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Abstract. Health monitoring systems demand a huge data transaction, especially if it
was set on a multi-regional architecture. With a huge data transaction, there is a higher
probability of overloaded number of requests. Conventional load balancer requires tun-
nelling, which means it takes longer time to reach the designated system that handles
request and go back to the request source. This paper proposes the enhancement of the
current multi-regional architecture in health monitoring systems by applying Domain
Name System (DNS) load balancing as the better alternative to conventional load bal-
ancer. The proposed architecture significantly increases the throughput and decreases the
response time. The proposed architecture performance is compared with the traditional
load balancing with a weighted round robin and another sleep monitoring system archi-
tecture with Kubernetes but without load balancing. When receiving the request, the data
center has to allocate these requests efficiently so that the response time should be mini-
mized to avoid overloading or congestions. Response time, throughput, completion time,
Central Processing Unit (CPU) usage and error rate are the metrics that we use here.
The proposed architecture achieves the lowest average response time, the highest average
throughput, the lowest error rate and the lowest completion time for 50,000 requests hit
from each region (Oregon and Singapore).
Keywords: Domain Name System (DNS) load balancing, Response time, Cloud com-
puting, Throughput, Health monitoring system

1. Introduction. Clinical home testing is currently targeting sleep disordered breathing,
and the data supporting the use of home sleep apnea devices has been reviewed recently [1,
2]. The personal wellness goal of sleep-monitoring in order to optimize health also stands
to be achieved through longitudinal monitoring and self-tracking [3]. Sleep monitoring
system is a system to track the sleep cycle of humans. It requires high sensitivity (ability
to detect true sleep) and accuracy (overall ability to detect true wake and sleep). They
perform 24/7, generating overwhelmingly large datasets (Big Data), with the potential of
offering an unprecedented window on users’ health [4].

With the use of cloud-based applications, it is easier for users on the web to make use of
the widely available services and resources [5]. Cloud computing enables computing over
the Internet performs at high agility and high efficiency [6]. Cloud computing provides its
clients with a virtualized network access to applications and services [7]. It provides ser-
vice to customers of various requirements with the aid of online computing resources [8].
A cloud computing model is efficient if its resources are utilized in the best possible way
and such efficient utilization can be achieved by employing and maintaining proper man-
agement of cloud resources and powerful resource scalability techniques [8]. Imbalance
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traffic often occurs, causing some servers having excess requests and other servers having
underwhelming amounts of requests. This can render cloud computing left with unbal-
anced machines which have a huge gradient of user tasks and resource utilization [9].
With the rise of the Internet of Everything (IoE), the number of smartphones and

devices connected to the Internet increases. This causes a huge rise in large-scale data,
that causes many problems such as bandwidth load, slow response speed in traditional
cloud computing models [10], high latency, and low Spectral Efficiency (SE) [11]. Hence,
edge computing, a new computer paradigm, emerges. It emphasizes on getting closer to
the user and closer to the sources of the data [10]. It carries out a substantial amount of
computation, storage, communication tasks, offering for low latency, energy efficient, and
agile computation augmenting services. Edge computing is more suitable to be integrated
with Internet of Things (IoT) to provide efficient and secure services for a large number
of end-users, and edge computing-based architecture can be considered for the future IoT
infrastructure [12].
This is where an effective load balancing algorithm plays a crucial role. This load bal-

ancing distributes the dynamic workload evenly among all the nodes [13]. The efficiency
of task allocation to the cloud determines the effectiveness of the load balancing algorithm
[14]. A Domain Name System (DNS) load balancer allows application-level feedback and
health monitoring by means of a load metric used to decide which Internet Protocol (IP)
addresses to present when referencing the alias name. There are two other definite ben-
efits of DNS load balancers, which are balancing the load without modifying the traffic
patterns or adding network gateways that may become availability and performance bot-
tlenecks and supporting transparently all protocols [15, 16]. On an additional note, it
supports all protocols transparently.
Our research objective is to develop a more efficient health monitoring system with

DNS load balancer for sleep monitoring systems. By using DNS load balancing, we hope
to decrease the response time so each request is handled faster. As requests are handled
faster, for a given period of time, the system will be able to handle more requests compared
to traditional load balancers. With this approach, we can increase throughput, decrease
error rate, decrease response time and lower completion time compared to the previous
work presented in our literature review.
We compare our sleep monitoring system with proxy and without load balancers. The

load balancing method we propose is a combination of external load balancer using DNS
load balancing and internal load balancer using round robin algorithm. We use some
metrics for comparison including throughput, percentage of request success, error rate,
completion time and response time.
Our incremental contributions in this research are

1) Geo-IP DNS Load Balancing that can reduce response time, reduce error rate and test
completion times;

2) Multi Region/Geographical High Availability if one region is down, still having another
to backup the request.

Based on our research, our proposed architecture achieves the lowest average response
time, the highest average throughput, the lowest error rate and the lowest completion
time for 50,000 requests hit from each region (Oregon and Singapore).
The remaining of this paper is arranged as follows. We present our literature review

in Section 2. We present our proposed architecture in Section 3. After that, we have
compared and shown the results of Section 4. Finally, we conclude the paper and expose
possible areas of improvement and our future work regarding load balancing algorithms
in healthcare in Section 5.
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2. Literature Review. [17] proposed an IoT-based sleep quality monitoring system,
which comprises three main components: sensor gateway to gather the data, an IoT
platform to store and process data from the sensors and lastly the web-based dashboard
designed for users and/or health practitioners to see the result. Firstly, the IoT platform
implements two architectures, which are microservice and event-driven. The microservice
divides the system into five services: sensor-gateway, sensor-data-persister, sleep stage
classification, sleep quality quantification and web application gateway, which can be
developed independently, with minimal coupling. The evaluations were performed on a
single machine with 4 Central Processing Unit (CPU) with a clock rate of 2 gigahertz
(GHz) and 15 gigabyte (GB) Random Access Memory (RAM). The positive results gath-
ered from this paper are 55.85 per cent decrease in response time and 34.76 per cent
increase in throughput compared to traditional methods. However, the rate of increase
in memory usage per instance replication is lower than traditional methods.

[18] simulates the impact of container orchestration on the sleep monitoring system.
The proposed architecture [18] wants every service in the sleep monitoring system to
be containerized inside Docker containers and managed by container orchestrations. The
results show that Kubernetes can achieve the lowest CPU Utilization, error rate, and
also network bandwidth compared to the other container orchestration such as Docker
Swarm and Nomad. This method can also improve scalability from the applications, so
that configuration and maintenance can be done easily.

[19] proposed a load-balancing method with a proposed decentralized architecture which
periodically detects short-term overload hiccups and autonomously handles them using
geographical load balancing to reduce the risk of decreasing performance. The architecture
dictates that each geographical agent comprises the monitoring module, which constantly
monitors the incoming requests and the status of the available resources to detect appli-
cation overload; the communication module, which is in charge of broadcasting its status
to other agents and receiving other agents’ statuses; and the control module that quickly
adapts the application/service to the detected overload events. The results are based on
the prototype evaluated on Amazon Web Services’ Europe, US and Asia data centers. The
positive outcome of this is the great increase in the number of requests during overload
periods while still maintaining an acceptable quality of service.

[20] proposed a cloud load balancing mechanism that can be applied to both virtual
web servers and physical servers. The findings demonstrate that when many users log in
at the same time, cloud service performance, based on the architecture proposed in this
study, will balance loading performance. Cloud load balancing considers processing power
and load, so it can minimize the chance that a server cannot handle any request.

[21] proposed a load balancing algorithm with graph colouring based on genetic algo-
rithm. The proposed method is compared with three other techniques, which are Cloud
First, Round Robin, and Priority. The result of the experiment shows that the proposed
technique generates the least network traffic, and thus, the probability of network failures
is lower than with the other three techniques compared with the proposed method.

[22] compares load balancing algorithm between link load-balancing and server load-
balancing scenario. The difference is that a link load-balancer will receive request from
different clients and distributes that over intermediate nodes before going to server. On
the other hand, server load-balancer will distribute request to various servers. Packet
received ratio is better with server load-balancer than that with link load-balancer.

In the research papers we reviewed, there is room for improvement for optimizing load
balancing in multi regional scale. Hence, our paper is created in the hope to fill the research
gap in the previous research that is not optimized to scale to multi regional use cases
with Geo-IP DNS load balancing. To view the current state of the art of load balancing
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Table 1. Summary of the literature review of this paper

Paper Proposed method Result
[17] in High-Performance

and Resource-Efficient

IoT-Based Sleep Moni-

toring System

An IoT platform architec-
ture designed based on the
microservices and event-
driven architecture.

Response time decreases by
55.85%, throughput increases
by 34.76%, the rate of increase
in memory usage per instance
replication is lower.

[18] in Sleep Quality Mon-

itoring System Based on

Container Orchestration

A system architecture for
end-to-end sleep monitor-
ing systems by using Ku-
bernetes as container or-
chestration.

Good result in availability,
flexibility and scalability.

[19] in Mitigating Impact

of Short-Term Overload

on Multi-Cloud Web Ap-

plications through Geo-

graphical Load Balancing

A decentralized system
that timely detects short-
term overload situations
and autonomously handles
them using geographi-
cal load balancing and
admission control.

Acceptable quality of service,
greatly increase the number of
requests served during over-
loading periods, develop a
more accurate overload detec-
tor.

[20] in CLB: A Novel

Load Balancing Architec-

ture and Algorithm for

Cloud Services

Cloud load balancing with
weighted round robin load
balance mechanism.

Unable to handle excessive
computational requirements,
can balance the loading per-
formance when users logged in
at the same time.

[21] in A Load Balancing

Algorithm for Mobile De-

vices in Edge Cloud Com-

puting Environments

Load balancing algorithm
with graph colouring based
on genetic algorithm.

Generate the least network
traffic, and thus, the probabil-
ity of network failures is lower
than with the other three tech-
niques compared with the pro-
posed method.

Our architecture Geo-IP DNS based load
balancing.

Greatly increase throughput,
greatly decrease response time.

architecture we reviewed, please refer to Table 1. The table shows a comparison of existing
health monitoring without load improved along with high availability. The architecture
is explained in Section 3.

3. Methodology/Proposed Design. In this section, we will firstly explain the two
architectures that we want to compare with our proposed architecture. The two archi-
tectures will be explained in Sections 3.1 and 3.2 respectively. Next, we will explain our
proposed design from the general architecture to the configuration for the Kubernetes
container orchestration as well. The general architecture that we propose is explained in
3.3. The general architecture will consist of the explanation for the cloud configuration as
well as how DNS load balancing works. In Section 3.4, we will explain the configuration
for the Kubernetes container orchestration that is used in this research.

3.1. Conventional Kubernetes without load balancing. The conventional Kuber-
netes without load balancing has 2 masters and 4 workers station in one region. The
internal load balancer (ingress) implements round robin algorithm. During our test, they
are put in Singapore server.
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3.2. Weighted round robin load balancing. The weighted round robin load balancing
has 2 machines in one region and 2 machines in another, implementing weighted round
robin load balancer. During our test, 2 machines are put in Singapore, and 2 machines
are put in Oregon, California.

3.3. Proposed Geo-IP DNS load balancing. We are enhancing from the previous
model that we reviewed [18], where there are 6 services: Classification, Scheduler, Quan-
tification, Apache Kafka, Data Persister, Web Socket, represented as Service 1 and 2
non-exhaustively in Figure 1. Healthcare monitoring system is best if it can be applied
at a global scale so that every branch in the world can access the system. However, the
problem with the previous cloud computing model we reviewed is that it has a bottleneck
in the response time and the error rate. Our proposed architecture will add a mechanism
to support a multi-regional operation for the model, without compensating on the per-
formance. It is a simple model to achieve reliable scalability of computing services in a
cloud environment with a relatively large number of services. With the addition of two
load balancers: the regional load balancer (the DNS load balancer) and the internal load
balancer (which is embedded in the ingress in each region), we are hoping to reduce this
bottleneck. The regional load balancing algorithm is based on the proximity of the IP
address from the user to the region. The internal load balancing (inside ingress) algorithm
will be based on round robin. We will delve into the general scenario in Figure 1 in the
next paragraph.

Figure 1. The diagram of the general version of our proposed DNS load
balancing architecture
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A generalized version of our proposed architecture in Figure 1 will be explained here
now. First, one user from region 1 will create a request. The request will then pass through
the regional DNS load balancer. The DNS load balancer will answer the specific request
by replying to it with an IP address for the request to go. If Region 1 is not available for
request handling, the request will be passed to Region 2, which is the next nearest region.
Upon arrival of the request in the specific system that will handle it, it will go through
ingress, where there is an internal load balancer to assign by which worker the request
will be handled.
In Figure 2, we simulate how the DNS load balancing works. Firstly, a computer X

asks example.com for record from Authoritative Root Name Server. The request is then
passed to the DNS load balancer. When the request arrives, the DNS load balancer checks
the Geo-IP Database for the source location of the IP address. The database then returns
an IP address record belonging to the specific country. Then, the last step is to return
example.com IP address of the nearest available server that is able to handle the request.
A null case is when the country record is not found in the database. Then, if the country
is not found, it will return a random example.com IP address that can handle the request.

Figure 2. The diagram of the DNS load balancing mechanism

Figure 3 shows a simple flow chart explaining the round robin algorithm used in the
internal load balancer. This algorithm starts with the incoming request to the ingress.
The request will be passed to the first pod. The request is then handled by the first pod.
Once it is done being handled, the next request in queue will be considered to be handled
by the next pod. This process is iterative until it has reached the last pod. Upon reaching
the last pod, the next request will be handled by the first pod.

3.4. System specification. [20]’s architecture has four nodes, two for each region, Ore-
gon and Singapore. It does not use Kubernetes. [18]’s architecture has only one master
node located in Singapore, and four worker nodes in Singapore. In Table 2, we display the
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Figure 3. The algorithm of the round robin

Table 2. System specification used for this research

Configuration Value
Cloud Platform Google Cloud Platform - N2-Standard-2

Operating System (OS) Container Optimized Linux
CPU 2 vCPU
RAM 8 GB
Disk 25 GB

Master Nodes 2
Worker Nodes 4

system specification used for the purpose of this research. For our proposed architecture,
we set up two master nodes each for the different regions, Oregon and Singapore. Hence,
each region needs its dedicated master node. We set up four worker nodes, and placed
them two at each region. We used the smallest CPU N2 type instances and RAM, which
are 2 vCPU and 8 GB consecutively.

4. Result & Discussion. In this section, we discuss our experiments and results. For
evaluation, we compare our proposed architecture with that in [18] and [20] architecture.
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We compare the three architectures in two cases: 50,000 and 100,000 concurrent requests.
We decided to limit the experiments with 50,000 and 100,000 concurrent requests for the
purpose of faster testing time. Also, these tests are quite representative and scalable to
higher number of requests too.

4.1. Evaluation scenario. The evaluation objective is to compare the performance of
our proposed architecture to two other architectures, so that we would know which per-
forms best. We would cover and explain the metrics that we choose to evaluate the archi-
tectures in 4.1.2. We present the test bed of our experiment in 4.1.3. Lastly, in Section
4.1.4, we are explaining the scenarios that we test in this experiment.

4.1.1. Evaluation objective. Our proposed architecture is meant to decentralize the in-
formation exchange system. Our experimentation is only limited to the information ex-
change, not considering the machine learning behind it.

4.1.2. Metrics. Below are the metrics that we use to gauge the performance of our pro-
posed architecture compared to the two other architectures.
a) Completion time
The time needed to complete all the incoming requests.
b) Response time
The time needed for the request to return back to the application.
c) Throughput
The amount of requests attended over the time of testing.
d) CPU usage
A gauge on how effective your testing is. If the CPU utilization reaches 100%, it can

no longer process requests and the throughput will eventually flatten. This is measured
by averaging all CPU usage in all of our worker nodes.
e) Error rate
Formula is

error rate =
number of failures to serve request

total number of incoming requests
(1)

4.1.3. Test bed. We will use two regions for the testing scenario, which are Oregon (in
California) and Singapore. These two regions indicate where the data comes from. Figure
4 displays the testing scenario that we are using for this research, displaying that requests
can come from Singapore or Oregon. There are two cloud systems that are working to
handle requests, one is located in Singapore and the other one is located in Oregon. The
database for each system (as seen on the bottom part of the image) is a replication of the
other. When a user in Oregon comes with a request, it passes the DNS load balancer,
which identifies which the nearest cloud system is available to handle the request.

4.1.4. Scenario. Data that we are collecting from sleep monitoring system is electrocar-
diogram (ECG) signal from the interpreted cardiac activities from a human. Our scenario
is compared to two other architectures, which are presented in [20] and [18] as shown in
Table 3 where we label each method with a number as a reference for Table 4. 50,000
requests are defined as 50,000 incoming requests from Singapore and 50,000 incoming re-
quests from Oregon (in California). The same goes for 100,000 requests, meaning 100,000
incoming requests from Singapore and 100,000 incoming requests from Oregon (in Califor-
nia). For each scenario, we run them 30 times and plot them in a cumulative distribution
function, displayed in Section 4.2.
Total concurrent requests stated in Table 4 is defined as the number of incoming data in

a given unit time. For example, in the health monitoring case, there are 50,000 heartbeat
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Figure 4. The diagram of the experimentation version of our proposed
DNS load balancing architecture

Table 3. The methods compared in this research with their respective
numbered method

No Method Reference
1 Geo-IP DNS Load Balancing Our method
2 Kubernetes without load balanc-

ing (uni-location in Singapore)
[18]

3 Weighted Round-Robin Cloud
Load Balancing (Load Balancer
located in Singapore)

[20]

Table 4. All the scenario combinations that will be presented in the re-
search result

Scenario Method Total concurrent requests
1 1 50,000
2 1 100,000
3 2 50,000
4 2 100,000
5 3 50,000
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records coming into the database. If the person is asleep for every second: 50,000 is
divided by 3600 (60 minutes times 60 seconds per minute), resulting in approximately 14
hours of sleeping. Assuming a normal person would sleep for 7 hours, this means that
50,000 heartbeat records equal to the recorded heartbeats of 2 persons sleeping for 7 hours
each. Table 4 shows the scenarios that we are using in this research, along with which
method we are using in that scenario and the number of total concurrent requests.

4.2. Experiment’s result. In this section, we will present the result of our experiment
in terms of the completion time, response time, throughput, CPU usage and error rate.
We would like to level the playing field by stating that for the three architectures

compared in 4.2 here, all three architectures use four nodes, but with different architecture
configurations. Our proposed architecture uses four worker nodes in total, with two in
Singapore and the other two in Oregon. [18]’s architecture has only one master node
in Singapore, but still has four worker nodes, all in Singapore. [20]’s architecture has
four virtual machines in total, two of which are located in Singapore and the other two
are located in Oregon. The only difference between our proposed architecture and [20]’s
architecture is the load balancer, our proposed architecture uses DNS load balancer, and
meanwhile, [20]’s uses weighted round robin load balancer.
For the compared throughput in Figure 5, we cut off the maximum response time at

2,000 milliseconds. We present the result in cumulative distribution function. As you
can see in Figure 5, the y axis is in % of total run, which refers to the percentage of test
runs out of the total 30 test runs with 50,000 or 100,000 data per test run. The x axis
represents the throughput in request/second.

Figure 5. The comparison for throughput for scenarios 1 to 5

From the graph in Figure 5, the two scenarios, displayed on the bottom right part of the
graph, perform better than the rest of the three scenarios. We can see that generally, our
proposed architecture (scenarios 1 and 2) performs best, followed by [18]’s architecture
(scenarios 3 and 4) and finally [20]’s architecture. From the displayed comparison in
Table 5, the average throughputs for our method are the highest at 2088.8 requests per
seconds and 1912.7 requests per seconds. This is followed by [18]’s architecture with 1377.1
and 1158.5 requests per seconds for scenarios 3 and 4. Lastly, [20]’s architecture has the
lowest throughput of 315.5 requests per seconds (in scenario 5). Higher throughput in our
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Table 5. The comparison table for throughput for the 5 scenarios

Throughput (Request/seconds)
Scenario Average Max Min Std. Dev (Pop)

1 2088.8 3299.5 905.6 585.4
2 1912.7 3061.4 940.3 424.5
3 1377.1 3196.9 273.6 772.7
4 1158.5 2086.6 319.4 525.5
5 315.5 872.1 253.7 93.3

Figure 6. The comparison for error rate for scenarios 1 to 5

architecture is due to the faster response time in our architecture. With faster response
time, our proposed architecture can handle more requests at the same, given amount of
time than [18] and [20]. A detailed reason for the faster response time will be explained
in the later part of the paper.

From Figure 6, the error rate is greatest for [20]’s architecture, followed by [18]’s archi-
tecture, and finally our method at the lowest. This implies that our method creates the
least number of error requests. As seen in Table 6, our method has the lowest average
error rate of 0.01% and 0.10% for scenarios 1 and 2 respectively. [18]’s architecture has
an average error rate of 0.30% and 0.38% for scenarios 3 and 4 respectively, and finally
[20]’s error rate is the highest at 1.67%. The Internet itself does not guarantee reliable
packet delivery. The Internet is free to destroy packets if they are overloaded. The re-
quest goes to and comes back from the pod where the request is handled. This is the
route that is taken by the request. The longer the route, the higher the chance of it gets
destroyed before reaching the origin. [20]’s architecture requires an Oregon request to
go to Singapore and comes back to Oregon again. This is a tediously long route for the
request. Hence, the error rate is higher in [20]’s architecture, compared to that in our
architecture. The error rate in our architecture is lower than that in [18]’s architecture
because our architecture has two ingresses, meanwhile [18]’s architecture has only one,
that is located in Singapore, even though both have the same number of worker nodes.
Thus, for an Oregon request, it needs to come to Singapore to be handled. Meanwhile in
our architecture, it can be handled in Oregon.

In Figure 7, we see that our method reaches almost 100% of total run after 40-100
seconds. Meanwhile, [20]’s and [18]’s architecture take longer to complete almost 100% of
the total requests coming in. This implies that our proposed method is faster in completing
the incoming request. As displayed in Table 7, our method has the shortest average
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Table 6. The comparison table for error rate for the 5 scenarios

Error rate (Percentage)
Scenario Average Max Min Std. Dev (Pop)

1 0.01% 0.28% 0% 0.04%
2 0.10% 2.05% 0% 0.39%
3 0.30% 2.80% 0% 0.58%
4 0.38% 1.68% 0% 0.41%
5 1.67% 7.82% 0.01% 1.87%

Figure 7. The compared completion time for the 5 scenarios

Table 7. The comparison table for completion time for the 5 scenarios

Completion time (seconds)
Scenario Average Max Min Std. Dev (Pop)

1 27.3 55 15 8.86
2 55.3 106 33 14.23
3 53.1 183 16 38.82
4 112.5 313 48 63.46
5 166.2 197 57 28.11

completion time 27.3 seconds and 55.3 seconds for scenario 1 and 2 respectively. It is then
followed by [18]’s architecture which has 53.1 and 112.5 seconds of completion time for
scenarios 3 and 4 respectively. Finally, [20]’s has the longest average completion time of
166.2 seconds. The completion time for our method is faster than [18]’s architecture and
[20]’s architecture as our architecture has faster response time. Thus, the time required
to handle the requests is collectively faster. Hence, the completion time is faster.
As displayed in Figure 8, our method consumes the biggest CPU usage, followed by

[18]’s architecture and finally [20]’s architecture. As seen in Table 8, our method consumes
the biggest average CPU usage of 17.73% (for 50,000 requests) and 31.94% (for 100,000
requests). This is followed by [18]’s architecture, with CPU usage of 13.29% (for 50,000
requests) and 15.15% (for 100,000 requests). [20]’s consumes the least CPU usage of
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Figure 8. The compared CPU usage for the 5 scenarios

Table 8. The comparison table for CPU usage for the 5 scenarios

CPU usage (Percentage)
Scenario Average Max Min Std. Dev (Pop)

1 17.73% 26.98% 7.24% 4.83%
2 31.94% 64.99% 9.06% 17.04%
3 13.29% 28.62% 11.75% 3%
4 15.15% 28.36% 8.35% 5.20%
5 13.15% 45.36% 12.14% 7.13%

13.15% (for 50,000 requests). The CPU usage is the lowest for [20]’s architecture as the
cloud system has two virtual machines located in Singapore and two other virtual machines
located in Oregon, with the weighted round-robin load balancer in Singapore, thus it is
more resource effective compared to our proposed architecture. Our architecture has two
master nodes in Oregon and Singapore, and two worker nodes in each region, thus it is
heavier on the CPU usage compared to [18]’s architecture that only has 1 master node
in Singapore. Our architecture consumes almost twice as much CPU time as the method
of [18]’s architecture due to the added load balancing layer in our architecture. However,
it is important to note that despite having the lowest CPU usage, [20]’s error rate is
the highest. On the other hand, our method can achieve the lowest error rate despite
consuming the highest CPU usage.

As displayed in the cumulative distribution function in Figure 9, our method has the
lowest response time, followed by [18]’s architecture and finally [20]’s architecture. Our
method also has the lowest average response times of 287 milliseconds (for 50,000 re-
quests) and 639 milliseconds (for 100,000 requests), with a minimum response time of 2
milliseconds and maximum of 32810 for 50,000 requests, and a minimum of 2 milliseconds
and maximum 68105 milliseconds for 100,000 requests. [18]’s architecture has an average
response time of 1251 and 1218 milliseconds for 50,000 and 100,000 requests respectively.
[20]’s architecture has the highest average response time of 9789 milliseconds, as seen
in Table 9. Our proposed architecture has faster response time than [18] and [20]. [18]’s
architecture does not regard which location the request is coming from. Hence, whether
the request comes from Oregon or Singapore, the request will be handled in Singapore
where the cloud system is. Therefore, taking the 50,000 requests, the response time is
more significantly lower in our architecture, 287 milliseconds, than that in [18]’s archi-
tecture, 1251 milliseconds. In [20]’s architecture, every request will need to pass through
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Figure 9. The comparison of response time for scenarios 1 to 5

Table 9. The comparison table for response time for scenarios 1 to 5

Response time (Milliseconds)
Scenario Average Max Min Std. Dev (Pop)

1 287 32810 2 934
2 639 68105 2 2506
3 1251 148561 2 2808
4 1218 270112 2 2563
5 9789 133735 4 18757

the Singapore cloud system before it is sent to the designated system handling the re-
quest. Our architecture has the lowest average response time simply because it is message
transferring measurements. When receiving a request, the data center must allocate the
request efficiently to avoid congestion. Hence, the lower the response time, the better.
Additionally, locality is a means for the application to be fault tolerant. When one service
is down, the request can be passed on to another available service. This results in the
application being fault tolerant.
In Figure 10, we limit the scope only to the scenarios with 50,000 concurrent requests,

which are scenarios 1, 3 and 5. For each scenario, we split the data based on which region
the requests come from, which are Singapore and Oregon.
In Figure 11, we also limit the scope only to the scenarios with 100,000 concurrent

requests, which are scenarios 2 and 4. For each scenario, we also split the data based
on which region the requests come from, which are Singapore and Oregon. Our method
generally has responded to requests faster than [18]’s architecture. For the Oregon case, we
can see the wider difference between [18]’s architecture and our architecture in the graph,
where our architecture starts off from 0 seconds, meanwhile [18]’s architecture starts the
lowest response time at around 350 milliseconds. This infers that our architecture can
achieve lower response time on multi-regional cloud systems.
Based on our research, we found that our proposed method has the highest throughput,

lowest completion time, lowest error rate and lowest response time. Our error rate is low
because our data transmission is the fastest hence having lower chance of being intercepted



ENHANCING HEALTH MONITORING SYSTEM WITH GEO-IP DNS LOAD BALANCING 1951

Figure 10. The response time comparison for 50,000 requests

Figure 11. The response time comparison for 100,000 requests

before the data package is successfully delivered. Our proposed method has the highest
CPU usage due to our process of needing to find the IP address in the Geo-IP database.

5. Conclusions. This paper focuses on applying DNS load balancing on the previously
reviewed architecture. We can conclude from our experiment that the application of DNS
load balancing decreases the response time, decreases the completion time, and increases
the throughput. This difference (compared to the two other architectures) is more visible
at higher numbers of incoming requests or data. Also, the difference is more visible when
the region is further away, as displayed in the Oregon case compared to the Singapore
case.

In our future experimentation, we would like to enhance our proposed architecture with
a feature for disaster recovery. It is to recover from an unexpected incidence.
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