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Abstract. In this paper, an iterative model of self-synaptic FitzHugh-Nagumo (FHN)
neurons based on adaptive stochastic resonance (ASR) and improved by Euler-Maruyamas
method is proposed to enhance the contrast of low-brightness images. Firstly, the sto-
chastic pooling network based on Kalman and least mean square (Kalman-LMS) adaptive
algorithm is designed to eliminate noise disturbance in input low contrast image, and the
optimal parameter value of self-synaptic FHN nonlinear system is obtained by least square
estimation (LSE) adaptive algorithm. Then the self-synaptic FHN neuron nonlinear
equation is reconstruct by Euler-Maruyamas iterative method. Finally, the ASR is applied
in an iterative manner to combining parameter values of self-synaptic FHN neurons with
brightness values of low-contrast images. The optimal response is measured by perceptual
quality measurement (PQM), structural similarity index measure (SSIM) and relative
contrast enhancement factor (RCEF). However, compared with the existing methods, the
image brightness and visual perception are significantly improved by the method proposed
in this paper.
Keywords: Self-synaptic FitzHugh-Nagumo neuron, Stochastic resonance, Adaptive
algorithm, Image enhancement

1. Introduction. The enhancement of low illumination images is widely used in under-
water images [1, 2], edge detection, night vision imaging [3], road crack detection [4],
medical imaging [5] and so on. A large number of image enhancement algorithms are
based on two-dimensional grayscale image enhancement. The existing low illumination
image enhancement methods include gamma correction (Gamma), contrast-limited adap-
tive histogram equalization (CLAHE), Gaussian Filter, Median Filter, etc. [6, 7]. It is
proposed that the excessive enhancement of noise in standard histogram equalization
methods is overcome by the CLAHE method [8]. However, the halo artifact is generated
around the image by the CLAHE method when there is a high gradient. It is proposed
in [9] that the smooth curve is used by gamma correction to automatically enhance the
brightness of the image through the weighted distribution. No halo artifacts are generated
by this method, but the degree of image enhancement is not significant. These methods
of image enhancement are also applied to low-illuminance color images in the red-green-
blue (R-G-B) space [10-12]. Jobson et al. [13] proposed single-scale retinex (SSR) and
multi-scale retinex (MSR) theory that the contrast of the image can be moderately en-
hanced by balancing in three aspects: edge enhancement, dynamic range compression
and color steadiness. However, the effect of the image enhancement is not ideal by the
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SSR algorithm. And the MSR algorithm is computationally intensive. While the image
is enhanced, the edge of the image is blurred, resulting in the loss of some details.
Beyond that, the nonlinear phenomenon of stochastic resonance (SR) was introduced

by Benzi that the weak signal would be enhanced by adding an appropriate amount of
noise [14, 15]. And the research of SR has been applied in many fields such as image
processing [16-25]. In recent years, adaptive stochastic resonance (ASR) has also been
discovered and developed rapidly [26]. It has been widely used in the fields of ultraviolet
absorption spectroscopy, fault detection and signal processing [27-30]. It is proposed that
the optimal parameters of the ASR system are adaptively selected by constructing an
improved particle swarm optimization algorithm and improved signal-to-noise ratio index
[31]. By this method the ability of weak signal feature extraction is improved effectively,
and it is well used in fault detection. It is proposed that the contrast of low brightness
images can be improved by an analysis method based on stochastic resonance and spatial
domain [32]. The contrast of the image is improved by associating the brightness value
of the image with the parameters of the nonlinear system. It shows high performance
in visual perception and color naturalness. After that, an iterative method based on
wavelet fusion and ASR is proposed to enhance the contrast of low brightness images
[33]. However, the uniform low contrast images are significantly enhanced and the uneven
illumination images are not enhanced as well as desired by these methods. In addition
to the research on bistable nonlinearities, there are also many researches on weak signal
enhancement based on FitzHugh-Nagumo (FHN) neuron nonlinearities [34-36]. The FHN
neuron model is a simplified Hodgkin-Huxley (H-H) model. Because of its simple calcula-
tion and rich electrophysiological properties, it is widely used in the research of stochastic
resonance [37, 38]. Although more effective results have been achieved, some details are
often lost as the self-synaptic feedback structure of neurons is not taken into account. At
present, the non-negligible role of self-feedback structure in cranial nervous system has
been confirmed by a large number of studies [39, 40]. It is precise to consider the role of
self-synaptic structure in image enhancement of FHN neuron nonlinearities.
With the continuous development and progress of medical imaging and night detection,

a large number of contrast image enhancement methods have appeared. However, the de-
sired results cannot be obtained by existing methods. In this paper, an iterative model
of self-synaptic FHN neurons based on ASR for enhancement of low brightness images
has been presented. The Euler-Maruyamas iterative method is used to reconstruct the
traditional FHN and self-synaptic FHN equations. The Kalman and least mean square
(Kalman-LMS) adaptive algorithm is selected to eliminate the input signal interference
term and the least square estimation (LSE) adaptive algorithm is selected to obtain the
optimal system parameters. All areas of the original image are processed appropriately
by controlling the number of iterations and iteration steps. The experiments of image
enhancement are carried out for three types of low brightness images with different pixel
sizes. The experimental results show that the contrast of low brightness images is im-
proved effectively. And the color naturalness of the original image has been maintained
by the self-synaptic FHN neuron model based on ASR. Compared with traditional meth-
ods, the effect of the contrast enhancement is more significant, and the halo artifact is
not caused by excessive noise enhancement. As the relative contrast enhancement fac-
tor (RCEF) and the perceptual quality measurement (PQM) indicators of the method
proposed in this paper are calculated and measured after each iteration, low brightness
images of different sizes have been enhanced effectively through iteration.
The rest of the paper is organized as follows. In Section 2, it introduces the experi-

mental procedures we proposed, the principle of adaptive stochastic resonance, parameter
selection process through adaptive algorithm and performance indicators. In Section 3,
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the experimental results and performance analysis comparisons of five classical methods
and self-synaptic FHN neuron model are given to prove the effectiveness of the methods
we proposed. Finally, conclusion is provided in Section 4.

2. FHN Neuron Model and Performance Evaluation.

2.1. Experimental process. Since the low-contrast images are not enhanced significant-
ly by existing enhancement methods, a new method based on self-synaptic FHN neurons
and adaptive stochastic resonance is proposed in this paper. The Euler-Maruyamas itera-
tive method is used to reconstruct the traditional FHN and self-synaptic FHN equations.
Three adaptive algorithms are selected to obtain the optimal system parameters. The
experimental flowchart is shown in Figure 1. The main steps of self-synaptic FHN neuron
model based on ASR to enhance low-contrast images are as follows.

Step1. Convert original low-contrast images from red-green-blue (RGB) space to hue-
saturation-value (HSV) space through MATLAB functions. The subsequent operations
of this conversion only need to process the V-direction component, which preserves the
hidden color of the original low brightness image.

Figure 1. Flowchart of ASR-based enhancement algorithm on contrast
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Step2. The optimal parameters determined by adaptive algorithm. The Kalman-LMS
adaptive algorithm is proposed to eliminate the noise disturbance in the input image, and
the optimal parameters of self-synaptic FHN nonlinear system are obtained by the LSE
adaptive algorithm.
Step3. Adaptive iteration. The Euler-Maruyamas iterative model of FHN neurons with

optimal parameters is used to adjust the brightness values of input low-contrast images.
After each iteration, RCEF and PQM of neuron output are calculated and updated. On
the premise that the PQM is as close to 10 as possible, iterations are carried out until
the RCEF reaches its maximum value.
Step4. Convert enhanced images from HSV space to RGB space. The enhanced lightness

vector, x, is combined with the saturation vector and hue vector of the original low-
illumination image and the enhanced color image is obtained by converting it back to the
RGB color space through the MATLAB function.

2.2. Self-synaptic FHN neuron model. The existence of stochastic resonance in bio-
logical neurons has been proven by a large number of experiments [41, 42]. In this paper,
a new model of FHN neurons is used to enhance the image from low-illumination state
to high-illumination state after a certain number of iterations. A classic FHN neuron
dynamic system is modelled as follows:

dx

dt
= x(α− x)(x− 1)−

β

γ
x+ s(t) + ξ(t) (1)

where x is the rapidly changing variable of membrane voltage, α is the threshold value
for α ∈ (0, 1), γ is a positive constant, β is a positive constant that reflects the effect of
a slowly changing variable on the system, s(t) stands for driving force input, and ξ(t) is
the external added noise. Stochastic differential Equation (1) can be reconstructed by the
Euler-Maruyamas iterative method as follows [43]:

x(n + 1) = x(n) + ∆t

(

x(n)(α − x(n))(x(n)− 1)−
β

γ
x(n) + Iinput

)

(2)

where ∆t denotes the iteration step size and Iinput = s(t) + ξ(t) stands for input signal.
In addition to the traditional FHN neuron model, we also consider the self-synaptic

structure of the neuron itself. The self-synaptic FHN neuron model is shown below:

dx

dt
= x(α− x)(x− 1)−

β

γ
x+ s(t) + ξ(t) − Iaus (3)

Iaus = E(x(t)− x(t− τ)) is self-synaptic current where τ denotes the time delay and E

stands for self-synaptic conductivity coefficient. Stochastic differential Equation (3) also
can be reconstructed by the Euler-Maruyamas iterative method as follows:

x(n + 1) = x(n) + ∆t

(

x(n)(α− x(n))(x(n)− 1)−
β

γ
x(n) + Iinput + E(x(n− 1))

)

(4)

where ∆t is the self-synaptic iteration step size. In this paper, Iinput is the pixel value
of the input low-illuminance image with external Gaussian white noise. When E = 0.46,
the image is best enhanced by consulting a large number of literature and combining with
the experimental data in this paper [44, 45].

2.3. System parameters selection through adaptive algorithm. In this section,
the optimal parameters of the self-synaptic FHN neuron model are obtained by the
Kalman-LMS and LSE adaptive algorithm [46, 47]. According to (2) and (4), the stochas-
tic resonance phenomenon appears as selecting the appropriate FHN and self-synaptic
FHN parameters α, β, and γ. The parameters β and γ are found to be proportional
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through observation, assuming γ = 1. The main research focus of this section is that the
parameters α and β of the FHN neuron model are obtained by Kalman-LMS and LSE
adaptive algorithm. The process of parameter optimization by the Kalman-LMS and LSE
adaptive algorithm in the Pooling network is as follows.

Step1. Multi-threshold quantization processing. Random Gaussian white noise is added
to the input signal x and the output of each subsystem node yn can be obtained by
transforming the following nonlinear node function f(x).

f(x) =

{

1, x+ ηn > δ

0, x+ ηn ≤ δ
(5)

where ηn is Gaussian white noise with a mean of 0. δ is the threshold of the network
node, δ = 0.

Step2. Calculate and update weight error covariance matrix and weight vector. The
network output and optimal learning gain after each iteration are calculated, then the
weight error covariance matrix and weight vector are updated.

The network output x̂n of each iteration is as follows:

x̂n = W T
n yn +W0 (6)

where Wn denotes the weight vector after each iteration. The weight W0 is initialized as
a zero matrix of M ∗M .

The optimal learning gain gn after each iteration is as follows [48]:

gn = Gnỹn =
Φ(n)ỹn

ỹTnΦ(n)ỹn + σ2
n

(7)

where Gn is the Kalman gain. Φ(n) is the weight error covariance matrix. Φ(0) = σ2I,
I denotes the identity matrix and σ2 is a positive value. σ2

n is the variance of externally
added Gaussian white noise, σ2

n = 0.01. ỹn is the observed value of yn.

ỹn = yn −E[yn] (8)

The error en and the mean square error J of network output and network input are
calculated. The calculation method of error en is as follows:

en = x̂n − x (9)

The calculation method of mean square error J is as follows:

J = E
[

en
2
]

(10)

The value of J is calculated at the end of each iteration and judged whether it reaches
the minimum value. If the minimum value is not reached, the weight vector and the
weight error covariance matrix need to be updated. The weight vector is updated each
time as follows:

Wn+1 = Wn + gn
(

x̃n −W T
n ỹn

)

(11)

where x̃n is the observed value of xn. And the weight error covariance matrix is updated
as follows:

Φ(n + 1) = Φ(n)− gnỹ
T
nΦ(n) (12)

The estimated value x̂ of the input signal after noise elimination is obtained by summing
up all the iterative network outputs.

x̂ =

N
∑

n=0

x̂n (13)
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Step3. Calculate ASR parameters. The estimated value of the input signal after noise
elimination is taken as the independent variable, and the expected output as the dependent
variable. The optimal system parameters α and β are obtained by fitting the least square
estimation (LSE) algorithm.
Since the perturbation term is a random error that cannot be measured, the optimal

parameters solution of the self-synapse FHN neuron model is slightly changed after adap-
tive iterative processing. The average values are selected as the system parameters of the
self-synaptic FHN neuron model after a large number of experiments, α = 0.1041 and
β = 0.0838.

2.4. Image performance evaluation indicator. Existing image evaluation methods
such as mean square error (MSE), peak signal-to-noise ratio (PSNR), quality index, and
structural similarity index measure (SSIM) which require reference images or undistorted
images are not suitable for our experimental study. Because the image contrast as well as
perceptual quality are needed to be the measure performance, three indicators are selected
to measure image performance: the distribution separation measure (DSM), perceptual
quality measurement (PQM) and relative contrast enhancement factor (RCEF).
The measurement of RCEF is based on the mean and global variance of the observed

low-illumination images and the enhanced high-illumination images. It can be said that
when the structure of the image is clearer and the contrast of the image is enhanced, the
enhancement value can be illustrated by the Michelson contrast index [49], which can be
summarized as the contrast quality index C

C(v) =
σv

2

µv

(14)

where σ2 and µ are, respectively, the global variance and mean of image v. In addition,
it is demonstrated that an enhanced image, with increasing of structural characteristics,
brightness and edge, is connected with increasing values of contrast quality index. By
calculating the observed image CI and the contrast quality value of the enhanced image
CO, their ratio is called the relative contrast enhancement factor (RCEF) [50], as shown
below:

RCEF =
CO

CI

(15)

Taking account of the blur artifacts and visible blocks of the image, a non-referenced
perceptual quality evaluation method is used for the evaluation of image perceptual qual-
ity, which we call perceptual quality measurement (PQM) as follows [51]:

PQM = a + bβr1αr2γr3 (16)

where a, b, r1, r2 and r3 are the model parameters of the test data estimated by subjective
estimation method as described by [49] (a = −245.9, b = 261.9, r1 = −0.0240, r2 = 0.0160
and r3 = 0.0064). β is the average blockiness, used to evaluate the average difference
between the block boundaries of the vertical and horizontal characteristics. α and γ are
used to evaluate the activity of image pixels. Although it is difficult to evaluate an unclear
image without a reference, it can lead to a reduction in signal activity, while combining
the blockiness and signal to highlight the relative blur of the image. γ denotes the zero-
crossing rate and α denotes the average absolute difference of pixels in the image block.
According to Mukherjee and Mitra [52], the difference between PQM and 10 should be
as close to zero as possible to obtain the best perceived quality.
The DSM [53] indicator is selected to measure the changes between the original low-

illumination image and the enhanced image, which shows the enhancement degree of the
target area compared to its background area as follows:
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DSM =
(
∣

∣µM
e − µN

e

∣

∣

)

−
(
∣

∣µM
p − µN

p

∣

∣

)

(17)

where µM
e , µM

p , µN
e , µ

N
p represent the mean of the target area (M) and background area

(N) of the enhanced image (e) and the original low-illumination image (p), respectively.
Generally, large values of RCEF and DSM index imply better visual perception after

contrast enhancement of the image. Therefore, in order to obtain the best perceptual
quality, we stipulate that we stop the iteration when the difference between PQM and 10
is closest to zero, and calculate the RCEF and DSM values of the enhanced image. For
the DSM indicator, higher values indicate the greater enhanced degree of the image.

3. Experimental Results and Performance Analysis. In order to verify the en-
hancement effect of self-synaptic FHN neuron model based on ASR reconstructed in this
paper for low-illuminance images, three kinds of low-illuminance images with different pix-
el sizes (128× 128, 256× 256, 512× 512) are selected for enhancement experiments. The
variance of external added noise is 0.000001. And five methods such as contrast-limited
adaptive histogram equalization (CLAHE), single-scale retinex (SSR), gamma correction
(Gamma), Median Filter and Gaussian Filter are selected for experimental comparison.
Figures 2(a)-2(c) are the three original images, and Figures 3(a)-3(c) are their correspond-
ing low-illuminance images. (Both sets of images are from the LOL database).

In the actual experiment, the model parameters have been solved in Section 2.3 by
Kalman-LMS and LSE adaptive algorithm. The number of iterations required for different
images to switch from a low-illuminance state to a high-illuminance state is different.

(a) (b) (c)

Figure 2. Original images: (a) A Bookcase image with a pixel size of
128× 128; (b) a Chopsticks frame image with a pixel size of 256× 256; (c)
a Tableware image with a pixel size of 512× 512

(a) (b) (c)

Figure 3. Low-illuminance images after processing
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Three indicators such as PQM , DSM and RCEF are used to measure the effect of image
enhancement in this paper.

3.1. Bookcase image. In Figure 4, it shows the comparison of the enhancement effect
with the five classic methods including CLAHE, SSR, Gamma, Median Filter, Gaussian
Filter in Figures 4(c)-4(g), FHN neuron model and the self-synaptic FHN neuron model
based on ASR in Figure 4(h) and Figure 4(i) for the image size of 128× 128. Obviously,
the image enhanced by CLAHE, SSR and Median Filter is not clear, especially the image
enhanced by the CLAHE method mixed with large areas of halo artifacts. It shows that
the contrast enhancement effect of the image through the ASR iteration method is better
than others. The results show that the image enhanced by the ASR iterative method is
noiseless.

(a) Original image (b) Low-illuminance image (c) CLAHE

(d) SSR (e) Gamma (f) Median Filter

(g) Gaussian Filter (h) FHN (i) Self-synaptic FHN

Figure 4. Comparison of Bookcase image with different enhancement methods

Table 1 shows the performance comparison of PQM, RCEF and DSM indicators under
different enhancement methods for Bookcase image. As introduced in Section 2.4, the
superiority of an image enhancement method mainly depends on the premise that the
PQM value is as close as possible to 10, the larger the RCEF index, the better the image
enhancement effect. In Table 1, it is shown that the RCEF index of CLAHE is the lowest,
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Table 1. Performance index of Bookcase image under different enhance-
ment methods

Method
Bookcase image (128× 128)
PQM RCEF DSM

CLAHE 9.0380 0.6686 12.1880
SSR 10.6863 3.0836 50.3202

Gamma 10.1255 2.7913 65.1850
Median Filter 10.2288 0.9791 31.6782
Gaussian Filter 10.9663 1.7934 57.3767

FHN 10.0008 3.3191 101.0324

Self-synaptic FHN 9.9998 3.3652 106.4402

RCEF = 0.6686. The RCEF index value of the image enhanced by Median Filter and
Gaussian Filter is also not ideal. Obviously, the new method is the best in terms of
PQM indicators, RCEF indicators and DSM indicators. The RCEF index of our method,
especially the self-synaptic FHN neuron model is 3.3652 and PQM = 9.9998.

3.2. Chopsticks frame image. In Figure 5, it shows the comparison of the enhancement
effect with the five classic methods, FHN neuron model and the self-synaptic FHN neuron
model based on ASR for the image size of 256× 256. It shows that the enhanced images
with low contrast are obtained by SSR, Gamma and Median Filter methods. Although the
contrast of the image enhanced by CLAHE method is significantly improved, the image
has artifacts due to the amplification of noise. The results show that compared with the
classic method, the new method has a significant improvement in color naturalness.

Table 2 shows the performance comparison of PQM, RCEF and DSM indicators under
different contrast enhancement methods for Chopsticks frame image. It is found from the
Table 2 that all performance indicators are significantly lower than those of our method
compared to the five traditional methods. The value of the FHN neuron model on the
RCEF index is 5.6788 and the self-synaptic FHN neuron model is 5.8378, and their PQM
values are, respectively, 10.0032 and 9.9976.

3.3. Tableware image. In Figure 6, it shows the comparison of the enhancement effect
with the five classic methods, FHN neuron model and the self-synaptic FHN neuron
model based on ASR for the image size of 512× 512. The results show that the contrast
of the image enhanced by SSR is lower than that before. The contrast of the image
is not significantly enhanced by Gamma and Median Filter. The contrast of the image
is significantly enhanced by the Gaussian Filter method, but it is not as significantly
enhanced as the new method proposed in this paper. Compared with traditional methods,
the new method has significantly better contrast enhancement effect on Tableware images.
At the same time, compared to the Bookcase image and the Chopsticks frame image, it
is obvious that the new method proposed in this paper has better enhancement effect in
the experimental image. It is shown that when the pixel value of the image changes, the
enhancement effect of the image will also be affected. As the pixel value becomes larger,
the color naturalness of the image is better preserved.

Table 3 shows the performance comparison of PQM, RCEF and DSM indicators under
different contrast enhancement methods for Tableware image. In Table 3, it is shown
that the low RCEF index values are obtained by CLAHE, SSR, Gamma and Median
Filter methods, which are 1.2640, 1.0048, 2.3021 and 0.9698 respectively. Obviously, the
image enhancement effect of the five traditional methods on PQM index and RCEF index
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is not as significant as method we proposed. It is shown that the RCEF index of the
self-synaptic FHN neuron is 7.6521 when PQM = 10.0017.

(a) Original image (b) Low-illuminance image (c) CLAHE

(d) SSR (e) Gamma (f) Median Filter

(g) Gaussian Filter (h) FHN (i) Self-synaptic FHN

Figure 5. Comparison of Chopsticks frame image with different enhance-
ment methods

Table 2. Performance index of Chopsticks frame image under different
enhancement methods

Method
Chopsticks frame image (256× 256)
PQM RCEF DSM

CLAHE 10.2791 1.2199 28.5793
SSR 12.1275 3.3986 26.1303

Gamma 11.5653 3.2476 39.0402
Median Filter 11.7578 0.9536 21.2821
Gaussian Filter 10.7936 3.9789 85.1518

FHN 10.0032 5.6788 113.8490

Self-synaptic FHN 9.9976 5.8378 123.6339
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(a) Original image (b) Low-illuminance image (c) CLAHE

(d) SSR (e) Gamma (f) Median Filter

(g) Gaussian Filter (h) FHN (i) Self-synaptic FHN

Figure 6. Comparison of Tableware image with different enhancement methods

Table 3. Performance index of Tableware image under different enhance-
ment methods

Method
Tableware image (512× 512)
PQM RCEF DSM

CLAHE 10.5917 1.2640 29.2226
SSR 13.4434 1.0048 13.4744

Gamma 11.9295 2.3021 37.9187
Median Filter 11.1480 0.9698 23.1776
Gaussian Filter 11.0404 4.9122 114.1453

FHN 9.9994 7.7661 129.0997

Self-synaptic FHN 10.0017 7.6521 177.9586
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4. Conclusion. In this paper, a self-synaptic FHN neuron model based on ASR is pro-
posed to enhance the contrast of 2D dark and low-contrast images. The Kalman and least
mean square (Kalman-LMS) adaptive algorithm is selected to eliminate the input signal
interference term and the least square estimation (LSE) adaptive algorithm is selected
to obtain the optimal system parameters. The nonlinear iterative method of dynamic
adjustment is used to enhance all degree region of low illumination image, and at the
same time, the image does not lose its naturalness due to excessive enhancement. Three
kinds of images with different pixel sizes are used for contrast enhancement experiments
in this paper. The experimental results show that the self-synaptic FHN neuron mod-
el is superior to other contrast methods in enhancing the contrast and brightness while
preserving the color naturalness of images. And better DSM and RCEF indicators are
obtained with the PQM value as close as possible to 10 by the method of this paper
compared to the existing methods. The self-synaptic FHN neuron model based on ASR
proposed in this paper can be well applied to night detection and biomedical imaging.
The number of iterations required to achieve the best enhancement effect and the system
optimal parameters required are different in different pixel size images. Therefore, the
next goal is that other feasible adaptive algorithms are found and compared with the
Kalman-LMS and LSE algorithm for image enhancement of different pixel sizes to obtain
the best results. Then the optimal parameters with the best enhancement are obtained
with as few iterations as possible.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China (61501276, 61772294, 61973179), the China Postdoctoral Science
Foundation (2016M592139), and the Qingdao Postdoctoral Applied Research Project
(2015120).

REFERENCES

[1] W. Zhang, L. Dong, T. Zhang and W. Xu, Enhancing underwater image via color correction and
bi-interval contrast enhancement, Signal Processing: Image Communication, vol.90, 116030, 2021.

[2] A. M. Chaudhry, M. M. Riaz and A. Ghafoor, Underwater visibility restoration using dehazing,
contrast enhancement and filtering, Multimedia Tools and Applications, vol.78, no.19, pp.28179-
28187, 2019.

[3] M. I. Ashiba, M. S. Tolba, A. S. El-Fishawy and F. E. Abd El-Samie, Hybrid enhancement of infrared
night vision imaging system, Multimedia Tools and Applications, vol.79, no.9, pp.6085-6108, 2020.

[4] Y. Shin, M. Kim, K.-W. Pak and D. Kim, Practical methods of image data preprocessing for en-
hancing the performance of deep learning based road crack detection, ICIC Express Letters, Part B:
Applications, vol.11, no.4, pp.373-379, 2020.

[5] K. Xia, Q. Zhou, Y. Jiang, B. Chen and X. Gu, Deep residual neural network based image enhance-
ment algorithm for low dose CT images, Multimedia Tools and Applications, pp.1-24, 2021.

[6] G. A. Baxes, Digital Image Processing: Principles and Applications, John Wiley & Sons, Inc., 1994.
[7] J. S. Lim, Two-dimensional signal and image processing, Englewood Cliffs, 1990.
[8] K. Zuiderveld, Contrast limited adaptive histogram equalization, Graphics Gems, pp.474-485, 1994.
[9] S.-C. Huang, F.-C. Cheng and Y.-S. Chiu, Efficient contrast enhancement using adaptive gam-

ma correction with weighting distribution, IEEE Transactions on Image Processing, vol.22, no.3,
pp.1032-1041, 2012.

[10] A.  Loza, D. R. Bull, P. R. Hill and A. M. Achim, Automatic contrast enhancement of low-light images
based on local statistics of wavelet coefficients, Digital Signal Processing, vol.23, no.6, pp.1856-1866,
2013.

[11] J. Yang, Enhancement of LLLIs with improved BCP and matrix completion, Electronics Letters,
vol.53, no.9, pp.586-588, 2017.

[12] W. Shi, C. Chen, F. Jiang, D. Zhao and W. Shen, Group-based sparse representation for low lighting
image enhancement, 2016 IEEE International Conference on Image Processing (ICIP), pp.4082-
4086, 2016.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.3, 2022 953

[13] D. J. Jobson, Z. Rahman and G. A. Woodell, Properties and performance of a center/surround
retinex, IEEE Transactions on Image Processing, vol.6, no.3, pp.451-462, 1997.

[14] R. Benzi, A. Sutera and A. Vulpiani, The mechanism of stochastic resonance, Journal of Physics A:
Mathematical and General, vol.14, no.11, p.453, 1981.

[15] R. Benzi, G. Parisi, A. Sutera and A. Vulpiani, Stochastic resonance in climatic change, Tellus,
vol.34, no.1, pp.10-16, 1982.

[16] X. Zeng, X. Lu, Z. Liu and Y. Jin, An adaptive fractional stochastic resonance method based on
weighted correctional signal-to-noise ratio and its application in fault feature enhancement of wind
turbine, ISA Transactions, 2021.

[17] V. Sorokin and I. Demidov, On representing noise by deterministic excitations for interpreting the
stochastic resonance phenomenon, Philosophical Transactions of The Royal Society A Mathematical
Physical and Engineering Sciences, vol.379, no.2192, 20200229, 2021.

[18] F. Guo, X. Wang, M. Qin, X. Luo and J. Wang, Resonance phenomenon for a nonlinear system with
fractional derivative subject to multiplicative and additive noise, Physica A: Statistical Mechanics
and Its Applications, vol.562, 125243, 2021.

[19] J. Yu, L. Zhao, H. Yu and C. Lin, Barrier Lyapunov functions-based command filtered output
feedback control for full-state constrained nonlinear systems, Automatica, vol.105, pp.71-79, 2019.

[20] J. Yu, P. Shi and L. Zhao, Finite-time command filtered backstepping control for a class of nonlinear
systems, Automatica, vol.92, pp.173-180, 2018.

[21] S. Ikemoto, Noise-modulated neural networks for selectively functionalizing sub-networks by exploit-
ing stochastic resonance, Neurocomputing, vol.448, pp.1-9, 2021.

[22] C. Ma and J. Ao, Nonlinear average stochastic resonance for image enhancement, The International
Journal of Electrical Engineering & Education, DOI: 10.1177/0020720920940613, 2020.

[23] A. R. Bulsara, Tuning in to noise, Physics Today, vol.49, no.3, pp.39-45, 1996.
[24] Z. Khan, J. Ni, X. Fan and P. Shi, An improved k-means clustering algorithm based on an adaptive

initial parameter estimation procedure for image segmentation, International Journal of Innovative
Computing, Information and Control, vol.13, no.5, pp.1509-1525, 2017.

[25] J. Zhao, Y. Ma, Z. Pan and H. Zhang, Research on image signal identification based on adaptive
array stochastic resonance, Journal of Systems Science and Complexity, pp.1-15, 2021.

[26] N. Wang and A. Song, Parameter-induced logical stochastic resonance, Neurocomputing, vol.155,
pp.80-83, 2015.

[27] L. Xiao, R. Bajric, J. Zhao, J. Tang and X. Zhang, An adaptive vibrational resonance method based
on cascaded varying stable-state nonlinear systems and its application in rotating machine fault
detection, Nonlinear Dynamics, vol.103, no.1, pp.715-739, 2021.

[28] C. Wu, Z. Wang, J. Yang, D. Huang and M. A. F. Sanjuán, Adaptive piecewise re-scaled stochastic
resonance excited by the LFM signal, The European Physical Journal Plus, vol.135, no.1, p.130,
2020.

[29] D. Zhou, D. Huang, J. Hao, Y. Ren, P. Jiang and X. Jia, Vibration-based fault diagnosis of the natural
gas compressor using adaptive stochastic resonance realized by generative adversarial networks,
Engineering Failure Analysis, vol.116, 104759, 2020.

[30] B.-Q. Fan, Y.-J. Zhang, Y. He, K. You, M.-Q. Li, D.-Q. Yu, H. Xie and B.-E. Lei, Adaptive monos-
table stochastic resonance for processing UV absorption spectrum of nitric oxide, Optics Express,
vol.28, no.7, pp.9811-9822, 2020.

[31] J. Li, X. Wang and H. Wu, Rolling bearing fault detection based on improved piecewise unsaturated
bistable stochastic resonance method, IEEE Transactions on Instrumentation and Measurement,
vol.70, pp.1-9, 2020.

[32] R. Chouhan, R. K. Jha and P. K. Biswas, Enhancement of dark and low-contrast images using
dynamic stochastic resonance, IET Image Processing, vol.7, no.2, pp.174-184, 2013.

[33] U. A. Nnolim, Single image de-hazing using adaptive dynamic stochastic resonance and wavelet-
based fusion, Optik, vol.195, 163111, 2019.

[34] M. Hussain and M. Rehan, Nonlinear time-delay anti-windup compensator synthesis for nonlinear
time-delay systems: A delay-range-dependent approach, Neurocomputing, vol.186, pp.54-65, 2016.

[35] A. Nomura, Initial conditions of reaction-diffusion algorithm designed for image edge detection,
International Conference on Image Analysis and Recognition, pp.246-251, 2019.

[36] M. Rehan, K.-S. Hong and M. Aqil, Synchronization of multiple chaotic FitzHugh-Nagumo neurons
with gap junctions under external electrical stimulation, Neurocomputing, vol.74, no.17, pp.3296-
3304, 2011.



954 D. WANG, Y. MA, Z. PAN AND N. ZHANG

[37] L. Shi, D. Li, X. Li and X. Wang, Dynamics of stochastic FitzHugh-Nagumo systems with additive
noise on unbounded thin domains, Stochastics and Dynamics, vol.20, no.3, 2050018, 2020.

[38] S. Li and J. Huang, Non-Gaussian noise induced stochastic resonance in FitzHugh-Nagumo neural
system with time delay, AIP Advances, vol.10, no.2, 025310, 2020.

[39] W. Ke, Q. He and Y. Shu, Functional self-excitatory autapses (auto-synapses) on neocortical pyra-
midal cells, Neuroscience Bulletin, vol.35, no.6, pp.1106-1109, 2019.

[40] Y. Li, G. Schmid, P. Hänggi and L. Schimansky-Geier, Spontaneous spiking in an autaptic Hodgkin-
Huxley setup, Physical Review E, vol.82, no.6, 061907, 2010.

[41] Y. Xu, Y. Guo, G. Ren and J. Ma, Dynamics and stochastic resonance in a thermosensitive neuron,
Applied Mathematics and Computation, vol.385, 125427, 2020.

[42] A. V. Andreev and A. N. Pisarchik, Mathematical simulation of coherent resonance phenomenon
in a network of Hodgkin-Huxley biological neurons, Saratov Fall Meeting 2018: Computations and
Data Analysis: from Nanoscale Tools to Brain Functions, vol.11067, 1106708, International Society
for Optics and Photonics, 2019.

[43] T. C. Gard, Introduction to Stochastic Differential Equations, Marcel Dekker Ins., New York, 1998.
[44] J. E. Parker and K. M. Short, Sigmoidal synaptic learning produces mutual stabilization in chaotic

FitzHugh-Nagumo model, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.30, no.6,
063108, 2020.

[45] D. Brown, J. Feng and S. Feerick, Variability of firing of Hodgkin-Huxley and FitzHugh-Nagumo
neurons with stochastic synaptic input, Physical Review Letters, vol.82, no.23, 4731, 1999.

[46] L. Xu, F. Duan, D. Abbott and M. D. McDonnell, Optimal weighted suprathreshold stochastic
resonance with multigroup saturating sensors, Physica A: Statistical Mechanics and Its Applications,
vol.457, pp.348-355, 2016.

[47] A. H. Sayed and T. Kailath, A state-space approach to adaptive RLS filtering, IEEE Signal Pro-
cessing Magazine, vol.11, no.3, pp.18-60, 1994.

[48] D. P. Mandic, S. Kanna and A. G. Constantinides, On the intrinsic relationship between the least
mean square and Kalman filters [lecture notes], IEEE Signal Processing Magazine, vol.32, no.6,
pp.117-122, 2015.

[49] E. Itzcovich, M. Riani and W. G. Sannita, Stochastic resonance improves vision in the severely
impaired, Scientific Reports, vol.7, no.1, pp.1-8, 2017.

[50] N. Gupta and R. K. Jha, Enhancement of dark images using dynamic stochastic resonance with
anisotropic diffusion, Journal of Electronic Imaging, vol.25, no.2, 023017, 2016.

[51] Z. Wang, H. R. Sheikh and A. C. Bovik, No-reference perceptual quality assessment of JPEG com-
pressed images, Proc. of International Conference on Image Processing, vol.1, pp.I-I, 2002.

[52] J. Mukherjee and S. K. Mitra, Enhancement of color images by scaling the DCT coefficients, IEEE
Transactions on Image Processing, vol.17, no.10, pp.1783-1794, 2008.

[53] N. Gupta, R. K. Jha and S. K. Mohanty, Enhancement of dark images using dynamic stochastic
resonance in combined DWT and DCT domain, 2014 9th International Conference on Industrial
and Information Systems (ICIIS), pp.1-6, 2014.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.3, 2022 955

Author Biography

Dongcheng Wang received the B.S. degree from Qufu Normal University, Rizhao,
China, in 2019. He is currently pursuing the M.S. degree at Qingdao University,
Qingdao, China. His research interests are nonlinear signal processing and image
processing.

Yumei Ma received B.Eng. and M.Eng. degrees from Shandong University in 2002
and 2006 respectively and D.Eng. degree from Qingdao University in 2014. She
is an associate professor at the College of Computer Science and Technology of
Qingdao University. Her research interests are nonlinear signal processing and image
processing. She has presided over one National Natural Science Foundation project
and two provincial and ministerial research projects. She has published more than
50 academic papers.

Zhenkuan Pan received Ph.D. degree from Shanghai Jiao Tong University in 1992
and B.E. degree from Northwestern Polytechnical University in 1987 respectively.
He is a professor in the College of Computer Science and Technology, Qingdao
University. He has authored and co-authored more than 300 academic papers in the
areas of computer vision and dynamics. His research interests include variational
models of image and geometry processing, multibody system dynamics, etc.

Ning Zhang received the B.S. degree from Qingdao Institute of Technology, Qing-
dao, China, in 2019. He is currently pursuing the M.S. degree at Qingdao University,
Qingdao, China. His research interests are nonlinear signal processing and image
processing.


	1. Introduction
	2. FHN Neuron Model and Performance Evaluation
	2.1. Experimental process
	2.2. Self-synaptic FHN neuron model
	2.3. System parameters selection through adaptive algorithm
	2.4. Image performance evaluation indicator

	3. Experimental Results and Performance Analysis
	3.1. Bookcase image
	3.2. Chopsticks frame image
	3.3. Tableware image

	4. Conclusion
	Acknowledgment
	REFERENCES

