the effects on the
number of infected people and people leaving their home. In particular, we use a multi-
agent simulation (MAS) to verify whether the phenomenon occurs, in which “the strategy
for early removal of blanket stay-at-home orders, for the purpose of increasing the number
of people leaving the home is, when viewed from a long-term perspective, not effective
in sufficiently increasing the number of people leaving the home”. Following this, we
present several strategies, including strategies for removing blanket stay-at-home orders
after the number of new cases has sufficiently decreased, and we investigate the impact
these strategies have on the number of new cases and the number of people going out.
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Based on the results, we make some observations on the nature of the strategies proposed
that help reduce the number of new cases while allowing a certain number of people to
go out.

The construction of remaining sections is as follows. In Section 2, we briefly describe
the simulation system used in this research. In Section 3, the objective, outline, the result
and discussion of the experiment are explained, respectively. Section 4 is devoted to the
summary and future work.

2. Simulator.

2.1. Daily flow. In this study, we estimate the transmission of COVID-19 infection using
MAS. An overview is shown in Figure 1. The simulation is performed in plane spaces
(minimum 0, maximum 1,000) with axes of x-y. These include four types of facilities:
homes, companies, shops, and schools. Multiple facilities for each type are allowed. Home
refers to the place of residence of the agent together with three other people: an office
worker, a homemaker and a student. The agents, who set off from home, will, based on
a probability, move to their destination facility at a predetermined time. The respective
destinations are the company for the office worker, shops for the homemaker and school for
the student. The agents that move along the shortest path, in terms of actual distance,
can remain only for a certain amount of time that is determined by the above-stated
probability. After that certain amount of time, they return home, taking the shortest
path based on Euclidean distance. The above describes the processing flow for one day.
This simulator uses one (1) step for every 10 minutes and moves to the next day once 24
hours (144 steps) have been completed. The simulation ends when it reaches the set time.
The processes were proposed as previous research (In detail, see Section 2.2 in [20]).

Figure 1. Constructed artificial society

2.2. Infection state transition. The MAS constructed in this study aims to simulate
the virus infection transmission. For this reason, each agent has an infection state pa-
rameter. These are the five states – S, E, I, R, and D – as described below. The states
were determined with reference to the SEIR (Susceptible, Exposed, Infectious, Recovered)
model [22, 23] that simulates the COVID-19 infection transmission. “S: susceptible” is
the state in which the agent has never been infected with the virus. As the agent is not
immune, it has a likelihood of being infected. “E: exposed” is the state in which the
agent is infected but is not yet symptomatic (latent period). “I: infectious” is the state in
which the agent is infected and the symptoms have appeared (symptomatic period). “R:
recovered” is the state in which the agent recovers after having been symptomatic. “D:
death” is the state in which the agent did not recover and died.

The infection state transitions in the SEIR model are shown in Figure 2. The agent in
the S state transforms to the E state, according to whether they have come into contact
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Figure 2. SEIR model

with an infected person. The definition of contact with an agent and infected person
means that each other’s Euclidean distance is under 1. It is possible to set whether infected
people that can infect others are only those who are in the I state or whether those in the
E state are also included. This means that it is possible to express infectiousness during
the symptomatic state (I) and/or the latency state (E). An agent who has transformed
from the S to the E state also transforms to the I state as time passes. Agents in the I
state transform to the R or the D state as time passes. The question of whether patients
transform to the R or the D state depends on the fatality rate of the cases. The numerical
models of the state transitions mentioned here are described in Section 2.1 in [20].

2.3. Small scale network. As this simulator aims to estimate the virus infection trans-
mission, the contact between agents has considerable weight. Despite considering a con-
tact has been made when the Euclidean distance in the plane space is below a threshold
(each other’s Euclidean distance is under 1), this condition detaches the situation from
reality. In this study, each facility (i.e., a company or a school) is managed as one co-
ordinate, so all agents arriving at the facilities are in contact with one another from a
Euclidean distance perspective. Therefore, even if there is one infected person among
them, there is a risk that this person will infect all of the agents. However, in the real
world, people work in company in separate departments, and in schools students take
their lessons in their respective classrooms. Therefore, it is unlikely that everyone in the
same facility would come into contact with each other in a day. However, in the case of
long time simulation, we consider everyone would come into contact with each other in
the same facility, indirectly.
To express this with MAS, it is necessary to assume that the agents gathered in one fa-

cility are divided into multiple subgroups and only those within each group are considered
to come into contact with each other. For this reason, we have implemented the concept
of a small scale network (SSN) on the simulator in our study. An image of this simulator
is shown in Figure 3. This expresses the fact that there are 14 agents in this company;
these are divided into 3 SSNs. Whereas all 14 are in the same coordinates in the plane
space, only the agents in the same SSN come into contact with each other. Therefore,
the risk of infection exists only when there are infected persons within the same SSN.
When we incorporate the concept of SSNs within the simulator, it is necessary to have
the maximum SSN size parameter. This describes the maximum number of agents that
can exist within one network (in the example in Figure 3, this is five people). The agents
are allocated to their respective SSN based on the order of arrival. Particularly, they
are initially allocated to SSN1 and when the maximum size is reached, SSN2 is created,
and this allocation processing is repeated. As the time at which each agent leaves home
depends on probability, the order of their arrival to the facility is random. Therefore, the
assigned SSN is random every day. The concept of judging whether contact has been es-
tablished based on the allocated SSN is only introduced to the outside facility (company,
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Figure 3. Small scale network

shop, or school). When agents are moving between the facility and their home, judging
whether contact has been established is only based on Euclidean distance.

2.4. Blanket stay-at-home orders. Next, we would like to discuss the blanket stay-
at-home orders for all agents. To express these, we need to prepare the three parameters
of start conditions, removal conditions and restriction levels on going out. The standard
for starting blanket stay-at-home orders is the number of symptomatic agents (number of
agents in the I state) at the present time. Therefore, both the start and removal conditions
are values that represent the agent in the I state. When the number of agents in the I state
meets or exceeds the start condition, a blanket stay-at-home order is issued. Furthermore,
when the number of agents in the I state falls below the removal condition, the blanket
stay-at-home restriction is removed. In Section 2.1, we explained that agents go out
every day. However, some agents do not go out, because all agents have the parameter
of probability of leaving home, which is the probability of moving from their homes to
their destination facilities (company, shop, or school). During the time that the blanket
stay-at-home order is in place, the probability of leaving home of all agents decreases by
the set of restriction levels on going out. For example, if the probability of leaving home
is 100% and the restriction levels on going out is 90%, the probability of moving from
their homes to their destination facilities during the blanket stay-at-home order is 10%.
As it is difficult for all agents (including the I state) to leave their home, the probability
the virus spreads in the companies, shops, and schools decreases, and it becomes easier
to maintain the S state agent status. For this reason, by executing a stay-at-home order,
it is possible to reduce the number of infections.

3. Experiment.

3.1. Purpose and overview. To effectively operate society during the protracted period
of COVID-19 spread, it is necessary to not only reduce the total number of infections but
also keep (or increase) the number of people leaving home. In this study, we investigate
the impact of the strategy of blanket stay-at-home orders, which is one measure for
suppressing the spread of COVID-19 infection on the total number of infections and
number of people leaving their home. The strategy to be verified on this occasion is
shown in Table 1. The stay-at-home order is issued when the number of agents in the I
state meets or exceeds the number set in the start conditions, and the stay-at-home order
is removed when the number falls below the number set in the removal conditions.

During the stay-at-home order, the rate of all agents going out is lowered according
to the level of restrictions on going out. The start conditions, removal conditions and
level of restrictions on going out are all important parameters, and on this occasion,
the start conditions were fixed at 60 people and the level of restrictions on going out at
90%, with only the removal conditions variable. For strategy 0, the removal conditions
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Table 1. Strategy for stay-at-home orders. Start conditions: when the
number of people in the I state reaches a set number or above, a stay-at-
home order is issued. Removal conditions: when the number of people in
the I state is below a set number, the stay-at-home order is removed.

Strategy ID Start cond. [people] Removal cond. [people]
Level of restriction
on going out [%]

Strategy 0 60 5 90
Strategy 1 60 10 90
Strategy 2 60 20 90
Strategy 3 60 30 90
Strategy 4 60 40 90
Strategy 5 60 50 90

were five people, and this means a return to normal life after the infection rate had
sufficiently weakened following the issue of the stay-at-home order. As the number of
strategies increases, the conditions for removal become more lenient. Strategy 0, in which
the removal conditions are strict, focuses on the social demand to reduce the number of
infections, whereas strategy 6, in which removal conditions are set to the largest value,
stresses society’s demand for people to quickly return to normal life. We simulated each
strategy and analyzed the impact on the total number of infections and the number of
people going out. When the simulation ends, the strategy with the lowest number of total
infections and the highest number of people leaving the home is considered the desirable
social operation strategy under the prolonged spread of COVID-19.
The other simulator conditions are shown in Table 2. The total simulation period

was set to 365 days (1 calendar year). As there are 2,000 households and three agents
per household (office worker, homemaker, student), the total number of agents in the
entire space is 6,000 (the reason that the start conditions for the aforementioned blanket
stay-at-home order were set to 60 people, so that it was a number comprising 1% of all
agents).
Of these, five people were in I state, whereas the remaining 5,995 people were registered

in S state. The destination facilities of the agents leaving the house were allocated as
10 each of companies, shops, and schools. The maximum SSN size was set to a value
comprising an average of five networks per facility. There were 2,000 office workers,
housewives/househusbands and students within the 10 companies, shops, and schools,
respectively. Therefore, there were a maximum of 200 agents in each facility. Dividing
this value by 5 gives us 40 agents, so the maximum SSN size is 40 people. Other items,
such as EI state transition period (period for transitioning from E to I state), IRD state
transition period (period from transitioning from I to R or D state), rate at which agent
leaves the home, departure time, and stay time, were determined with reference to Omae
et al. [20]. The infection probability (probability of moving from S to E state after
coming into contact with a latent or symptomatic agent for 10 minutes) is not clear from
the COVID-19 infection rate, so the value at which infection is high to some extent is
searched for by trial and error, and 0.030% was adopted.

3.2. Results and observations. The time-series fluctuation in infections (latent cases
and symptomatic cases) in relation to the executed simulation is shown in Figure 4.
The six graphs show the results when adopting the six strategies defined in Table 1,
respectively. In this investigation, the only variable parameter among those specifying
the blanket stay-at-home order strategy is the removal condition. Although, for all of
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Table 2. Simulation conditions

Parameters Values
Simulation period 365 [days]
No. of households 2000 [households] (6000 [agents])
Initial number of symptomatic agents 5 [agents]
No. of facilities (company) 10 locations*
No. of facilities (shop) 10 locations*
No. of facilities (school) 10 locations*
Maximum SSN size 40 [agents]
Probability of leaving home (office workers) 99.0∼100.0 [%]
Probability of leaving home (homemaker) 50.0∼100.0 [%]
Probability of leaving home (students) 99.0∼100.0 [%]
Departure time (office workers) 8:30±1:30
Departure time (homemaker) 10:30±1:30
Departure time (students) 10:30±1:30
Stay time (office workers) 6:00∼8:00
Stay time (homemaker) 0:10∼0:30
Stay time (students) 5:00∼6:00
Infection probability in the case of having contact
with infector

0.030 [%]

State in which infectors infect others I state, E state
Fatality rate 10.0 [%]
Transition period from E to I 3, 5, 7 [days]
Transition period from I to R or D 8, 10, 12 [days]
*: coordinates are described in Appendix.

a∼b: uniform random number from a to b.

a±b: mean a, standard deviation b normal random number.

Figure 4. Time-series fluctuation in latent cases and symptomatic cases
(E, I states) in relation to the strategy adopting a blanket stay-at-home
order
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the strategies, a stay-at-home order was issued when the number of symptomatic agents
exceeded 60, it should be noted that as there are a large number of latent agents at that
time, the number of symptomatic agents does not start to decrease the instant the stay-
at-home order is issued, but rather the latent agents switch to becoming symptomatic
agents, and only after a certain increase in the number of symptomatic agents does the
number start to decrease.
Strategy 0 is a strategy for removing the order after the number of symptomatic agents

has decreased sufficiently. With this strategy, the number of symptomatic agents peaks
at 188 people, and this tends to be repeated in fixed cycles. As we move to strategies
1, 2, 3, 4, 5, the blanket stay-at-home order removal conditions are relaxed. In accordance
with this, we can see a trend toward the cycles becoming shorter in relation to the time-
series fluctuation of infections. As the only measure introduced in this simulation to
reduce infections is a blanket stay-at-home order, this means that stay-at-home orders
are repeated in short cycles. We can confirm that the more number of days passed goes
into the second half, the lower the number of peak symptomatic agents, but this just
means that the number of patients in the S state that can be infected has decreased and
that it has fallen into the state of herd immunity, which is something society as a whole
should avoid. Moreover, we show the time-series fluctuation in states S and D in Figure 5.
From Figure 5, we can understand that the number of state S is keeping high value and
the number of state D is small in the case of strategy 0 comparied with other strategies.

Figure 5. Time-series fluctuation in states S and D in relation to the
strategy adopting a blanket stay-at-home order. Sn means strategy n.

To make quantifiable observations of these results, we derived several indicators, such
as infection transmission and stay-at-home orders. These results are shown in Table 3.
The total number of infections at the endpoint of the one-year simulation is the number
of agents in the E, I, R, and D states. In the case of valuing small, it means that more
agents (healthy people who have never been infected) are maintained in the S state. The
maximum peak number of people is the maximum value in relation to the number of agents
in the I state. The higher this value is, the higher the maximum number of symptomatic
agents, which means that medical services may be overwhelmed. The peak number refers
to the peak number of agents in the I state. The first-half cycle and second-half cycle
are the first half and second half of 365 days, respectively, and this refers to the cyclical
features calculated from the power spectrum in relation to the time-series fluctuations
of agents in the I state. The larger the peak number or the shorter the cycle, the more
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Table 3. The number of infections and number of people leaving the home
in relation to the adopted strategy (total population: 6,000 people, total
period: 365 days)

Strategy ID* S0 S1 S2 S3 S4 S5
Total number of infections [people/year] 1864 2330 2849 3184 3428 3561
Maximum number at peak [people/day] 188 211 238 276 344 363
Peak number [unit] 5 7 8 9 10 10
First-half cycle [days] 60 60 45 45 45 36
Second-half cycle [days] 60 60 45 36 36 30
Total number of death people [people/year] 169 231 290 285 343 333
Average number of people leaving the home
[people/day]

1917 2054 2000 1958 2055 2183

Stay-at-home order days [days] 255 246 250 253 246 236
*: Refer to Table 1 for strategy. Sn means strategy n.

times the medical services are likely to be overwhelmed, which means that stay-at-home
orders will occur frequently. The average number of people leaving their home refers
to the average number of people leaving their home per day in the one-year simulation.
The number of stay-at-home days refers to the number of days covered by stay-at-home
orders during the one-year simulation. The larger the average number of people leaving
the house is, or the smaller the number of days covered by stay-at-home orders, the more
active people are moving, so this means that economic problems are less likely to occur.

When looking at this, we can confirm that the more the removal conditions for blanket
stay-at-home orders are eased, the tendencies of the more the total number of infections
and death people, maximum peak number of people, and peak number increase, and the
shorter the time-series fluctuation cycle for agents in the I state. However, there are also
exceptions, e.g., the number of death people of S2 is higher than S3 and that of S4 is
higher than S5. On the contrary, even if the removal conditions are eased, we can confirm
that this does not greatly impact the average number of people leaving their home or
the number of days covered by the stay-at-home order. As people can immediately leave
their home when the removal conditions are eased, it can lead to an increased number
of people leaving the home. However, even if the blanket stay-at-home order is released
before the number of symptomatic agents has sufficiently decreased, it will have the effect
of increasing the number of symptomatic agents immediately; thus, hastening the next
stay-at-home order will lead to reduction in the number of people who can leave the home.
As these conflict with each other, it is considered that the number of people leaving the
house does not clearly increase even if the removal conditions are relaxed.

Normally, the motivation for removing blanket stay-at-home orders at an early stage
comes from a desire to revitalize the movement of people and restart the economy. How-
ever, it has been confirmed that if a strategy is adopted such that a blanket stay-at-home
order is removed before the number of symptomatic agents has fallen sufficiently, the
number of infections will be increased. In such cases, not only will the potential for and
frequency of the medical services being overwhelmed increase, but also this will also do
not have a clear effect in terms of increasing the number of people leaving the house. From
the above, we can see that when aiming for appropriate social operations during the time
that COVID-19 is spreading, it is important from the perspectives of both number of
infections and number of people leaving the home to adopt the strategy of not removing
the blanket stay-at-home orders until the number of symptomatic agents has sufficiently
decreased.



1064 Y. OMAE, Y. KAKIMOTO, J. TOYOTANI ET AL.

4. Conclusion. In this study, we used an MAS expressing infection transmission and
analyzed the impact of the removal strategies for blanket stay-at-home orders on the
number of infections and number of people leaving the home. We confirmed from the
results that if blanket stay-at-home orders are removed at an early stage, not only the
number of infections greatly will increase and the potential for medical services to be
overwhelmed increase but also the speed of this cycle will be increased and the number
of people leaving the home will not sufficiently increase. Particularly, if blanket stay-
at-home orders are removed at an early stage based on the idea of restarting economic
activity, society may be plunged into a major state of confusion. Therefore, if a blanket
stay-at-home order is issued, it is important to remove blanket stay-at-home orders only
after the number of infections has reduced sufficiently.
Moving forward, we plan to validate the effectiveness not only of blanket stay-at-home

orders but also a variety of other measures, such as the COVID-19 contact check app
COCOA, the avoidance of close contact with other people, and the expansion of medical
resources, as well as conduct a more detailed study on the kind of strategy that can be
effective in terms of both number of infections and number of people able to leave the
home.
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Appendix. The (x, y) coordinates of companies, shops and schools in artificial society
are Lcompany = {(x, y) = (100, 100n)|n = 0, . . . , 9}, Lshop = {(x, y) = (500, 100n)|n =
0, . . . , 9} and Lschool = {(x, y) = (900, 100n)|n = 0, . . . , 9}, respectively.


