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ABSTRACT. For path planning of mobile robots in static environment, the traditional
Q-learning algorithms suffer from slow convergence speed, difficulty in converging to the
optimal solution, and poor generalization ability, etc. To solve this problem, an improved
Q-learning algorithm is presented. For the slow convergence, this paper 1) modifies the
discount rate, learning rate and other parameters to promote the accuracy of value up-
dating; 2) introduces single-chain backtracking algorithm to improve the learning speed
of agent; 3) designs Q-learning algorithm based on single-chain set to solve the invalid
state loops in single-chain; 4) combines the artificial potential field method and the shared
single-chain library to enhance the target guidance in the environment exploration of the
agent. To solve the problem that the agent converges too fast in some specific states
and may converge to mon-optimal solutions, a movel exploration rate is designed, and
the reward function is modified. To improve the generalization ability of the traditional
Q-learning algorithm, a new Dyna-2 algorithm is designed. Finally, the potential of the
improved Q-learning algorithm proposed is verified by comparison experiments under four
stmulation environments.
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1. Imtroduction. Path planning is an important research direction of mobile robot and
the key to achieving the navigation tasks, that is, mobile robots can independently explore
a smooth and collision-free path trajectory from the initial position to the target position.

Traditional path planning algorithms include A* algorithm [1], artificial potential field
method [2], Dijkstra algorithm [3], fast expanding random tree method [4], etc. These
algorithms are used to solve the path planning in known environment and are easy to
implement, but robots have poor exploration ability in path planning, and they are easy
to fall into the local optimum.

According to the training methods, the path planning of mobile robot can be divided
into supervised learning, unsupervised learning and reinforcement learning (RL). Both the
supervised learning and the unsupervised learning need a large amount of prior knowledge.
Otherwise, it is not possible for them to conduct a good path planning. Reinforcement
learning is an artificial intelligence algorithm that does not need prior knowledge, but
directly carries out trial-and-error in the environment to obtain feedback to optimize the
strategy. It is also capable of autonomous learning and online learning. Therefore, the
RL has gradually become a research hotspot in path planning in unknown environment
of the mobile robots [5-8].

As a classical representation of the RL, Q-learning has achieved wide applications in
the path planning of the mobile robots. For example, for the obstacle avoidance of an
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autonomous quadrotor, Ou et al. [9] used a dueling double deep recurrent Q-learning
to eliminate the adverse effects of the on-board monocular camera’s limited observation
capacity while choosing practical obstacle avoidance action. Li et al. [10] used a deep Q-
learning network (DQN) to continuously interact with the visually simulated environment
to obtain experience data, so that the agent can learn the best action strategies in the
visual simulated environment. Moreover, the artificial potential field (APF) algorithm
is adopted to promote the action space and reward function of the DQN algorithm. Kon-
toudis and Vamvoudakis [11] proposed an online kinodynamic motion planning frame-
work with asymptotically optimal rapidly-exploring random tree and continuous-time Q-
learning. A model-free Q-based advantage function was formulated and integral RL was
used to develop tuning laws for the online approximation of the optimal cost and the opti-
mal policy of a mobile robot. Jin et al. [12] designed an event-driven recurrent Q-learning
to focus on the motion planning of agents towards intersection scenarios to conclude a
sample path with safety and efficiency. Jiang et al. [13] designed a novel approach based
on deep Q-learning with experience replay and heuristic knowledge, to address the path
planning and obstacle avoidance of the intelligent robots. A neural network was used to
resolve the “curse of dimensionality” problem of the Q-table in RL. Heuristic knowledge
was used to help the robot to avoid blind exploration and provide more effective data for
training the neural network.

Though the Q-learning algorithm has achieved wide applications in the path planning
of the mobile robots, there are still some drawbacks existing in the traditional Q-learning
algorithm, such as slow convergence speed, long planned path, and poor generalization
capacity. Many researchers have attempted different methods to solve these problems
[14-18]. Although these methods have achieved certain performance, unfortunately, they
only address one or two of the drawbacks well. For example, Yao et al. [17] combined
improved black-hole potential field and reinforcement learning to solve the local minimum
problem, without considering other drawbacks. Zhao et al. [18] proposed the experience-
memory Q-learning algorithm to deal with the problem of slow convergence speed and long
planned path, and due to the experience-memory table, its generalization ability is limited.
Therefore, new algorithms are still needed to solve these drawbacks simultaneously.

Bearing this in mind, this paper proposed a novel improved Q-learning algorithm to
solve the slow convergence speed, and poor generalization capacity. Firstly, in order to
promote the convergence speed of the traditional Q-learning algorithm, this work 1) up-
dates the learning rate and discount rate, and introduces the single-chain backtracking
algorithm; 2) develops Q-learning algorithm based on single-chain set to deal with the
invalid state loops in single-chain; 3) designs an algorithm to share a single-chain library
under multiple training episodes; 4) introduces the APF method, and integrates the ap-
proach based on the shared single-chain library to achieve sub-goals, to promote the target
guidance in the environment exploration of the robots. Secondly, to solve the drawback
that the robot converges too fast in some specific states and possibly converges to local
optimum, a novel exploration rate based on the number of paths is designed, and a re-
ward function is designed. Thirdly, to improve the generalization ability of the traditional
Q-learning algorithm, a new Dyna-2 algorithm is designed. Finally, four simulations are
designed to demonstrate the potential of the improved Q-learning algorithm proposed in
this paper.

Section 2 explains the theory of the single-chain backtracking Q-learning algorithm.
Section 3 and Section 4 design the Q-learning algorithm based on the single-chain set
and the SSQ-learning with APF algorithm, respectively. Section 5 and Section 6 explain
how to improve performance based on the path number and the generalization ability of
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traditional Q-learning algorithm, respectively. Section 7 conducts the simulation experi-
ment and analyzes the results. Section 8 concludes the research and points out the future
research topics.

2. Single-Chain Backtracking Q-Learning Algorithm. Single-chain backtracking
Q-learning algorithm is based on the idea of backtracking and single-chain. The pur-
pose of this algorithm is to improve the convergence speed of the reinforcement learning.
According to the characteristics of different states with different convergence priorities,
it can make the states near the target to converge earlier, provide necessary conditions
for the convergence of other states, improve the lag of Q-learning through the idea of
backtracking, and update more values at a time.

The state experienced by the robot in the process of path planning from the start
state to a certain state is regarded as a chain. The start state is the first element of the
single-chain, the next state of the start state is the second element of the single-chain,
and so on. Until reaching the current state of the agent, the formed state chain is called
a single-chain.

The single-chain backtracking algorithm uses the single-chain to transfer and backtrack
data. Through the circular recursion, the influence of a decision is iteratively updated to
the previous state, so as to avoid meaningless search and speed up the convergence rate.

2.1. Algorithm description. The core of the single-chain backtracking algorithm is to
introduce the memory function. By recording the relevant parameters, Q value of the
recorded state-action pair is updated iteratively during the operation of the agent, so as
to accelerate the convergence rate. Memory matrix can be defined as follows.

Definition 2.1. M(t) < (s,a,r, \), where s is the state of the agent at time t, a is the
corresponding action decision, r is the corresponding reward obtained by the agent taking
action a in this state, and X\ is the learning rate.

In single-chain backtracking algorithm, the required data are recorded into the memory
matrix according to the running state of the agent, and then the Q value is updated
according to the memory matrix. The update formula is denoted as follows:

fork=t—1,t—2,...,2,1

Qes1(8ky ar) + (1 — Ae)Qu(5k, ar) + Ap(r + 7" maxa,ea Qeg1(Skt1, ar))
until £ =1

end

In updating the QQ value corresponding to the latest state-action pair at time ¢, the
previously recorded states in the single-chain will be updated together, so as to obtain a
higher convergence speed. This algorithm will become the basis for calculating Q value
in Section 3.

2.2. Setting the learning rate. Considering that in daily learning activities, if peo-
ple repeat learning the same knowledge, the amount of knowledge obtained by repeated
learning is actually decreasing because they already know the knowledge. Therefore, the
learning rate is set as a function that decreases with the increase of the training episodes:

A(s,a) = Ao/ v/ episodes (1)

where )\, is a constant. When the training episodes episodes increase, the learning rate
decreases gradually, and the QQ value tends to maintain the original value and accelerate
the convergence speed of QQ value.
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3. Q-Learning Algorithm Based on Single-Chain Set. In the above single-chain
backtracking algorithm, the state chain stored in the single-chain has not been processed,
which will produce a state loop composed of many repeatedly experienced invalid states.
For example, even if there are only three states (s; start state, s, intermediate state, s3
target state), the following may occur:

S1—7S82—>81 —>82—>S81 >89 —>81 >S9 —> 81 — Sg2 — S3

If the single-chain backtracking algorithm is still used for direct calculation, it may
affect the convergence speed of () value in some cases. Therefore, a Q-learning algorithm
based on single-chain set is designed to solve the state loop and update the Q value.

Definition 3.1. In a training episode, the agent starts from state sqg to target state s, adds
all experienced state s in reverse order into a single-chain, and the resulting single-chain is
defined as state-chain(s, sg), which records the states that the agent has experienced from
the wnitial state sg to the target state s in reverse order. The single-chain set is generated
from the state chain. Fach single-chain in the state-set is the shortest acyclic state path
from one state to the target state s, the single-chain set contains all the shortest acyclic
state paths that can be found from the state chain, and the single-chain set is denoted as
state-set(s).

When the Q) value of state s is updated, the update can be propagated to all the states
the agent has experienced in reverse order along each single-chain stored in the single-
chain set, which not only solves the problem that the traditional Q-learning algorithm
has too few ) values to update in one iteration, but also solves the problem of invalid
state loops in the single-chain backtracking algorithm.

3.1. Algorithm for generating single-chain set.

Input: state-chain

Output: state-set

1. Initialize an empty single-chain set in which there is currently only one empty single-
chain, called the current chain [; Define that the position of the currently added element
in [ is k, and the initial value of k is 1. s is the state, and its initial value is the first
element of the current recorded state-chain, that is, the state the agent currently reaches.

2. From the first element to the last element in the state chain, determine whether
element s already exists in the single-chain set:

(1) if element s does not exist anywhere in the single-chain set, then add the element
s to the position labeled £ in the current chain, k plus 1;

(2) if element s already exists in the single-chain set, then define ["* as the single-chain
with the smallest subscript of s in the state-set (since the single-chain in the state-set
is also stored in reverse order, the smallest subscript of s means that s is the closest to
the current state of the agent). The currently judged element s = s;, and there are the
following two single-chain containing s7 in the current state-set:

S1 € Sg < S4 < S5 < S7 < Sy

S1 € Sg < Sg < S7 < S5

Then the subscript of s is 5 in the first chain and 4 in the second chain. It can be
seen that s is closer to the current position s; in the second chain, and [™ should be the
second chain.

Then index is defined as the subscript position of the state s in {". In this example,
index = 4. Depending on the size of k and index, there are three cases:

i) k > index

The current chain [ is s; — S3 < Sg < 84 < S5 < (s7k)
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The subscript of s to be added in the current chain is 6, which is larger than the
subscript 4 of s in single-chain, that is, when moving from the state s to the first element
s1 in the state chain (i.e., the current position of the agent), the path moving according to
the single-chain [ is shorter than the path moving according to the current chain, which
means the path stored in the single-chain [ from s to s; is better, so the segment of the
current chain from s to s; has no necessity to save.

So generate a new current chain I’, move the elements from s; to s in {™ into the new
current chain I, the old chain [ only saves its path from the previous state s to the current
state of the agent, and deletes the other states in [. The new single-chain can be depicted
as follows:

S1 4 S3 ¢ Sg < 84 < S5 (former current chain)

S1 < Sg < Sg < S7 < (k) (new current chain)

k < length of current chain [’ after change.

ii) k = index

This indicates that the path from s to the current state s; of the agent may have
another solution with the shortest path, so the state s is directly added to the current
chain, k =k + 1.

iii) k < index

This situation shows that there is a path shorter than any single-chain stored in the
state-set from s to sq, as follows:

S1 € S < Sg < S7 < S5(lm)

$1 < S3 < (87k) (current chain)

Similar to the first case, the first single-chain [™ started from s; to s; is no longer
necessary to be saved.

Create a new chain, copy the elements from s; to s; in the current chain into the new
chain, and move the elements from the next element of s; to the last element in [ into
the new chain. The processing results can be depicted as follows:

§1 < S Sﬁ(lm)

S1 ¢ 83 < S7 < S5 (new chain)

S1 ¢ 83 < S7 < (k) (current chain)

When all the states in the state chain are processed, the generated state set is the ex-
pected shortest loop free path set. Every time when the agent moves, the reward obtained
will be successively transmitted to each single-chain according to the single-chain set, so
as to update more Q values at a time.

3.2. Q-learning algorithm based on single-chain set (set-Q-learning or SQ-
learning). Place the agent in the initial state, after the agent moves to a state ¢, it
first updates the corresponding Q-value according to the traditional Q-learning algorith-
m. If s’ is the end state, it calculates the path state chain that the agent travels to form
a single-chain set, and updates the Q-value according to the following algorithm.

Algorithm 3.1. SQ-learning algorithm
1: Input: state-set
2: Output: updated Q values
3:1=2
4: when 7 < the length of [, do:
5: prestate = 1(i);
6: state = [(i — 1);
7: a* = action taken from prestate to state;
8: r = reward obtained by taking action a* at state;
9: A(episodes) = learning rate;
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10: Q(state,a*) < (1 — N)Q(state, a*) + A(r + v* max,ec 4 Q(prestate, a))
11: 1 =141
Through this algorithm, the agent can update more  values by using local state
knowledge in the process of exploration, which speeds up the learning speed.

3.3. Algorithm of share single-chain library under multiple episodes (share-
set-Q-learning or SSQ-learning). If the single-chain set generated by the agent in
multiple training episodes can be shared, each time the agent updates the Q value after
reaching the end state, it can update more single-chains than that of the agent in a
training episode without shared single-chain library, and the single-chains obtained will
continue to increase with the increase of the training episodes. As a result, each time the
agent reaches the end state, more Q value will be updated.

Definition 3.2. Share-set is the single-chain library shared by the agent under different
training episodes.

The algorithm for generating share-set can be depicted as follows.

Algorithm 3.2. Algorithm for generating share-set
1: Input: state-set, the original share-set
2: Output: new share-set
3: When the agent reaches the end state, calculate the state-set according to the record-
ed state-chain;
4: For each single-chain in the state-set obtained in this run:
5: Check whether the single-chain already appears in the share-set:
6: If it already exists, skip the single-chain to the next cycle;
7: If it does not exist, add the single-chain to the share-set.
8: Until each single-chain has been detected.

When the agent reaches the end state, the Q value is updated according to the share-set,
so as to improve the update speed of the QQ value.

3.4. Calculating sub-targets based on the share-set. According to the above al-
gorithm, we have obtained the share-set of the agent under multiple training episodes,
and the share-set contains the path situation experienced by the agent in each training
episode. With the increase of the episodes, when path of the agent gradually tends to
be stable, because all the single-chains stored in the share-set are non repetitive states,
the probability that a state in the map is experienced by the agent can be calculated,
so as to obtain the value of the state and which states in the map are more important
can be determined, then sub-targets are set to make the path search of the agent more
purposeful.

Assuming that the state value threshold that can be regarded as an important state is
valuey,, according to the state value calculation formula:

value = appear-times/total-line-num (2)

The value of each state in the shared single-chain library can be known according to
this formula, where appear-times denotes the occurrence times of a state in the share-set,
and total-line-num is the total number of single-chains in the share-set. If the value of a
state reaches the set threshold, it will be set as a sub target on the map. When the agent
reaches this state, a positive reward will be given to the agent to encourage it to move to
more important states. When the agent reaches a sub target, the reward is set as follows:

reward = basz’c—reward/ Vd (3)
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where basic-reward represents a basic reward value, which is a constant, and d represents
the distance from the sub target the agent reached to the end state. In this way, when
the agent reaches the sub target closer to the end state, it can obtain greater reward, so
as to guide the agent closer to the end state.

Because the shared single-chain library is dynamic, the sub targets are also dynamic. In
the former several episodes, basically, all the actions of the agent are exploration actions.
It is obviously inappropriate to calculate the sub target at this time. Therefore, the episode
of the agent starting to calculate the sub target is set to 10, that is, the agent starts to
look for the sub target after the 10th training episode. It is worth noting that to start
calculating the sub target from the tenth training set is the best setting in our current
research. Readers can try other settings according to their concrete researches.

4. SSQ-Learning with APF (Share-Set-Potential-Field Q-Learning or sspfQ-
Learning). In the traditional Q-learning algorithm, the agent does not have any under-
standing of the environment at the beginning of the environment exploration and selects
actions completely randomly, so the convergence rate of QQ value is slow. In order to make
the agent have certain understanding of the environment when it begins to explore the
environment and reduce the randomness of environment exploration, the APF method
is introduced to generate the initial value of the Q table. In addition, this paper also
combines the sub target with the APF algorithm to make the sub target produce a small
attraction to the agent, and provides a certain guidance for the agent without destroying
the gravitational potential field generated by the end state.

4.1. Algorithm introduction. The Q table is initialized according to the start position
of the agent, target position and obstacle position in the environment. The algorithm can
be depicted as follows.

The APF generated by the target point can be set as

Q(8z, all-action) = Cse + py * d™ (Sz, Send) (4)

where () is the QQ value corresponding to all actions in state s,, C. is the gravity constant
of the sub target, which can be set according to the map size, m is the APF factor, p; is
the gravitational gain factor, and d(s,, Senq) represents the Euclidean distance from state
S; 1O Send-

The repulsive potential field generated by the obstacle can be set as

1 1

Q(Sm7 all-action) = Dr * <a - d_0> d S do (5)
0 d > dy

where p, is the positive proportional gain factor of the repulsion potential field, dj is the
maximal influence range of the repulsion potential field, beyond which the obstacle will
no longer generate repulsion, and d is the distance from any position around the obstacle
to the obstacle.

The final APF only needs to add the values generated by the gravitational potential
field and the repulsive potential field. After initializing the Q table, the agent can have
a certain understanding of the environment at the beginning of exploration, so as to
accelerate the convergence.

4.2. APF combined with the sub target. After obtaining the sub target, the explo-
ration of the agent can be more purposeful by adding the APF to the sub target, so as
to improve the learning speed. The APF of the sub target will only generate between
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the start point and the sub target point, so as to avoid unexpected influence on the APF
generated by the final target point. The algorithm can be depicted as follows.

Algorithm 4.1. APF combined with sub target
1: Input: distribution of sub targets in the map
2: Output: updated Q table
3: If state s is a sub target, do:
4: For each state s, in the rectangle formed with the start state and sub target as
vertex:
5: Calculate the distance d between s, and the sub target s;
6: Calculate the distance d, from the new state s, , after s, takes an action a,
to the sub target s;
7: If d, < d, it indicates that taking action a, at the state s, can make the agent
closer to the sub target, and update the QQ value of the state-action pair with the following
formula:

Q(8z,a:) = Q(84,a5) + Cye + p * di (6)
8: Until all sub target states have been experienced.

In Equation (6) d,, is the distance between the state s, and the sub target; p represents
the gravitational parameter of the sub target, and the calculation formula is set as follows:

p= _CSC/D (7)

where D is the distance from start state to the sub target. According to the formula,
in the rectangular area formed by the sub target and the start state, the closer of the
agent to the sub target after an action is taken in a certain state, the greater the positive
reward can be obtained for the corresponding state-action pair. At the same time, because
the positive update of Q value given by the algorithm only affects the state-action pair
between the sub target and the start state, it will not cause the sub target to become a
gravitational vortex and drag down other actions of the agent after passing through the
sub target.

5. Improved Performance Based on the Path Number (Path-num-based-€). In
the previous algorithm, we accelerate the learning of the agent by adding path backtrack-
ing and sub targets. Due to the random exploration of the agent, the final path of the
agent may not be the optimal solution after Q-value convergence. To this end, the follow-
ing improvements are made to the e-greedy strategy used in the traditional Q-learning
algorithm.

5.1. Improving the exploration rate. In the above algorithms, the e-greedy strategy
is adopted and the exploration rate is set to € = 1/episodes. With the increase of the
training episodes, the exploration rate will gradually drop to close to 0. Because this
paper uses the SSQ-learning algorithm, compared with the traditional Q-learning, it needs
more exploration to expand the share-set to make the calculation of sub targets more
accurate. Therefore, this paper improves the exploration rate based on the number of
the path solutions. In this algorithm, the exploration rate does not decrease inversely
with the increase of training episodes, but increases or decreases according to the number
of single-chains from the start state to target state extracted from shared single-chain
library. Because the algorithm requires only the number of paths, only the single-chain
from the initial state to the target state in share-set will be considered.
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The algorithm dynamically adjusts the exploration rate of the agent, according to the
number of different single-chains from the start point to the target point in the share-set,
the specific algorithm can be depicted as follows.

Algorithm 5.1. Update the exploration rate based on the path solutions
1: Input: share-set
2: Output: updated exploration rate €
3: For each single-chain in the single-chain library, do:
4: If the single-chain is from the initial state to the target state, do:
5: Check whether the same single-chain already exists in the solution set:
6: If it does not exist, add the single-chain to the solution set, result = result+1;
7: If it already exists, the total number of solutions remains unchanged;
8: If the single-chain is not a single-chain from the initial state to the target state, then
directly detect the next single-chain;
9: Until all single-chains are traversed;
10: Update € using the following formula:

_ €+ Steprenew * (nmin - nresult) Nyresult < Mmin (8)
€+ Steprenew * (epiSOdes/fe) Nyresult Z Nmax

where step,enew 18 the updated step, ny;, is the minimum required solution and 7,y is the
maximum required solution. These two constants can be set according to the complexity
of the map; n,esur is the number of recorded solutions, and f, is the exploration factor,
which is a constant, the larger it is, the smaller the value of € reduced each time after
reaching the highest requirement.

It can be seen from Formula (8) that the change of ¢ no longer only depends on the
change of the number of training episodes, but also needs to consider the number of paths
of the agent reaching the target state. When the number of paths is too few to meet
the nym, it will increase the exploration rate and encourage the agent to explore more
environment to obtain the optimal solution. Contrarily, when the number of solutions
reaches the n,,,x and the number of solutions is sufficient, the exploration rate will reduce
to obtain a higher convergence speed, which not only ensures the convergence speed, but
also ensures that the agent is more likely to obtain the optimal solution.

5.2. Improving the reward and discount rate. In the traditional Q-learning algo-
rithm, the reward and discount rate v are both set as constants, and the incentive for the
agent to move towards the end point is not enough to make the agent converge to the
optimal solution with high probability. Therefore, the reward and the discount rate - are
improved.

When the agent moves in the map and does not reach the target point, the improved
reward and v can be defined as follows:

reward = —d(Spew, @) * kq 9)
v =Cy — d(Spew, @) * k (10)

where d(Spew, a) is the distance from the new state s, to the target point after taking
action a from a state s, ky is the attenuation factor of the reward varying with the
distance, C, is a constant, and k, is the attenuation factor of the v varying with the
distance. According to these two Formulas (9) and (10), the reward and 7 obtained by
the agent when taking different actions at different positions are dynamic, and the reward
update encourages the agent to move closer to the target point. The update of v makes
the agent expect more future benefits when it is close to the target point, and reduces the
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impact of negative reward, so as to make the path of the agent tend to be the shortest
and obtain the optimal solution.

6. Promoting the Generalization Ability of Traditional Q-Learning Algorithm.
In the former two parts of this paper, the slow convergence speed and low probability of
convergence to the optimal solution of the traditional Q-learning algorithm are improved,
but the insufficient generalization ability of the Q-learning algorithm has not been solved.
This section adopts the improved Dyna-2 algorithm, which learns from the model, and
combines the agent’s experience in the real environment with the planning experience
in the virtual environment, to make up for the generalization ability of the traditional
Q-learning algorithm.

However, the path planning task in this work is carried out on the basis of the known
environment model, that is, the agent is aware of both the state transition probability
p (environmental dynamic characteristics) and the immediate reward R. Therefore, the
virtual environment model no longer needs to be established by interaction with the real
environment, and can be directly replaced by the real environment, and the interactive
update in the virtual environment is no longer the temporary memory @'(s,a) but the
permanent memory (s, a). Therefore, the modified Dyna-2 can be depicted as follows:

Algorithm 6.1. Modified Dyna-2 algorithm
1: Input: episodes, a, v
2: Output: @
3: Initialize the table of state-action value Q(s, a)
4: Circulation on each episode
5: Initialization: initializes s as the start state
6: Iterations on each episode
7: Search(s): Interacts in the virtual environment with state s and updates @
8: Action a is obtained through the action selection policy
9: Interact in the real world and get the reward r and the next state s
10: Q(s,a) = Q(s,a) + a(r +ymaxQ(s',d') — Q(s,a))
11: s=¢
12: Until s is the end state
13: Until the maximum number of circulations reaches

7. Experimental Results and Analysis. In order to illustrate the effect of the im-
proved Q-learning algorithm proposed in this paper, in this section, four simulation ex-
periments are executed and compared their performance in two simulation environments.

7.1. Parameter settings. The parameters of the traditional Q-learning algorithm are
set as follows.
1) Setting of the reward:

—1 Nomal movement
r =< —2 Collide with an obstacle (11)
10 Reach the target

2) Discount rate: v = 0.95.

3) Exploration rate: € = 1/episodes.

4) Learning rate: a = 0.3.

The parameters of the improved Q-learning algorithm are set as follows:

Ao in Equation (1) is set to 0.35, valuey, is set to 0.9, basic-reward in Equation (3) is
set to 1, and ps, Cy and m in Equation (4) are set to 1/30, 40 and 2, respectively. p,
and dy in Equation (5) are set to 6 and 3, respectively. step,enew; Mmin, Pmax and fe in
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Equation (8) are set to 0.05, 10, 50 and 50, respectively. kq in Equation (9) is set to 0.5,
and C, and k., in Equation (10) are set to 0.98 and 1/30, respectively. The parameters are
set and finally determined after many times trying. Namely, the performance of the current
parameter setting is optimal for the path planning of the mobile robots in this work.

7.2. Comparison of exploration strategy before and after modification. In the
first comparison experiment, the performance of different exploration strategies, i.e., the
e-greedy strategy and the improved exploration strategy based on the path number is first
compared in the first simulation environment, as shown in Figure 1(a). The experiment
results are provided in the Figure 2 and Table 1.

Figure 2 shows the number of attempts of the agent changing with its running times in
the 50 runs under the two different action selection strategies. Further, the concrete data
of the average, standard deviation, maximum and minimum of the number of attempts
in the two action selection strategies are displayed in Table 1.
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FIGURE 1. The first environment (a) and the second environment (b) used
in the simulations
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FIGURE 2. Number of attempts changing with the running times of the
agent in the two different exploration strategies
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TABLE 1. Performance comparison between the original e-greedy strategy
and the improved exploration strategy based on the path number

Algorithm Average | Standard deviation | Max | Min
Path-num-based-e¢ | 312.92 16.07 389 | 280
e-greedy 350.74 10.22 380 | 336

In Table 1, the average, standard deviation, max and min denote the average, standard
deviation, maximum and minimum of the training episodes when the algorithms converge.
Table 1 shows that after the exploration strategy is updated, the convergence speed of
the traditional Q-learning algorithm has been enhanced. That is, the average training
episodes decreases form 350.74 to 312.92 in the 50 runs. At the same time, since the
exploration rate based on the path number is adopted, when the agent takes the recorded
action strategy for many times, the exploration rate may increase suddenly, resulting in
unstable convergence speed. That is, the standard deviation of the training episodes when
the algorithms converge increases from 10.22 to 16.07.

7.3. Comparison between traditional Q-learning and sspfQQ-learning. In the sec-
ond simulation experiment, the performances of the traditional Q-learning and the sspfQ-
learning algorithms are compared and the experiment results are displayed in Figure 3
and Table 2.
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FIGURE 3. Number of attempts changing with the running times (a) and
the iterations changing with the trial (b) between the traditional Q-learning
algorithm and the sspfQ-learning

TABLE 2. Performance comparison between the traditional QQ-learning al-
gorithm and the sspfQ-learning

Algorithm | Average | Standard deviation | Max | Min
Q-learning 350.74 10.22 380 | 336
sspfQ-learning | 55.54 11.78 111 | 42

Similarly, in Table 2, the average, standard deviation, max and min denote the same
means as those in Table 1. From Table 2, we can see that after using sspfQ-learning, the
convergence speed of agent with the sspfQQ-learning algorithm has been greatly improved
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due to the use of chain updating method and the introduction of APF algorithm to
speed up the learning speed of agent. That is, the average of the training episodes after
the algorithm converges decreases from 350.74 to 55.54. The experimental results show
that the upgraded Q-value updating method and the potential field introduced by APF
can greatly accelerate the convergence speed of the Q-value. The reason is essentially to
increase the number of QQ values updated by the agent after completing an episode, and
add a clearer goal orientation for the agent.

7.4. Comparison between sspfQ-learning and Dyna-sspfQ-learning. In the third
experiment, the performances of the sspfQ-learning and Dyna-sspfQQ-learning algorithms
are compared and the corresponding results are displayed in Figure 4 and Table 3.
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FIGURE 4. Number of attempts changing with the running times (a) the
iterations changing with the trial (b) between the sspfQ-learning and the
Dyna-sspfQ-learning

TABLE 3. Performance comparison between the sspfQQ-learning and the
Dyna-sspfQ-learning

Algorithm Average | Standard deviation | Max | Min
sspfQ-learning 55.54 11.78 111 | 42
Dyna-sspfQ-learning | 41.30 6.21 62 | 36

Similarly, in Table 3, the average, standard deviation (SD), max and min denote the
same means as those in Table 1. From Table 3, we can see that after the introduction
of virtual environment, the convergence speed of the Dyna-sspfQ-learning algorithm is
improved because of the Q value updated in the virtual environment. Namely, the average
of training episodes after the algorithm converges decreases from 55.54 to 41.30. At the
same time, the convergence speed is more stable since the agent has explored and learned
the map many times in the virtual environment and has a better understanding of the
whole map. Namely, the standard deviation of the training episodes after the algorithm
converges decreases from 11.78 to 6.21.
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7.5. Improvement of generalization ability with the improved Dyna-2 algo-
rithm. In the fourth experiment, the performance of the traditional Q-learning and the

improved Dyna-2 algorithm are compared and the corresponding results are displayed in
Figure 5 and Table 4.
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FIGURE 5. Number of attempts changing with the running times (a) the
iterations changing with the trial (b) between the Q-learning and the Dyna-
Q-learning

TABLE 4. Performance comparison between the Q-learning and the Dyna-
Q-learning

Algorithm Average | Standard deviation | Max | Min
Q-learning 75.94 28.20 147 | 30
Dyna-Q-learning | 69.72 18.49 122 | 30

During the experiment, firstly, the traditional Q-learning and the improved Dyna-2
algorithms are used to plan the path in the simulation environment 1, as shown in Figure
1(a). After the two algorithms converge, the simulation environment is changed to scene
2, as shown in Figure 1(b), and the path planning of the above two algorithms is continued
to verify the generalization ability of the improved Dyna-2 algorithm.

The results of the two algorithms in simulation environment 1 are displayed in Figure
5(a). Using the Q table obtained in first simulation scene, two algorithms are used to
train in the simulation environment 2, and the corresponding results are shown in Figure
5(b).

Similarly, the corresponding experiment results are calculated and displayed in Table
4.

From Table 4, we can see that after using the improved Dyna-2 algorithm, the average
of training episodes of the agent reduces from 75.94 to 69.72, and the corresponding
standard deviation is also reduced from 28.20 to 18.49, indicating that after using Dyna-
2 algorithm, the adaptability of agent to maps with high similarity is higher than that
of traditional Q-learning algorithm, which shows that Dyna-2 algorithm improves the
generalization ability of the Q-learning algorithm.
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8. Conclusion. Aiming at the problems of slow convergence rate, difficulty in converg-
ing to the optimal solution and poor generalization ability of the traditional Q-learning
algorithm, a novel improved Dyna-sspfQ-learning algorithm is proposed in this paper. In
view of the slow convergence speed, this paper improves the discount rate, learning rate
and other parameters of the traditional Q-learning algorithm, so as to improve the ac-
curacy of value update. Meanwhile, a single-chain backtracking algorithm is introduced,
which greatly improves the learning speed of the agent. To solve the invalid state loop in
single-chain recorded by single-chain backtracking algorithm, an improved SSQ-learning
algorithm based on single-chain set is designed to share the single-chain library under
multi training episodes, by updating the QQ value of the saved state in the shared single-
chain library, and thus the convergence speed of the SSQ-learning is greatly improved. At
the same time, in order to solve the random exploration of the agent in the early stage,
the APF is introduced and combined with the sub targets obtained based on the shared
single-chain library, to enhance the goal guidance of the agent. In order to solve the prob-
lem that the agent may converge to a non optimal solution due to the fast convergence
speed in some cases, an improved exploration rate based on the path number is intro-
duced. Finally, the improved Dyna-2 algorithm is designed to address the generalization
capacity of the traditional Q-learning. Effectiveness of the improved Q-learning algorithm
is verified by four comparative simulation experiments in two scenes.

Path planning of mobile robot in unknown environment is a complex problem. Although
this paper puts forward some improvements, there are still many deficiencies to be further
studied.

1) The algorithm in this paper still has some shortcomings. For example, although the
improvement of exploration strategy increased the convergence speed, it also increased the
instability of the training times in each episode. In addition, the adoption of single-chain
set algorithm may lead to the excessive computation burden under complex maps.

2) This paper only carries out the simulation experiment of the improved algorithm,
without applying the algorithm to the mobile robot. Next, experiments should be carried
out on mobile robots to further demonstrate the potential of the proposed algorithm.

3) In the path planning problem in unknown environment, this paper only discusses
the static environment, while the path planning problem in dynamic environment and
irregular obstacles still needs further research.
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