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Abstract. In this study, a distributed adaptive robust control scheme of the cooperative
tracking stabilization based on radial basis function neural network (RBFNN) is devel-
oped for a class of uncertain multi-agent systems with different subsystems. Multi-agent
dynamical systems in followers are supposed to be different dynamical behaviors due to
their different equations, and each follower has the leader system with a series of similar
parameters. By using the properties of similarity among each agent, the feedback control
with robust terms, coupling weights adaptive laws and the neural network weights are
designed for the consensus of heterogeneous multi-agent systems, which break the limi-
tation of existing works for heterogeneous multi-agent systems with the same structure.
The states of each follower synchronize to the dynamical behavior of the leader reference
model, and all signals in the closed-loop systems can be guaranteed to be uniformly ul-
timately bounded (UUB). Finally, by employing the relationship of undirected connected
communication graphs for every multi-agent system, three simulation examples are veri-
fied by good tracking performances.
Keywords: Radial basis function neural network (RBFNN), Distributed control, Adap-
tive control, Heterogeneous multi-agent systems, Uniformly ultimately bounded (UUB)

1. Introduction. In recent decades, multi-agent systems have become an interesting re-
search subject in more sophisticated and intelligent demand, and have been widely applied
to various engineering fields, such as flocking [1, 2], communication online planning [3],
sensor networks [4], control of multi-robot systems [5], and air vehicles [6]. Because there
exist lots of different complex relationships and couplings among each sub-system (e.g.,
high-cost of agent and impractical applications), how to design some series satisfactory
cooperative controllers is very significant and tough work in the whole control process
of the multi-agent systems. Recently, distributed control schemes based on each local
information have been studied in [7, 8, 9, 10]. In [11, 12], a cooperative global tracking
controller based on the observer was presented for multi-agent systems with unknown
external interference, but the drawback of this method only can be suitable for linear
multi-agent systems. Leader-following consensus is also proposed for multi-agent systems
in [13, 14]. Finite-time consensus tracking control for multi-agent systems was researched
in [15, 16]. In these aforementioned works, the main contribution is that the leaderless
consensus and the synchronization of leader-follower systems are designed for accurate
model or dynamical with some certain conditions being satisfied, but it is necessary to
point out that the unstructured uncertainties of multi-agent systems are not considered
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[7, 8, 9, 10, 11, 12, 13], or some conditions need to be satisfied such as Lipschitz constant
of the nonlinear functions in [14], continuous homogeneous of nonlinear functions in [15],
upper right Dini derivative of nonlinear functions in [16]. Accordingly, these designed
control algorithm schemes can be only utilized to some special structure of multi-agent
systems.
Neural network (NN) has the effective ability of training and learning [17], so the result

is that NN can be utilized to many application fields. Especially, RBFNN (radial basis
function neural network) as a generalized approximation to counteract the unstructured
uncertainties has been received growing concern by researchers in many different fields
[18, 19, 20, 21, 22, 23]. Consequently, NNs are employed to deal with the unknown model
and further realize the tracking stabilization or synchronization of multi-agent systems
with unstructured uncertainties. For example, a distributed synchronization adaptive NN
control based on observer was proposed for a class of multi-agent systems with uncertain-
ties in [24]. For the tracking of stochastic multi-agent systems, a novel RBFNN adaptive
control was designed to resolve the unknown terms of interactions and coupling among
each agent system in [25]. Output feedback tracking controller with reduced order filters
and NN technique was proposed for second-order multi-agent systems with unknown un-
certainties in [26]. Unfortunately, these existing research works just only focus on the
multi-agent dynamical systems with the same agent dynamics in [24, 25, 26], and the dif-
ferential equation of each agent system was identical in the literature. Actually, in many
real applications, the structure of every agent system is totally different in a network;
in this case, the non-identical multi-agent systems commonly are called as heterogeneous
multi-agent systems with different dynamical behaviors. Therefore, the control schemes
in the mentioned literature will be invalid to control the stabilization or synchronization
of heterogeneous multi-agent systems. According to this point, it is badly in need of some
novel controls that can be exploited to not only suit for identical multi-agent systems but
also be valid to heterogeneous multi-agent systems.
Recently, many researchers are very keen on the research of consensus tracking or

synchronization for some class of heterogeneous multi-agent systems, for instance, multiple
uncertain nonlinear strict-feedback form [27], the first-order and second-order multi-agent
unknown nonlinear systems [28]. However, the control approaches only suit to the class of
multi-agent systems with Lipschitz conditions [27, 28]. Besides, the specific structure of
these heterogeneous multi-agent systems is another limitation for design control scheme.
From the view of mathematics, there exist more similar characters of many multi-agent
dynamical systems in many real networks (e.g., many identical plants of structure in
power network systems [29], the electric power system with the connection of synchronous
machines in [30], and other similar composite systems in [31, 32, 33]).
In this paper, motivated by the definition of similar considerations in [29, 30, 31, 32, 33],

the nodes in large-scale systems are called as similar agents (identical agent is the spe-
cial case), and then the control for stabilization or synchronization needs to be exploited
urgently for this kind of heterogeneous multi-agent systems. It is well known that the
decentralized control has been successfully used to control the stabilization or synchro-
nization of large-scale interconnected systems, but this control approach could not be
applied to the multi-agent systems owing to some couplings among each agent dynamical
system [29, 30, 31, 32]. Cooperative tracking control is a popular design method for multi-
agent systems, and many outstanding studied results were raised. For example, the au-
thors studied NN adaptive control for multi-agent with unknown high-order nonlinear
dynamics in [34], and the control of each follower only depended on its own states, rather
than the coupling strength among every agent system. For a kind of multi-agent systems
with higher-order nonlinear in [35], the synchronization control was designed, and the
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prescribed performance was guaranteed with the connection of weighted directed graph
for every agent dynamical system. Nevertheless, it is worth to emphasize that the particu-
lar common problem is that each agent is assumed to be identical with the same dynamic
behavior. The controls in these works may lose efficacy when the agent of multi-agent
systems was nonidentical with difference.

Up to this point, a worthy research question arises that how to design a consensus
protocol to satisfy a class of heterogeneous multi-agent systems with different structures
and nonidentical dynamical behaviors, where the design control can be utilized to ho-
mogenous multi-agents but also heterogeneous multi-agents with different structures and
nonidentical dynamic behaviors. Inspired by the qualities in [29, 30, 31, 32], this paper at-
tempts to design a novel stabilization controller by using the information of each agent for
heterogeneous multi-agent dynamical systems. Compared with the identical multi-agent
systems, the main contributions of the proposed control are described in two aspects.
Firstly, different from the control for heterogeneous multi-agent systems with the same
composition in [1, 2, 5, 34, 35], a novel robust NN adaptive feedback control architecture is
devised for the cooperative tracking of heterogeneous multi-agent systems with the same
or different composition, which can be utilized to solve the cooperative stabilization of
multi-agent systems whether each agent system is identical or nonidentical; in this case,
the controller in this paper is more generalized than other existing works. Secondly, the
feedback control gain can be easily obtained by solving the given Hurwitz matrix rather
than complex algebraic Riccati equation of other works in the procedure of designing.

The rest of this paper is organized as follows. Section 2 describes the multi-agent sys-
tems with similar qualities of each agent system, and some definitions and preliminaries
are proposed. In Section 3, the detailed procedure design of the distributed NN adaptive
control with reference tracking stability analysis is presented. Three examples are simu-
lated to demonstrate the effectiveness of the control plan in Section 4. The conclusions
are summarized in Section 5.

2. Preliminaries and System Descriptions. In this section, it is necessary to be
supplemented that the knowledge of graph theory, which will be used to demonstrate the
interconnection relationship of each agent system in follower (2) and leader system (1).

Define each agent system as one node, a graph G = {ν, ε} with the node set ν =
{n1, n2, . . . , nN} and the edge set ε = {(ni, nj) ∈ ν × ν}, where (ni, nj) indicates the
relationship of communication from the ith node to the jth node. Ni = {j|(nj, ni) ∈ ε}
denotes the ith neighbour set. Let a matrix A = [aij]N×N , where aij = 1 if (nj, ni) ∈ ε,
if otherwise, aij = 0. Degree matrix is defined as D = diag{d1, d2, . . . , dN}, in which di =∑

j∈Ni
aij. Therefore, the Laplacian matrix L = D−A , [lij] is associated with the undi-

rected graph G. For leader system, the leader adjacency matrix A0 = diag{a10, a20, . . . ,
aN0} is denoted, where ai0 > 0 if there exists the relationship of the ith agent to the leader
system directly, ai0 = 0 otherwise. Then, apparently matrix H = L+A0 is a nonnegative
matrix for an appropriate matrix A0.

The considered heterogeneous multi-agent systems consist of one leader andN followers,
whose communication topology graph is represented by G, the dynamical model of leader
is described by the following differential equation

ẋ0 = A0x0 +B0r(x0, t) (1)

where x0 ∈ Rn×1 represents the state vector; A0 ∈ Rn×n and B0 ∈ Rn×m are two known
constant matrices; r(x0, t) = K0x0 + s(t) with K0 ∈ Rm×n, in which K0 is chosen such
that A0 + B0K0 satisfies Hurwitz that will be a known matrix given by designer, the
remainder s(t) ∈ Rm×1 is proposed a known input signal vector with bounded.
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Now, the ith follower multi-agent system is defined as

ẋi = Aixi +Bi[ui + fi(xi) + ωi(t)], i = 1, 2, . . . , N (2)

where xi = [xi1, . . . , xin]
T denotes the state vector of the ith follower; control input is ui ∈

Rm×1; fi(xi) ∈ Rm×1 denotes the unknown nonlinear function that will be approximated
by using RBFNN; ωi(t) = [ωi1, ωi2, . . . , ωim]

T is the unknown external disturbance vector
with bounded, which means that |ωik| ≤ ω̄ik (k = 1, 2, . . . ,m) is satisfied, and ω̄ik is
a known constant. In this paper, we denote maximum vector as ω̄i = [ω̄i1, . . . , ω̄im]

T ;
Ai ∈ Rn×n and Bi ∈ Rn×m are two known appropriate dimension matrices which are
presented by two different from the A0 and B0 in (1), respectively.

Remark 2.1. Each agent system in (2) is heterogeneous in this paper, which admits
a characteristic of different form for the multi-agent systems with identical dynamical
behavior in [11, 12, 24, 25, 26, 34, 35]. Especially, the systems followers are the same in
the literature, if Ai = A0 and Bi = B0.

Definition 2.1. [32]. Suppose there exist matrices Ki ∈ Rm×n and other invertible ma-
trices Ji ∈ Rn×n, and then system (2) is called as a similar composite system with the
following conditions for i, s = 1, 2, . . . , N{

J−1
i (Ai +BiKi)Ji = J−1

s (As +BsKs)Js
J−1
i Bi = J−1

s Bs

(3)

Based on Definition 2.1, Definition 2.2 is expounded as follows.

Definition 2.2. The ith agent system in follower system (2) and the leader system (1)
are said to be a similar composite system (1), if there exist matrices Ki ∈ Rm×n and
K0 ∈ Rm×n for invertible matrices Ji ∈ Rn×n and J0 ∈ Rn×n such that{

J−1
i (Ai +BiKi)Ji = J−1

0 (A0 +B0K0)J0
J−1
i Bi = J−1

0 B0

(4)

where matrices pairs (Ji, Ki) and (J0, K0) are corresponding to the ith subsystem (2)
and leader model system (1), which are defined as the transformation. All the nominal
subsystems (2) are said to be similar to the leader model dynamics (1).

Remark 2.2. By analyzing Definition 2.2, it is easily known that the ith follower is
similarity equivalent to the leader system through feedback control ui = Kixi, which means
that the ith follower and the leader have some common eigenvalues. Therefore, the follower
systems (2) and the leader (1) are called as similar composite systems [32], where some
similar dynamics behaviors exist in this class of multi-agent systems. In fact, such kind
of similar composite systems can be found in real applications, for instance, two coupled
inverted pendulum systems [36, 37], and electric power systems [38]. In these applications,
similar structure of each system exists because of the composing among each subsystem.
Consequently, it is known that the multi-agent system in follower (2) is composed of N
multi-agent systems via different linear couplings among them.

In this paper, the uncertain model of fi(xi) is supposed to exist in each subsystem, so
the approximation of RBFNN is employed to compensate the uncertainties.

Assumption 2.1. The uncertainty function Yi(xi) can be approximated by the RBF neural
network as the following universal approximation property:

Yi(xi) = W T
i ϕi(xi), ∀xi ∈ Ωxi

(5)
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where Wi ∈ Rl×m denotes the ideal weight matrix that can be updated online automat-
ically. Ωxi

∈ Rn×1 is the approximation domain that should be chosen large sufficiently.
ϕi(xi) = [ϕi1(xi), . . . , ϕim(xi)]

T is the activation function vector with m denoting the
number of basis functions. In general, the Gaussian function is selected as

ϕi(xi) = exp

[
−(xi − cimi

)T (xi − cimi
)

2b2imi

]
, i = 1, 2, . . . , l (6)

where ∥ ∗ ∥ denotes 2-norm, cimi
= [cimi1

, cimi2
, . . . , cimil

]T denotes the center of the recep-
tive field, and bimi

represents the width of Gaussian function. On a compact set Ωxi
, any

continuous function can be approximated by RBFNN with arbitrary accuracy ϵi which is
written as follows:

Yi(xi) = W ∗T
i ϕi(xi) + ϵi (7)

ϵi represents the approximation accuracy and satisfies |ϵi| ≤ ϵ̄i, with ϵ̄i as a known positive
constant, andW ∗T

i is an ideal weight vector and is defined asW ∗T
i =argminW∈ΩW

supW∈Ωxi∣∣Yi(xi)−W T
i ϕi(xi)

∣∣, ΩW and Ωxi
are corresponding to the compact regions of W and xi.

If the similarity properties of Definition 2.2 and Assumption 2.1 are satisfied, the fol-
lowing control objective in this paper will be designed.

Control objective: For any given input signal s by designer, in order to make each
agent in follower (2) track the dynamical behavior of the leader system (1) perfectly, a
distributed RBFNN adaptive controller scheme is proposed such that all signals in the
closed-loop follower multi-agent system (2) can be guaranteed to be uniformly ultimately
bounded (UUB), and the tracking error can be satisfied with bounded small value.

3. Distributed Adaptive RBFNN Control Design. By using the similar character
of Definition 2.2, we define the tracking error as σi = J−1

i xi − J−1
0 x0= zi − z0, and let

ei ∈ Rn denote the local cooperative tracking error. Then, the following equation is formed

ei =
∑
k∈Ni

aik(zi − zk) + ai0(zi − z0) (8)

where aik and ai0 are defined as the elements of graph G that are shown in Section 2.

Remark 3.1. As shown in (8), the tracking error of followers and leader has its charac-
teristic, where every agent in systems is transformed by the similar matrices Ji and J0.
The advantage of this mapping transformation is that the consensus of each agent with
nonidentical dynamical behaviors or different structures can be guaranteed. Obviously, if
Ji = Ini×ni

and J0 = In0×n0 are satisfied, multi-agent systems (1) and (2) are equal to the
systems in [11, 12, 24, 25, 26, 34, 35].

The distributed adaptive RBFNN control is sketched as follows

ui = ui1 + ui2 (9)

where ui1 = Kixi + Fσi + ciFei − Ŵ T
i ϕi(xi) is proposed, in which Kixi + Fσi + ciFei is

a linear feedback that deals with the stability of follower systems with coupling strengths
tracking the leader system, and Ŵ T

i ϕi(xi) (Ŵi is the estimation value ofW ∗
i ) is utilized to

approximate the unknown nonlinear terms in each agent system in follower (2). Another

robust control ui2 =

 − B̄T
0 Pei

∑m
k=1 ω̄ik

∥σT [H⊗(PB̄0)]∥ , B̄T
0 Pei ̸= 0

0, B̄T
0 Pei = 0

is designed to eliminate the robust

from the unknown external disturbance with bounded. We denote W̃i as the estimation
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error of W ∗
i , and define W̃i = Ŵi − W ∗

i . The adaptive law about estimation Ŵi is
constructed as the following expression form

˙̂
Wi = −ηwiŴi + αwiϕi(xi)e

T
i PB̄0 (10)

ci ∈ R denotes the coupling weight between the subsystems which is projected as

ċi = −ηcici + αcie
T
i PB̄0Fei (11)

where the parameters ηwi and αwi are two matrices with some positive constants, ηci and
αci are also positive constants which will be given by designer, and B̄0 is defined as shown
in (12).
The control gain matrix F and positive symmetric matrix P in (9) can be obtained by

solving the following Lyapunov function for any given positive matrix Q

P
(
Ā0 + B̄0F

)
+
(
Ā0 + B̄0F

)T
P = −Q (12)

where Ā0 = J−1
0 (A0 +B0K0)J0, B̄0 = J−1

0 B0.
Substituting (9) to (2), then the multi-agent system in follower (2) becomes

ẋi = (Ai +BiKi)xi +BiFσi + ciBiFei +Bi

[
−W̃ T

i ϕi(xi) + ϵi + ωi(t) + ui2

]
(13)

owing to the similar elements Ki, Ji, K0, J0 between the leader model (1) and follower
(2), if we define the state transformation as zi = J−1

i xi and z0 = J−1
0 x0, so the leader

model reference is obtained as

ż0 = J−1
0 ẋ0 = J−1

0 (A0 +B0K0)J0z0 + J−1
0 B0s(t) (14)

the ith follower dynamical subsystem can be written as

żi = J−1
i (Ai +BiKi)Jizi + J−1

i BiFσi + ciJ
−1
i BiFei

+ J−1
i Bi

[
−W̃ T

i ϕi(xi) + ϵi + ωi(t) + ui2

]
(15)

Now, we consider the similar property of Definition 2.2 between the leader system (1) and
each multi-agent system (2), and then (15) is equal to the following result

żi = J−1
0 (A0 +B0K0)J0zi + J−1

0 B0Fσi + ciJ
−1
0 B0Fei

+ J−1
0 B0

[
−W̃ T

i ϕi(xi) + ϵi + ωi(t) + ui2

]
(16)

According to the tracking error σi = zi − z0, the time derivative respect to (14) and
(16) is resulted as

σ̇i =
(
Ā0 + B̄0F

)
σi + ciB̄0Fei + B̄0

[
−W̃ T

i ϕi(xi) + ϵi + ωi(t)− s(t) + ui2

]
(17)

If we denote σ =
[
σT
1 , . . . , σ

T
N

]T
, ϵ = diag{ϵ1, . . . , ϵN}, W̃ T = diag

{
W̃ T

1 , . . . , W̃
T
N

}
,

ϕ(x) = diag{ϕ1(x1), . . . , ϕN(xN)}, c = diag{c1, . . . , cN}, ω = diag{ω1(t), . . . , ωm(t)},
S̄ = diag{s(t), . . . , s(t)︸ ︷︷ ︸

m

}, u2 = diag{u12, u22, . . . , um2}, then (17) can be rewritten as

σ̇ =
[
IN ⊗

(
Ā0 + B̄0F

)
+ (cH)⊗

(
B̄0F

)]
σ

+
(
IN ⊗ B̄0

) [
−W̃ Tϕ(x) + ϵ+ ω − S̄ + u2

]
(18)

where IN is a unit matrix with N dimension, and ⊗ denotes Kronecter produce.
In terms of the control task, the following statements of Theorem 3.1 are obtained.
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Theorem 3.1. Consider the multi-agent subsystem (2) and the leader reference model (1)
with similar characters Ki, Ji, K0, J0, if Assumption 2.1 is satisfied, the control (9) with
adaptive laws (10) and (11) can promote all signals in closed-loop (18) to satisfy UUB.

Proof: Selecting the candidate Lyapunov function as follows

V =
1

2
σT (H ⊗ P )σ +

1

2
tr
(
W̃ Tα−1

w W̃
)
+

1

2
α−1
c cT c (19)

along with the closed-loop system (18), the time derivative is obtained as

V̇ =
1

2
σT

{
H ⊗

[
P
(
Ā0 + B̄0F

)
+
(
Ā0 + B̄0F

)T
P
]}

σ + cσTH2 ⊗
(
PB̄0F

)
σ

+α−1
c cT ċ+ σT

(
H ⊗ PB̄0

) [
−W̃ Tϕ(x) + ϵ

]
+ tr

(
W̃ Tα−1

w
˙̂
W

)
+σT

(
H ⊗ PB̄0

) (
ω − S̄ + u2

)
(20)

Since the following inequality holds

σT
[
H ⊗

(
PB̄0

)] (
ω − S̄ + u2

)
=

N∑
i=1

eTi PB̄0


ωi1(t)
ωi2(t)

...
ωim(t)

−
N∑
i=1

 eTi PB̄0
B̄T

0 Pei
∑m

k=1 ω̄ik

∥σT [H⊗(PB̄0)]∥ , B̄T
0 Pei ̸= 0

0, B̄T
0 Pei = 0

≤
N∑
i=1

∥∥σT
[
H ⊗

(
PB̄0

)]∥∥ (∥ωi∥ − ω̄i) ≤ 0 (21)

with (21), (20) becomes that

V̇ ≤ −1

2
σT (H ⊗Q)σ + σT

[
H ⊗

(
PB̄0

)]
ϵ+

N∑
i=1

[
−eTi PB̄0W̃

T
i ϕi(xi) + W̃ T

i α
−1
wi

˙̂
Wi

+α−1
ci
ciċi + cie

T
i PB̄0Fei

]
(22)

Adaptive laws (10) and (11) are applied to (22), let λmin(·) and λmax(·) represent the
minimum and maximum eigenvalue of matrix (·), respectively, then it yields

V̇ ≤ −1

2
λmin(H ⊗Q)σTσ + ∥σ∥ ·

∥∥H ⊗
(
PB̄0

)∥∥ ϵ̄− N∑
i=1

ηci
αci

c2i −
N∑
i=1

ηwi

αwi

Ŵ T
i W̃i (23)

Since the following inequality holds

− ηwi

αwi

Ŵ T
i W̃i = − ηwi

αwi

W̃ T
i W̃i −

ηwi

αwi

W T
i W̃i ≤ −1

2

ηwi

αwi

W̃ T
i W̃i +

1

2

ηwi

αwi

W T
i Wi (24)

(23) follows that

V̇ ≤ −1

2
λmin(H ⊗Q)σTσ − ηc

2αc

cT c− 1

2

ηw
αw

tr
(
W̃ T W̃

)
+ ∥σ∥ ·

∥∥H ⊗
(
PB̄0

)∥∥ ϵ̄+ 1

2

ηw
αw

tr
(
W TW

)
(25)

Denote χ = min
{

λmin(H⊗Q)
λmax(H⊗P )

, ηc
αc
, ηw
αw

}
, and ϱ = ∥σ∥ ·

∥∥H ⊗
(
PB̄0

)∥∥ ϵ̄ + 1
2
ηw
αw
tr
(
W TW

)
,

then inequality (25) is equal to the following form

V̇ ≤ −χV (t) + ϱ (26)



296 Y. FAN, X. REN AND Z. LI

Now, multiplying by eχt on the both sides of (26), and then integrating over [0, t], it
follows as

0 ≤ V (t) ≤
[
V (0)− ϱ

χ

]
e−χt +

ϱ

χ
(27)

With the result of (27), it is known that every signal in the closed-loop systems can be
satisfied the condition of semi-global UUB, which completes the proof for Theorem 3.1.

Remark 3.2. From the stabilization analysis of Theorem 3.1, it is easily concluded that
similar condition (4) in Definition 2.2 can be satisfied, so the followers can follow the
tracks of the reference leader dynamical system with better performance.

4. Simulation Examples. In this section, three different classes of multi-agent systems
with their similar elements are provided to demonstrate the effectiveness of the proposed
control approach.

Example 4.1. The network topology diagram of multi-agents is shown as Figure 1.

Figure 1. Communication graph of one leader and four followers

In order to show some advantages of the proposed control by comparing with other
controllers, the dynamics of agents are all same, which are described as the following
form: 

ẋ0 =

[
0 1
0 0

]
x0 +

[
0
1

]
[K0x0 + s(t)]

ẋi =

[
0 1
0 0

]
xi +

[
0
1

]
[ui + fi(xi) + ωi(t)], i = 1, 2, 3, 4

(28)

where K0 =
[
−1 −2

]
, s(t) = 0. In followers fi(xi) = sin(xi), ωi(t) is defined the same

as in [39], which denotes the external disturbance. Because of Ai = A0 and Bi = B0, the

similar parameters are selected as Ki = K0, Ji = J0. For a positive matrix Q =

[
2 0
0 2

]
,

positive matrix P =

[
2.2113 0.0476
0.0476 0.0327

]
and control gain F =

[
−20 −30

]
are obtained.

The initial states of the agents are selected as x0(0) = [0; 0], xi1(0) = [5;−3; 6; 7; 2],
xi2(0) = [2;−1; 2; 1; 3], and the initial values of coupling weight in (11) are chosen as
ci(0) = 1. For the four unknown nonlinear function fi(xi), RBFNNs are employed to
approximate these terms, 20 nodes are selected with center space [−1; 1] × [−1; 1], the
width is chosen as 0.2, the parameters are selected as ηw1 = 0.03I20×20, ηw2 = 0.25I20×20,
ηw3 = 0.14I20×20, ηw4 = 0.12I20×20, αw1 = 0.03I20×20, αw2 = 0.01I20×20, αw3 = 0.04I20×20,
αw4 = 0.05I20×20, ηc1 = 0.2, ηc2 = 0.35, ηc3 = 0.3, ηc4 = 0.4, αc1 = 0.03, αc2 = 0.05,
αc3 = 0.08, αc4 = 0.06, the simulation results are shown in Figures 2 and 3.
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Figure 2 shows the comparison of the consensus by applying different control schemes.
2(a) shows the time response of consensus among the states x01 and xi1 by using the
control method in [39], and 2(b) shows the result by applying the proposed control (9)
in this paper. Similarly, the consensus of xi2 tracking with x02 is illustrated as 2(c) by
the control design in [39], while 2(d) demonstrates the well consensus with fast speed by

Figure 2. (color online) (a) Time response of x01 and xi1 in [39]; (b) time
response of x01 and xi1 by controller (9); (c) time response of x02 and xi2
in [39]; (d) time response of x02 and xi2 by controller (9)
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Figure 3. (color online) (a) Time response of couping ci in the RBFNNs

control (9); (b) the norm of estimation weights Ŵi in the RBFNNs control
(9)
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adopting the control approach (9) in this paper. These comparisons show that the states
xi1 and xi2 in followers can track to the states x01 and x02 with fast velocity by employing
the presented control (9). Time responses of coupling strength in control (9) are shown
in Figure 3(a), and the corresponding estimation of weights is described in Figure 3(b).
If we consider six agents with one leader and five followers system, their relationship

is explained by the communication graph in Figure 4. The dotted line indicates that the
actual relationship between the two agent systems is virtually non-existent, which means
the follower systems are controlled to track the dynamical behavior of leader system. The
full line stands for the coupling strength among each agent system in follower system.

Figure 4. Communication graph including one leader and six followers

Example 4.2. Different from Example 4.1, real application such as the following multiple
marine surface vehicles with identical dynamical behavior is proposed

ẋ = Axi +B[fi(xi) + ui + ωi] (29)

where A =

[
O3×3 I3×3

O3×3 O3×3

]
, B =

[
O3×3

M−1
i

]
, Mi =

 25.8 0 0
0 33.8 1.0115
0 1.0115 2.76

, fi(xi) =

−Diθi − Gi(θi), and ωi = R(ψi)bi, Di =

 2 0 0
0 7 0.1
0 0.1 0.5

. The unknown nonlinear func-

tion vector and the bounded disturbance in follower systems are chosen as Gi(xi) =

[−0.13xi4x
2
i5,−0.24xi5xi4,−0.1xi6xi4]

T
, ωi = [0.2 sin(0.6t) cos(t), 1.9 sin(t) cos(0.8t),−2.2

cos(t) + 0.5 sin(t)]T . The input reference signal of the leader system is selected as

s(t) =


[0; 0; 0], 0 < t ≤ 20[
30; 30;

π

5

]
, 20 < t ≤ 40

[0; 0; 0], 40 < t ≤ 60

(30)

In the light of Definition 2.2, the similar matrices between the leader and each sub-
system in followers can be calculated as J0 = I6×6 and Ji = J0, the other similar matrix
Ki is picked such that the matrix Ā = (A+BKi) satisfies the condition of Hurwitz matrix
as

Ki =


−33.8625 0 0

0 −44.4109 −1.4595
0 0.2884 −3.5741

−24.1875 0 0
0 −31.8326 −1.3441
0 3.8996 −2.4424



T

On the basis of the positive matrix Q̄ = diag{20, . . . , 20}6×6, the positive matrix P is
obtained by solving the following Lyapounov function

PĀ+ ĀTP = −Q̄ (31)
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P =


31.8095 0 0 7.6190 0 0

0 31.8215 0.0001 0 7.6115 0.2066
0 0.0001 31.8217 0 −0.2065 7.6116

7.6190 0 0 18.7937 0 0
0 7.6115 −0.2065 0 18.7856 0.0002
0 0.2066 7.6116 0 0.0002 18.7859


Initial states are given as x0 = [0.8, 0.2, 1, 0, 0, 0]T , x1 = [1.2, 1.4, 1.5, 0, 0, 0]T , x2 =
[0.6, 1.7, 0.3, 0, 0, 0]T , x3 = [1.3, 0.4, 0.7, 0, 0, 0]T , x4 = [1.1, 0.4, 0.5, 0, 0, 0]T , x5 = [0.9, 0.8,
0.2, 0, 0, 0]T , x6 = [0.8, 0.6, 0.7, 0, 0, 0]T . According to the dimension of multiple marine
surface vehicles (29), the uncertain nonlinearities of six sub-systems in followers are nec-
essary to be approximated by taking advantage of some RBFNNs with 20 nodes. The
center space is defined on [−1,−1,−1,−1,−1,−1]T × [1, 1, 1, 1, 1, 1]T , and the width is de-
fined as 0.2. The parameters in controls are selected as ηw1 = 0.05I20×20, ηw2 = 0.1I20×20,
ηw3 = 0.125I20×20, ηw4 = 0.15I20×20, ηw5 = 0.175I20×20, ηw6 = 0.2I20×20, αw1 = 0.01I20×20,
αw2 = 0.02I20×20, αw3 = 0.03I20×20, αw4 = 0.04I20×20, αw5 = 0.05I20×20, αw6 = 0.06I20×20.
The initial values of coupling among follower sub-systems are selected as c1(0) = 0.7,
c2(0) = 0.2, c3(0) = 0.6, c4(0) = 0.3, c5(0) = 0.5, c6(0) = 0.6, with ηc1 = 0.1, ηc2 = 0.2,
ηc3 = 0.3, ηc4 = 0.4, ηc5 = 0.5, ηc6 = 0.6, αc1 = 0.03, αc2 = 0.09, αc3 = 0.07, αc4 = 0.08,
αc5 = 0.04, αc6 = 0.01. Under the condition of diverse input references for three different
periods of time (31), the simulation results of tracking reference are depicted in Figures
5 and 6.
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Figure 5. (color online) (a) Time response of follower states xi1 and leader
x01; (b) time response of follower states xi2 and leader x02; (c) time response
of follower states xi3 and leader x03; (d) time response of follower states xi4
and leader x04; (e) time response of follower states xi5 and leader x05; (f)
time response of follower states xi6 and leader x06
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Figure 6. (color online) (a) The coupling strength among follower multi-
agent systems; (b) the norm of estimation weight in the RBFNNs control

From Figure 5, although the input reference of leader system is changed with different
time periods, it is known that good tracking performances still can be kept, the corre-
sponding of position in each sub-system is described in Figures 5(a)-5(c), and the velocity
tracking of the each state also can be maintained in Figures 5(d)-5(f). The coupling
strengths adaptive tend to be stabilized at zero domain that are shown in Figure 6(a),
and the norms of estimation weight vector are also bounded as the descriptions in Figure
6(b), with which all signals in the closed-loop system satisfy the condition of UUB.

Example 4.3. The following harmonic oscillator is considered as leader system (1):

A0 =

[
0 1
−1 0

]
, B0 =

[
0
1

]
, K0 =

[
−1 0

]
, s(t) = 0

The initial state is chosen as x0(0) = [1, 2]T , the state trajectories of dynamical leader
system are shown in Figure 7(a). The trajectories of the two states in leader system are
exhibited as the phase plane in Figure 7(b).
In this example, the different matrices in each heterogeneous agent of the followers are

listed as A1 =

[
0 1
1 0

]
, A2 =

[
0 1
−2 −1

]
, A3 =

[
0 1
−1 1

]
, A4 =

[
0 1
−1 2

]
, A5 =[

0 1
−2 −1

]
, A6 =

[
0 1
−1 −1

]
, Bi = B0 (i = 1, 2, 3, 4, 5, 6), fi = xi1x

2
i2 + xi2 sin(xi1),

ω1(t) = 0.3 sin(t) cos(2t), ω2(t) = 0.9 sin(2t) cos(t), ω3(t) = 1.2 cos(t) + sin(t), ω4(t) =
0.5 sin(3t) cos(5t), ω5(t) = cos(2t) + sin(4t), ω6(t) = 0.6 cos(t) + sin(3t). We know that
ω̄1 = 0.3, ω̄2 = 0.9, ω̄3 = 2.2, ω̄4 = 0.5, ω̄5 = 2, ω̄6 = 1.6. With these known matrices in
this example, the distributed adaptive control in [24] will be invalid because it only can
be used to the identical matrix in every agent, but this example is proposed with different
matrices. Obviously, compared with [24], the proposed control method in this paper has
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Figure 7. (a) Phase-plane diagram of the harmonic oscillator; (b) states
time response of the harmonic oscillator

some novel advantages. Besides that, it is noted the similar information between each
multi-agent system and the leader system as shown in Definition 2.2, and then these

similar elements about matrices or vectors can be obtained as J0 =

[
1 0
0 1

]
, Ji = J0,

F0 = r, F1 =
[
−3 0

]
, F2 =

[
0 1

]
, F3 =

[
−1 −1

]
, F4 =

[
−1 −2

]
, F5 =[

0 −1
]
, F6 =

[
−1 1

]
. The six initial state vectors in follower sub-systems are

provided as x1 = [1.1, 1.8]T , x2 = [1.4, 2.2]T , x3 = [0.5, 1.6]T , x4 = [0.6, 1.5]T , x5 =
[0.8, 1.7]T , x6 = [1.2, 0.7]T . The original values of the coupling strength are chosen as
c1(0) = 0.2, c2(0) = 0.6; c3(0) = 0.9; c4(0) = 0.3; c5(0) = 0.8; c6(0) = 0.5. Six RBFNNs
are utilized to compensate for the six unknown nonlinear functions of the each sub-system
in followers, for each RBFNN, 20 nodes are chosen with center space [−1, 1]T × [−1, 1]T ,
and the width and other parameters in adaptive laws are chosen as Example 4.2. Applying
the designed control scheme, the simulation results are depicted in Figure 8.
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Figure 8. (color online) (a) Time response of follower states xi1 and leader
x01; (b) time response of follower states xi2 and leader x02; (c) time response
of coupling strength; (d) the estimation weight norm in the RBFNNs control
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Although the multi-agents in followers are heterogeneous, the two figures (a) and (b)
in Figure 8 show that the two states of each multi-agent system in follower can track the
dynamical behavior of the given leader system with good tracking. Figure 8(c) describes
the time response of the couplings strength that all can be ensured to be bounded, and
the estimation weight vectors in RBFNNs can be guaranteed to be UUB as shown in
Figure 8(d).

5. Conclusions. A distributed RBFNN control scheme is designed to track the dynam-
ical behavior of leader system for follower multi-agent system with similar characteristics.
The proposed distributed controls are constructed by the series of similar matrices or vec-
tors, and the stabilization criteria are derived by the design control gain of linear feedback
and robust terms of the unknown external disturbance with bounded. The effectiveness
of the control scheme has been verified by three kinds of examples. In future, the control
design for multi-agent systems with different dimensions is our further work.
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