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Abstract. Learning from multi-class imbalance data is a common but challenging task
in machine learning community. Oversampling method based on Generative Adversarial
Networks (GAN) is an effective countermeasure. However, due to the scarce number of
trainable minority samples, existing methods may produce noise or low-quality minor-
ity samples; besides, they may suffer from mode collapse. To address the issues, we
propose an Auxiliary Classifier Wasserstein Generative Adversarial Networks (ACW-
GAN) for imbalanced dataset. An independent auxiliary classifier is introduced to help
discriminator determine whether the minority samples match the corresponding labels,
more importantly, to improve the quality of generated minority samples. Furthermore,
we use Wasserstein distance instead of Jensen-Shannon divergence in ACWGAN as the
distance measure of the probability distribution to alleviate the mode collapse. Extensive
experimental testing is performed on 16 multi-class imbalanced benchmarks and two real
imbalanced datasets in comparison with several popular oversampling approaches. The
experiment result demonstrates that our method is superior to other oversampling ap-
proaches.
Keywords: Imbalanced learning, Oversampling approach, GAN, Multi-class, Indepen-
dent auxilary classifier

1. Introduction. In the field of machine learning, classification from imbalanced data is
an important but challenging problem for research community. Imbalanced learning can
be defined as a learning problem from a binary or multi-class dataset where the certain
classes (majority classes) possess much more instances than other classes (minority classes)
[1]. Imbalanced learning has many real-world applications, such as fraud detection of
credit card [2], cancer medical diagnosis [3], computer vision [4] and protein identification
in the biomedical field [5].

Traditional classification method usually assumes the dataset is balanced. When the
dataset is imbalanced, the classifier seeking to minimize overall training errors tends to
bias toward the majority class. In this situation, the minority classes samples are easy to
be misclassified. However, the minority classes often have smaller number and higher cost
of misclassification, resulting in the standard methods performing poorly. Therefore, the
key to solving imbalanced problem is to improve the classification accuracy of minority
classes without reducing the majority class.

At present, there are three main approaches to addressing the imbalanced classification
problem: data level methods, algorithm level methods and hybrid methods. The data level
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methods balance the data distribution through oversampling [1] or undersampling [6]. The
purpose of oversampling is to increase samples for the minority class, while undersampling
reduces the samples for the majority class. The algorithm level methods directly modify
traditional algorithms to enhance the ability of them to handle the imbalance problem
[7]. Hybrid methods combine the advantages of previous two methods by simultaneously
sampling in the dataset and modifying the algorithm [8].
In this paper, what we focus is the oversampling method, which generates artificial

instances for minority classes to balance the dataset. Synthetic Minority Oversampling
Techniques (SMOTE) [1] is the standard oversampling method, and the algorithm uses
the sample in the minority class as a seed, seeks for the k-nearest minority neighbors, and
then inserts the generated sample between it and the seed sample according to a certain
ratio. Although SMOTE decreases the risk of overfitting effectively, it can also raise
the probability of overgeneration. To avoid this scenario, various oversampling methods
were proposed following the steps of SMOTE, such as Borderline-SMOTE [9], ADASYN
[10], Kmean-SMOTE [11], and MWMOTE [12]. Besides, some oversampling methods
for multi-class imbalanced dataset were proposed [13,14]. However, most above existing
traditional oversampling methods generate synthetic samples along the line segment that
joins minority class samples, and do not consider the whole data distribution.
Recently, Generative Adversarial Networks (GAN) [15] has become a popular generative

model due to its powerful ability to capture the real data distribution. Douzas and Bacao
first applied conditional GAN (cGAN) [16] as an oversampling approach to addressing
the imbalanced problem [17], and improved the performance of classification effective-
ly. The success of cGAN has inspired several improvements: Aiming at addressing the
possible mode collapse [18] and unstable training [19] in cGAN, Conditional Wasserstein
GAN with Gradient Penalty (CWGAN-GP) attempted to introduce objective function
of WGAN-GP [20] into cGAN [21]. Auxiliary Classifier GAN (ACGAN) added an addi-
tional classification output in the output player in discriminator to improve the quality of
generated samples [22]. Works like [23,24] extended the output layer of the discriminator
and applied it to handling the imbalanced image problem.
In summary, the existing GAN-based oversampling methods mainly have the following

insufficiencies. Firstly, the imbalance problem also exists in the training process of GAN,
the generator may be biased towards the majority class, resulting in poor quality of the
generated minority samples. Secondly, most of them suffer from mode collapse, and the
diversity of generated samples is insufficient.
Based on the above considerations, we propose Auxiliary Classifier Wasserstein Gen-

erative Adversarial Networks (ACWGAN) as a novel GAN model. It has an extra inde-
pendent auxiliary classifier that can help discriminator to better distinguish whether the
minority samples match the corresponding labels; in this way, the ability of generator to
generate minority samples will be enhanced. Compared with the Jensen-Shannon diver-
gence used in traditional GAN, the Wasserstein distance proposed by [19] can measure the
distance between probability distributions more smoothly. Therefore, we use Wasserstein
distance as the distance metric of ACWGAN to alleviate mode collapse in training and
increase the diversity of generated samples. The performance of ACWGAN is compared
against seven popular oversampling approaches over 16 multi-class benchmark datasets
and two real world datasets. The experimental results reveal that ACWGAN is superior
to other popular oversampling approaches.
The main contributions of the paper are summarized as follows.

• A novel GAN structure that has an independent classifier is proposed, to enhance the
ability of generator to generate minority samples with more features for classification.
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• The distance metric that measures the distribution of real data and generated data in
GAN is replaced with Wasserstein distance, which effectively improves the diversity
and quality of generated minority samples.
• Extensive experiments are performed on 16 multi-class imbalanced benchmarks and
two real imbalanced datasets in comparison of several popular oversampling ap-
proaches.

The remainder of this paper is organized as follows. In Section 2, a brief introduction of
related previous works is given. Section 3 presents our method. The experimental result
is shown in Section 4. Section 5 concludes the paper.

2. Related Works. In this section, we provide a brief summary of GAN framework and
its related variants.

2.1. GAN, cGAN and ACGAN. Generative Adversarial Networks (GAN) [15] is a
powerful generative model that has been successfully applied to image generation, super-
resolution and other fields. The idea of GAN is derived from game theory, in which a
generator G and a discriminator D are trying to outperform each other. The objective
of generator is to generate fake samples and fool the discriminator. The objective of the
discriminator is to determine whether the sample is from a real dataset or generated by
the generator. More formally, for the generator G, G(z) denotes the synthetic samples
generated by G. For the discriminator D, D(x) represents the probability that x came
from the real data. D and G play the following two-player min-max game with value
function V (D,G):

min
D

max
G

V (D,G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (1)

The generator and the discriminator update the parameters by their respective objective
functions during the adversarial learning. Finally, the discriminator cannot judge whether
the samples are real or fake, and the generator can generate realistic samples.

Since GAN cannot control the mode of generated data, conditional GAN (cGAN) [16]
introduces additional information into both generator and discriminator respectively to
guide the data generation. Hence, the objective function of cGAN is defined as Equation
(2):

min
D

max
G

V (D,G) = Ex,y∼p(x,y)[logD(x | y)] + Ez∼pz(z),y∼p(y)[log(1−D(G(z | y)))] (2)

where y is the conditional variable, and it is combined with noise z and data x as the
input of generator and discriminator respectively.

Auxiliary Classifier GAN (ACGAN) [22] is a variant of cGAN. It expands the function
of the discriminator to simultaneously distinguish real or false and classify. Therefore, the
loss function of ACGAN consists of both discriminator loss LS and classifier loss LC :

LS = E[logP (S = real|Xreal)] + E[logP (S = fake|Xfake)] (3)

LC = E[logP (C = c|Xreal)] + E[logP (C = c|Xfake)] (4)

where c denotes the class label of sample and C(c|x) denotes a probability over the class
label calculated by the classifier C in discriminator, LS is the log-likelihood of the correct
source and LC is the log-likelihood of the correct class. The discriminator is trained to
maximize LS + LC while generator is trained to maximize LC − LS.

However, as cGAN and ACGAN are extensions of GAN, they also use Jensen-Shannon
Divergence (JSD) [15] as the distance metric, so they exhibit the same problematic be-
haviors: mode collapse and unstable training [18]. It is worth noting that the problem of
mode collapse will be worse in imbalanced dataset.
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2.2. WGAN and WGAN-GP. Aiming at addressing the problems mentioned above,
Wasserstein GAN is proposed by Arjovsky et al. [19], which optimizes Wassertein distance
(also known as Earth Mover (EM) distance) rather than JSD. Compared with the JSD
that may not be able to provide useful gradients for the generator, the EM distance is not
affected by vanishing gradient, and can more appropriately measure the distance between
two distributions. Some previous works have proved that WGAN can effectively alleviate
the problem of mode collapse in GAN [20,21]. The definition of EM distance is provided
in Equation (5).

W (Pr,Pg) = inf
γ∈Π(Pr ,Pg)

E(x,y)∼γ [‖x− y‖] (5)

where Π (Pr,Pg) denotes the set of all joint distributions γ(x, y) of real data distribution
Pr and generated data distribution Pg, and W (Pr,Pg) is defined as the minimum cost
of transporting mass from Pr into Pg. However, Equation (5) cannot be solved directly,
the K-Lipschitz functions are used to determine the supremum. Equation (5) could be
redefined as

W (Pr,Pg) =
1

K
sup

||fw||L6K

Ex∼Pr
[fw(x)]− Ex∼Pg

[fw(x)] (6)

where K denotes K-Lipschitz for constant K, and fw(x) denotes the weight of discrimi-
nator. To ensure ||fw||L ≤ K, the weights of the discriminator are clipped into [−c, c].
The new loss function of discriminator is defined as Equation (7).

L = Ex∼Pr
[fw(x)]− Ex∼Pg

[fw(x)] (7)

However, WGAN still cannot converge to high quality solutions, and [20] pointed out that
weight clipping makes WGAN unable to adapt to the complex distribution, leading to
gradient vanishing or exploding. Thus, in order to satisfy the Lipschitz constraint without
weight clipping, they proposed the Wasserstein GAN with Gradient Penalty (WGAN-GP).
The loss function of discriminator in WGAN-GP is defined as follows:

L = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)] + λEx̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(8)

where λ is the gradient penalty coefficient and x̂ denotes random sampling along straight
lines between the real data distribution Pr and generated data distribution Pg:

x̂ = εxr + (1− ε)xg, xg ∼ Pg, xr ∼ Pr, ε ∼ Uniform[0, 1] (9)

In this work, we couple ACGAN and WGAN-GP. More specifically, in the proposed
ACWGAN, we apply the Wasserstein distance as the distance metric in ACGAN to mea-
suring the distance between real data distribution and generated data distribution. Since
our goal is to generate samples for the specific minority classes, we also modify the struc-
ture of ACGAN and introduce an independent classifier to help the generator to generate
samples with more classification features.

3. The Proposed Method. In this section, we describe the details of our proposed
method. We first introduce the motivation for improving the model in Subsection 3.1.
Afterward, we present the proposed GAN model in Subsection 3.2.

3.1. Motivation. Conditional GAN (cGAN) [16] is a powerful subclass of generative
models that has been successfully applied to binary imbalance problem [17,21]. When
training multi-class imbalanced dataset, in order for the GAN to better distinguish be-
tween different classes explicitly, ACGAN with classification loss is a better alternative
approach. However, the original ACGAN has some limits under imbalanced scenario. We
next describe some insufficiencies of ACGAN under multi-class imbalanced scenario as
the motivational examples of our work.
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Limit 1: In ACGAN, the discriminator has two objectives: one is to judge whether the
sample is real or fake, and the other is to classify the sample. However, as the minority
class samples are scarce in multi-class imbalanced dataset, there is a conflict between
the two goals [23]. Due to the lack of trainable minority samples, the discriminator may
intuitively classify the generated minority samples as fake samples. Therefore, to optimize
the loss function, the generator may mistakenly generate majority samples with minority
class labels as input. In the meanwhile, the discriminator may consider the generated
samples as real samples and ignore the labels mismatch, encouraging the generator to
further generate such noise samples that may damage the performance of classifier.

Limit 2: Due to the additional classification loss, ACGAN tends to generate samples
far away from the decision boundary. Next, we use an example to illustrate this problem.
For the convenience, we convert the ecoli dataset from UCI repository into a binary imbal-
anced dataset. Then, the generator in ACGAN generates samples for the minority class
in the dataset. Figure 1 depicts the distribution of the samples generated by ACGAN
after PCA dimensionality reduction. As is shown in the figure, even in the binary-class
imbalance scenario, synthesized samples are almost all concentrated in the safe area far
away from the decision boundary. It means that ACGAN completely abandons the gen-
eration of borderline samples. Therefore, in the multi-class imbalance problem, the more
complex data distribution will squeeze the generated samples to a very limited safe area,
thereby reducing the diversity of generated samples. More seriously, that may cause mode
collapse. Another problem with ACGAN is that the classifier and the discriminator share
the same network. When optimizing the network, the two may affect each other, resulting
in insufficient network optimization.

Figure 1. The distribution of synthetic data generated by generator in ACGAN

3.2. ACWGAN. Motivated by the problems stated in the previous subsection, we pro-
pose Auxiliary Classifier Wasserstein GAN (ACWGAN), a novel GAN model that can
generate high quality samples for minority classes for multi-class imbalanced datasets. It
can be constructed by applying the objective function of WGAN-GP to a modified version
of ACGAN.
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In view of the drawback of ACGAN, we first modify the structure of ACGAN and
separate the classifier from the discriminator. Thus, the Modified ACGAN (MACGAN)
has three independent networks: a generator, a discriminator and a classifier. Comparing
with sharing weights, the independent discriminator and classifier can focus more on their
functions without being affected by each other. The classification ability of independent
classifier will also be enhanced. Since similar generating samples do not improve the clas-
sification performance of the classifier, in the MACGAN, we only train the classifier with
real dataset, the training process of the classifier is independent of adversarial training.
However, ACGAN is more likely to fall into mode collapse due to the additional classifi-

cation loss. Though MACGAN improves the performance of ACGAN to a certain extent,
it does not alleviate the serious mode collapse problem. The Wasserstein distance is
proved to be a more appropriate measure of the distance between probability distribu-
tions [20], and WGAN-GP using Wassertein distance effectively alleviates mode collapse
and improves the diversity of generated samples. [21,25] proved that it is still applicable
in the imbalance problem. Therefore, ACWGAN is constructed by applying the object
function of WGAN-GP to MACGAN. Figure 2 shows the structure of ACWGAN.

Figure 2. Structure of ACWGAN. Here x is the real data, y is a class
label, z is a random noise vector, C is the classifier, D is the discriminator
and G is the generator. R and F are the discriminator outputs representing
the probability of a sample being real or fake, c1, . . . , cn are the classifier
outputs representing the probabilities of samples belonging to class
c1, . . . , cn.

The loss functions of ACWGAN can be defined as follows:

LD = Ex̃∼Pg
[D(x̃)]− Ex∼Pr

[D(x)] + λEx̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)2

]
(10)

x̂ = εxr + (1− ε)xg, xg ∼ Pg, xr ∼ Pr, ε ∼ Uniform[0, 1] (11)

LC = −Ex∼Pr(x),yr∼P(y) [logC (y = yr | x)] (12)

Ladv = −Ex̃∼Pg
[D(x̃)] (13)
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Lcls = −Ez∼P(z),yg∼P(y) [logC (y = yg | G (z, yg))] (14)

LG = αLadv + (1− α)Lcls (15)

where LD, LG and LC are the loss functions of discriminator D, generator G and classifier
C. x denotes the real sample sampled from real data distribution Pr, x̃ is the synthetic
sample generated by generator, and x̂ is random sampling along straight lines between the
real data distribution Pr and generated data distribution Pg. yr denotes the class label of
sampled data x from Pr(x), and yg denotes the sampled label from Pr(y). The generator
G is trained to minimize both adversarial loss Ladv and classification loss Lcls, that means
the generator should generate samples that will be both judged real by the discriminator
and classified correctly by the classifier. α denotes the hyper-parameter that controls the
importance of classification loss and adversarial loss.

Algorithm 1 illustrates the training process of ACWGAN. In the first step, we train
the auxiliary classifier with real dataset to improve the ability of classifier. In the second
step, the weight of classifier will be fixed. The trained classifier will classify the generated
samples, and the discriminator is trying to distinguish whether the samples are real or
fake, the generator attempts to generate samples that can be discriminated as real by
discriminator and classified as the class corresponding to the input label. It is worth
noting that when training the generator, in order to ensure the generator’s ability to
generate minority samples, each label will be generated with the same probability.

Algorithm 1. ACWGAN, we use default values of λ = 10, nd = 5, α = 0.66

Require: S: the train dataset; m: minibatch size for per epoch; l: latent dimension;
α: hyperparameter that controls the importance of classifier and discriminator.

Require: Initial discriminator D parameters ω, generator G parameters θ and
classifier C parameters µ.

Ensure: A trained Generator Network G
while µ has not converged do

for i = 1, 2, . . . , m do

Sample real data x ∼ Pr and their corresponding labels y ∼ Pr.
Update C by µ← Adam

(
∇µ

1
m

∑m

i=1 LC , µ
)
.

end for

end while

while θ has not converged do

for nd steps do
for i = 1, 2, . . . , m do

Sample real data x ∼ Pr, latent variable z ∼ p(z), a random number
ε ∼ U [0, 1].
x̃← G(z)
x̂← εx+ (1− ε)x̃
L(i) ← Dw(x̃)−Dw(x) + λ (‖∇x̂Dw(x̂)‖2 − 1)2

end for

Update D by ω ← Adam
(
∇ω

1
m

∑m

i=1L
(i), ω

)
.

end for

Sample a batch of latent variables Z =
{
z(1), z(2), . . . , z(m)

}
from p(z).

Generate a batch of labels Y =
{
y(1), y(2), . . . , y(m)

}
with equal probability from

each class.
Update G by θ ← Adam

(
∇θ

1
m

∑m

i=1 αLadv + (1− α)Lcls, θ
)

end while



710 C. LIAO AND M. DONG

Referring to the parameter settings of [20], we set the default values of λ and nd in
Algorithm 1 to 10 and 5, respectively. α is the hyper-parameter that we introduced to
adjust the importance of adversarial loss and classification loss in generator, and a higher
α means that we care more about whether the generated samples are realistic enough
rather than whether the samples can be classified correctly. A lower α represents just
the opposite. Through our experiments, the ratio of classification loss to adversarial loss
can achieve a trade-off at 1 : 2 in most datasets. At this time, the value of α is 0.66.
However, for some specific datasets whose features are simple but difficult to classify, it is
recommended to use a lower α value to make the generator focus more on the classification
accuracy.
Once the ACWGAN is trained, the generator in ACWGAN can be used in oversampling.

The detailed steps of oversampling could be illustrated as follows. First, we use the original
imbalanced dataset to train ACWGAN. Next, the corresponding minority class labels are
mixed into Gaussian noises input generator to generate samples for each minority class.
Last, merge the generated samples with original dataset until the data is integrated into a
new balanced dataset. When we obtain a balanced dataset after the oversampling process,
we use the balanced dataset to train classification models.
As is shown in Figure 3, in the same binary-class imbalance scenario mentioned in

Subsection 3.1, compared with ACGAN, the minority samples generated by generator in
ACWGAN possess higher diversity. Furthermore, the distribution area of the generated
samples is wider, and the generated samples also include the borderline samples close
to the decision boundary. This is because in ACWGAN, the independent classifier has
stronger classification performance, so the generator can generate samples closer to the
decision boundary without being misclassified.

Figure 3. The distribution of synthetic data generated by generator in ACWGAN

In addition to the distance measurement, ACWGAN is quite different from original
ACGAN: The independent classifier in ACWGAN only trains with real samples, so it
will not learn the features of generated samples. Therefore, if the generator wants to
generate samples that can be classified by the classifier correctly, it must learn the feature
distribution that is similar to the real samples.
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4. Experiment Study.

4.1. Setup. In this subsection, the ACWGAN is evaluated using 16 benchmark multi-
class imbalanced datasets. We first introduce the datasets and evaluation metrics in our
experiment. Next, we briefly describe the experimental design. Finally, the parameter
settings and the statistical tests design are detailed.

Datasets. In this work, 16 multi-class imbalanced benchmark datasets are used in
our experiments. Table 1 shows a summary of the benchmark datasets. I, F, and C
respectively denote the number of instances, features, and classes in the dataset. IR
(Imbalance Ratio) is the imbalanced degree measured for multi-class imbalanced data [1],
and it is defined as the ratio between the majority class and the smallest minority class.
All the benchmark datasets are real datasets from UCI Machine Learning Repository
[26], which vary in size, class distribution, feature number and IR to ensure a reliable
assessment of performance.

Table 1. Description of the benchmark datasets from UCI Machine Learn-
ing Repository

Dataset I F C Class distribution IR
Ecoli 327 7 4 143/77/52/35 4.08
Vowl5 990 10 5 180/90/360/270/90 4
Voice9 413 10 6 38/58/43/100/59/115 3.02
Yeast8 1484 8 8 463/25/35/44/81/163/244/429 17.16
Yeast52 982 8 5 463/25/35/429/30 17.16
SAT 6435 36 6 1358/626/707/1508/703 2.14
SAT4 4374 36 4 1553/626/707/1508 2.14

Plates-faults1 1941 27 7 158/190/391/72/55/402/673 12.23
Wine-red 1571 10 4 681/638/199/53 12.84
Wine-white 4873 10 5 2193/1457/880/175/163 13.45
Newthroid 215 5 3 150/35/30 5
Page-blocks 5445 10 4 4913/329/88/115 42.72
House5 506 13 5 36/123/239/77/31 7.7
Abalone8 2148 10 8 126/203/267/487/634/259/115/57 11.12
Abalone10 2297 10 10 57/115/259/391/634/487/126/103/67/98 11.12

Glass 214 9 6 70/76/17/13/9/29 8.4

Evaluation metrics. Precision, Recall and F-measure [28] are widely used single class
metrics to measure the performance of classifier. Precision and Recall represent the ex-
actness and completeness of prediction. F-measure combines both of them and represents
their trade-off. Parameter β is used to adjust the relative importance of them, and is
usually set to one.

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
(16)

F -measure =
(1 + β2)Recall × Precision

β2Recall + Precision
(17)

In multi-class imbalanced problems, MG [29] and MAUC [30] are more popular evalu-
ation metrics. They are defined as follows:

MG =




|C|∏

i=1

Recallci




1
|C|

(18)
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MAUC =
2

|C|(|C| − 1)

∑

i<j

(
Â (ci, cj)

)
(19)

where C is the set of classes, Recallci denotes the recall of class Ci, Â(ci, cj) =
[
Â(i|j) +

Â(j|i)
]
/2, and Â(i|j) denotes the probability that a randomly drawn member class cj

will have a lower estimated probability of belonging to class ci than a randomly drawn
member of class ci.
In our experiments, we use mean F-measure in every class, MG and MAUC as our

performance metrics for evaluating the performance of each oversampling method.
Experimental design and parameter settings. We first perform an ablation ex-

periment on ACWGAN first to determine the effectiveness of several improvements in
ACWGAN. Then ACWGAN is compared with those traditional oversampling methods
based on SMOTE [1], including SMOTE, Borderline-SMOTE [9], K-means SMOTE [11]
and generative models based on GAN, including cGAN [16], ACGAN [22], CWGAN-
GP [25], and BAGAN [23]. To those traditional oversampling methods implemented by
Python Library Imbalanced Learn, we use default parameter settings.
With respect to the generation models based on GAN, in order to ensure fairness,

most of the hyperparameters such as network depth, and the number of neural units were
the same. All the GAN models were two-layers, and the numbers of hidden layers in
generator and discriminator were set to 200-200 and 100-100 respectively. Specially, the
hidden layer of additional classifier in ACWGAN was set to 100-100. The dimension of
noise space was set to 40. Neither Batch Normalization nor Dropout were applied to all
networks, the batch size of each epoch was set to 64, and every GAN was trained for 2000
to 10000 epochs, all networks used ReLU as the activation function in the hidden layers
and were trained with Adam optimizer in default settings. Besides, in CWGAN-GP and
ACWGAN, the gradient penalty coefficient λ was set to 10, five D parameter was updated
followed by the single G parameter. All the generative models above were implemented
by Python with Google’s open source framework TensorFlow.
Four frequently-used base classifiers are selected for our experiments to evaluate the

above oversampling methods, including C4.5 Decision Tree (DT) [31], Gradient Boost
Decision Tree (GBDT) [32], Support Vector Machine (SVM) [33], and K-Nearest Neighbor
(KNN) [34]. We apply 5-fold cross-validation to the dataset. In each stage, the dataset
is divided into 80% training data and 20% test dataset. We only use the training set to
train the oversampling approaches. Next, the oversampling approaches synthesize new
samples for the minority class. Then the synthetic samples and the original dataset are
merged into a new balanced training dataset. We train the classifier with the balanced
dataset. Finally, we evaluate the performance of oversampling approaches by comparing
accuracy of the classifiers on the test dataset. The experimental procedure was repeated
5 times and the reported results include the average values between the experiments to
reduce the bias.
Statistical tests. In our experiments, non-parametric tests are employed to ana-

lyze and compare whether there are significant differences between different oversampling
methods. The Friedman test [35] and Holm’s post hoc test [36] are used to evaluate our
experimental results. The Friedman test is a non-parametric test for ranking all algo-
rithms over all datasets, and its null hypothesis is that all algorithms are not significantly
different. If the statistic exceeds the critical value of the specified significance level, the
null hypothesis will be rejected. If the performances of the oversampling approaches are
significantly different, the Holm’s post hoc test is used to further distinguish whether each
oversampling approach is similar. In this study, the specified level of significance α is set
to 0.05.
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4.2. Results. This subsection presents the experimental results of various oversampling
methods under different classifiers. We first perform an ablation experiment on ACW-
GAN to determine which improvement in ACWGAN plays a leading role in improving
the quality of the generated samples. Next, the performance evaluation results for 16
benchmark datasets are presented.

4.2.1. Results of ablation experiments. Table 2 shows the MAUC values of ACGAN,
WACGAN, MACGAN, and ACWGAN in 8 multi-class imbalanced datasets, where MAC-
GAN denotes ACGAN with independent classifier (without Wassertein distance), WAC-
GAN represents ACGAN with Wasserstein distance (without independent classifier). As
can be seen in the table, ACGAN has the lowest scores on almost all datasets. While
MACGAN can often obtain higher scores than ACGAN, but for the most part it does

Table 2. The average score of different sampling methods when MAUC is
used as the evaluation metric under 8 multi-class imbalanced datasets

Algorithms Dataset
Classifier

DT SVM KNN GBDT
ACGAN

Yeast8

0.708043 0.873261 0.805368 0.869095
WACGAN 0.733671 0.887031 0.839976 0.894299
MACGAN 0.733005 0.885532 0.840302 0.879175
ACWGAN 0.746084 0.895577 0.850107 0.895000
ACGAN

House5

0.772261 0.923427 0.889294 0.937513
WACGAN 0.796112 0.9421 0.906221 0.943818
MACGAN 0.795767 0.938498 0.910413 0.937745
ACWGAN 0.824451 0.950027 0.921493 0.950922
ACGAN

Voice9

0.609615 0.669383 0.645365 0.677051
WACGAN 0.603824 0.674085 0.653771 0.693388
MACGAN 0.601977 0.677877 0.652112 0.693063
ACWGAN 0.625562 0.677935 0.65414 0.690396
ACGAN

Wine-red

0.570878 0.743122 0.653513 0.717553
WACGAN 0.607393 0.763713 0.674795 0.725275
MACGAN 0.593806 0.751726 0.658197 0.730928
ACWGAN 0.60754 0.767708 0.693168 0.747055
ACGAN

Wine-white

0.575036 0.750754 0.646239 0.741113
WACGAN 0.598644 0.759999 0.691884 0.764834
MACGAN 0.575843 0.758996 0.650231 0.746683
ACWGAN 0.607952 0.764324 0.693115 0.763149
ACGAN

Page-Blocks

0.851404 0.956371 0.908819 0.971398
WACGAN 0.88105 0.965442 0.933844 0.968883
MACGAN 0.839296 0.956177 0.913142 0.975093
ACWGAN 0.882925 0.978218 0.93067 0.981352
ACGAN

Plates-faults1

0.73186 0.911253 0.855744 0.897188
WACGAN 0.761198 0.917814 0.860617 0.898802
MACGAN 0.735545 0.914005 0.855714 0.89932
ACWGAN 0.762882 0.918178 0.862625 0.906873
ACGAN

SAT4

0.867582 0.979495 0.966656 0.979051
WACGAN 0.878254 0.979151 0.967394 0.979505
MACGAN 0.874714 0.97933 0.966598 0.979405
ACWGAN 0.880559 0.978509 0.968028 0.980112
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not score as well as WACGAN. Finally, in almost all cases, ACWGAN, which has both
independent classifier and Wassertein distance as the distance metirc, has the highest
scores.
From the ablation experiment in these datasets, we can draw conclusions: On the basis

of the original ACGAN, using Wassertein distance or trained independent classifier alone
can effectively improve the quality of generated samples. Of these two improvements,
the using of Wassertein distance is more critical to improve the quality of generated
samples (as WACGAN usually has higher scores than MACGAN). Finally, we observe
that ACWGAN outperforms other methods on almost all classifiers, which proves that
the effect of two improvements is cumulative.

4.2.2. Results of performance evaluation for benchmark datasets. Figure 4 shows the Min-
Max normalization value of MAUC and F-measure for the ACWGAN and other seven
oversampling methods on 16 multi-class benchmark imbalanced datasets. The best per-
forming method will be assigned the value of one while the worst method values zero
in MinMax normalization. As is shown in the figure, under most indicators, ACWGAN
achieves best results in 8 or more multi-class datasets. In the best case, ACWGAN per-
forms better than all other oversampling methods in 11 of 16 datasets, the situation
occurred twice, respectively in F-measure under SVM and MAUC under KNN.

(a) The MAUC of DT (b) The F-measure of DT

(c) The MAUC of SVM (d) The F-measure of SVM

(e) The MAUC of KNN (f) The F-measure of KNN

(g) The MAUC of GBDT (h) The F-measure of GBDT

Figure 4. The MinMax normalization value of MAUC and F-measure for
the ACWGAN and other seven oversampling methods under 16 multi-class
imbalanced datasets
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The further results are summarized in Tables 3 and 4. Table 3 shows the average
values of the F-measure, MG, and MAUC. Table 4 details the result of mean rank of 8
oversampling methods on 16 imbalanced datasets in terms of three evaluation metrics.
For each dataset, the best and the second best performing approaches will be assigned
to rank 1 and 2, and so on, the worst performing approach will obtain rank 8, and the
best results are highlighted in bold. As is shown in Table 3, ACWGAN achieves the
best average scores in 11 of 12 indicators. In terms of the evaluation of MAUC and MG,
ACWGAN is significantly better than other seven popular methods. In the evaluation of
MG, though ACWGAN appears to be less advantageous than some traditional methods,
it is still better than those GAN-based methods under all classifiers. From Table 4, we
observe that ACWGAN obtains rank 3 in the MG metric for SVM classifier, whereas, for

Table 3. The average MAUC, F-measure and MG of different oversam-
pling methods over all datasets

Algorithm Classifier
Average value

MAUC F-measure MG
SMOTE

DT

0.740571 0.552218 0.490310
BSMOTE 0.736402 0.553276 0.467473
KMSMOTE 0.736177 0.553895 0.463680

cGAN 0.736247 0.549333 0.463080
CWGAN-GP 0.741589 0.547491 0.491916

ACGAN 0.732872 0.552499 0.462097
BAGAN 0.738143 0.555479 0.482820
ACWGAN 0.750612 0.571524 0.531642

SMOTE

SVM

0.881348 0.601593 0.580866

BSMOTE 0.879159 0.594877 0.563108
KMSMOTE 0.872986 0.582028 0.494250

cGAN 0.874257 0.581339 0.484820
CWGAN-GP 0.884130 0.598161 0.575744

ACGAN 0.877761 0.570029 0.380590
BAGAN 0.876718 0.599689 0.431624
ACWGAN 0.886915 0.620343 0.566294
SMOTE

KNN

0.818480 0.567390 0.571343
BSMOTE 0.815787 0.566935 0.546336
KMSMOTE 0.815250 0.576550 0.525502

cGAN 0.824414 0.579988 0.507007
CWGAN-GP 0.833651 0.573941 0.551319

ACGAN 0.821060 0.578000 0.442632
BAGAN 0.823206 0.586021 0.464559
ACWGAN 0.839281 0.598367 0.575341

SMOTE

GBDT

0.874186 0.606160 0.543807
BSMOTE 0.874395 0.608705 0.533829
KMSMOTE 0.869439 0.599744 0.488847

cGAN 0.873669 0.604944 0.494535
CWGAN-GP 0.878731 0.607541 0.530916

ACGAN 0.873205 0.601631 0.450977
BAGAN 0.872442 0.601538 0.460706
ACWGAN 0.882329 0.621400 0.546736



716 C. LIAO AND M. DONG

Table 4. Results for mean ranking of oversampling methods across the datasets

Classifier Metircs SMOTE BSMOTE KSMOTE cGAN CWGAN-GP ACGAN BAGAN ACWGAN
MAUC 4.125 4.6875 5.125 5.3125 4 5.625 4.875 2.1875

DT F-measure 4.6875 4.3125 4.3125 5.1875 5.4375 4.75 4.6875 2.625

MG 3.5625 4.875 5.375 5.3125 4.0625 5.75 4.8125 2.25

MAUC 3.3125 4.4375 5.625 6.3125 3.6875 4.8125 5 2.6875

SVM F-measure 3.75 4.875 5.4375 5.4375 4.4375 6.375 4 1.6875

MG 2.0625 3.375 5.1875 5.5 2.8125 7 6.6875 3
MAUC 5.4375 5.875 6.25 4.625 2.5 5.0625 4.5 1.75

KNN F-measure 5.9375 5.5 4.625 4 4.125 4.625 3.875 2.5

MG 2.625 4.125 4.5 4.875 4 7.125 6.3125 2.4375

MAUC 4.125 4.5 5.875 5.1875 3.875 5.25 5.1875 2

GBDT F-measure 3.875 3.5625 5.6875 5.375 4.875 5.5 5 2.125

MG 3.25 3.0625 5.0625 5.75 4 6.375 5.9375 2.5

other classifiers, ACWGAN obtains the best mean ranks. Those results show that the
performance of ACWGAN is better than other oversampling methods, especially GAN-
based methods.

4.2.3. Results of statistical tests. In order to verify whether all oversampling methods
show the similar performance, we conduct Friedman test [35]. As is shown in Table 5,
the hypothesis that all the methods are similar is rejected. Thus, we apply Holm’s post
hoc test [36] to determining whether ACWGAN is significantly different from each other
method at the significance level of α = 0.05. As the result presented in Table 6, in most
cases, ACWGAN significantly outperforms other oversampling approaches. However, in
the MG evaluation metric for classifier SVM, KNN, and GBDT, ACWGAN does not show
significantly difference from SMOTE and Borderline-SMOTE. Besides, when using MAUC
and MG as the evaluation metrics, ACWGAN has similar performance with CWGAN-GP
under some classifiers.

Table 5. The Freidman test

Classifier Metirc p-value Classifier Metirc p-value

DT
MAUC 0.002407

KNN
MAUC 4.9425e-08

F-measure 0.060390 F-measure 0.004402
MG 0.000772 MG 2.0079e-08

SVM
MAUC 0.000290

GBDT
MAUC 0.000314

F-measure 0.000003 F-measure 0.000226
MG 2.3295e-12 MG 7.8596e-07

4.3. Practical application on ACWGAN. To further verify the effectiveness of ACW-
GAN for practical application, we evaluate our method in two real imbalanced datasets.
The experimental design and comparing methods are consistent with the previous sub-
section.

4.3.1. Datasets of practical application. Two real imbalanced datasets from different do-
mains are used to evaluate the practical significance of our method. The first of datasets
(PC4 dataset) is provided by the National Aeronautics and Space Administration (NASA),
and describes the software defect status (defective, non-defective). The PC4 dataset con-
tains 1458 samples, of which 1280 samples are non-defective samples and 178 are defective
samples. The second dataset (ECG5000 dataset) consists of 5000 heartbeats extracted
from a 20-hour long electrocardiogram of a patient with severe congestive heart failure. It
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Table 6. Result of Holm’s post hoc test when ACWGAN is used as the
control method, and the p-values which are smaller than 0.05 are marked
in bold.

Algorithms Classifier
p-value

MAUC F-measure MG
BAGAN

DT

0.011482 0.011591 0.000826

ACGAN 0.000536 0.004394 0.001521

CWGAN-GP 0.004105 0.000917 0.016017

cGAN 0.000056 0.000904 0.002440

KMSMOTE 0.003684 0.009266 0.007431

BSMOTE 0.006196 0.015892 0.050191

SMOTE 0.005925 0.000697 0.027478

BAGAN

SVM

0.002416 0.000382 0.002675

ACGAN 0.004746 0.000127 0.000159

CWGAN-GP 0.040700 0.005081 0.513952
cGAN 0.000986 0.001660 0.049245

KMSMOTE 0.001529 0.002124 0.022074

BSMOTE 0.003172 0.003272 0.883256
SMOTE 0.029622 0.004204 0.315005
BAGAN

KNN

0.001504 0.158085 0.002116

ACGAN 0.000158 0.032328 0.000452

CWGAN-GP 0.056725 0.002820 0.008639

cGAN 0.001018 0.024190 0.012619

KMSMOTE 0.000016 0.006089 0.021309

BSMOTE 0.000012 0.001337 0.109004
SMOTE 0.000158 0.002487 0.683488
BAGAN

GBDT

0.002342 0.013592 0.007382

ACGAN 0.001070 0.000257 0.001750

CWGAN-GP 0.110223 0.000651 0.044206

cGAN 0.002219 0.000219 0.000309

KMSMOTE 0.001607 0.003024 0.013452

BSMOTE 0.014687 0.052665 0.594322
SMOTE 0.021683 0.040498 0.879086

Table 7. Description of the real imbalanced datasets

Dataset I F C Class distribution IR
PC4 1458 38 2 1280/178 7.19

ECG5000 5000 140 5 2918/1767/96/194/24 121.58

is originally published in [27]. Interpolation was used to make the length of each heartbeat
equal. Each heartbeat is classified into one of the five categories: normal (58.4% of the
entire data), R-on-T Premature Ventricular Contraction (PVC) (35.3%), PVC (1.9%),
supraventricular (3.9%) and unclassifiable (0.5%). The datasets are summarized in Table
7.

4.3.2. Results of performance evaluation. Figure 5 shows the performance evaluation re-
sults for different oversampling approaches using ECG5000 and PC4 datasets. As is clearly
shown in the figure, when applied to the ECG5000 dataset, ACWGAN exhibits better
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(a) Multi-class imbalanced ECG5000 heartbeat dataset

(b) Binary imbalanced PC4 software defect dataset

Figure 5. The performance evaluation of each oversampling approach in
two real datasets

performance than other oversampling methods. We observe that the ACWGAN outper-
forms other oversampling approaches for all classifiers when F-measure is used as the
indicator. For the MAUC metric, ACWGAN also outperforms other approaches except
with classifier GBDT. Finally, when MG is used as the evaluation metric, ACWGAN
achieves superior performance results except with the classifier KNN. For the imbalanced
software defect dataset, in terms of the classifiers DT, SVM and KNN, ACWGAN per-
forms similar to or better than other methods. However, for the classifier GBDT, the
performance of ACWGAN is inferior to those SMOTE-like methods.

4.4. Discussion. In this subsection, we discuss the results of experiment. The experi-
mental and statistical results indicate that our method outperforms the other oversam-
pling methods especially GAN-based methods in most cases. The reason is that ACW-
GAN uses an auxiliary independent classifier to help the generator generate high-quality
samples with correct class and improve the performance of classifier. Specifically, ACW-
GAN performs better than other oversampling methods, which can be attributed to the
following reasons.
1) Compared with cGAN, BAGAN and ACGAN, ACWGAN uses the Wasserstein dis-

tance rather than JS divergence as the measure of distance, which can effectively prevent
training of GAN from mode collapse and increase the diversity of generated samples.
2) Compared with CWGAN-GP, ACWGAN introduces an extra classifier to ensure

the generator to synthesize high quality samples with correct class. However, the dis-
criminator in CWGAN-GP may not be able to judge whether the samples match the
corresponding labels in multi-class imbalanced dataset, causing the generator to generate
samples with incorrect class.
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3) Compared with SMOTE like method, ACWGAN synthesizes samples based on the
actual distribution of whole data rather than based on k-nearest neighbor samples; thus,
the synthesized data can better represent the overall distribution of the data.

Though ACWGAN outperforms those methods on most metrics, it is still slightly worse
than some SMOTE-like methods in some cases. One possible reason is that for some
minority class with scarce samples, ACWGAN could not learn enough features to generate
high-quality samples, while SMOTE-like methods could synthesize relatively high-quality
samples through k-nearest neighbors. Another disadvantage of ACWGAN is that the
GAN needs more time and resource for training compared with those traditional methods.

5. Conclusions. In this paper, we proposed ACWGAN as a novel GAN model. The
ACWGAN has an independent auxiliary classifier which can help generator better syn-
thesize correctly minority samples under multi-class imbalanced scenario. In addition,
we also proposed an oversampling method based on ACWGAN for multi-class imbalance
dataset. To demonstrate the effectiveness of our proposed method, extensive experimen-
tal testing is performed on 16 multi-class imbalanced benchmark datasets and two real
imbalanced datasets in comparison with several popular oversampling approaches. The
experiment results show that ACWGAN is superior to other oversampling approaches.

As for future extension of this work, firstly, the data type can be extended from low-
dimensional to high-dimensional (such as image) to improve the practicality of the method.
In addition, we plan to improve the classification accuracy of the classifier in ACWGAN
on imbalanced data to help the generator synthesize higher quality samples.
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