
International Journal of Innovative
Computing, Information and Control ICIC International c⃝2022 ISSN 1349-4198
Volume 18, Number 4, August 2022 pp. 1037–1053

CONSTRAINED ROLE-ENGINEERING OPTIMIZATION USING
BOOLEAN MATRIX DECOMPOSITION AND INTEGER LINEAR

PROGRAMMING TECHNIQUES

Wei Sun

School of Computer and Information Technology
Xinyang Normal University

No. 237, Nanhu Road, Xinyang 464000, P. R. China
sunny810715@xynu.edu.cn

Received December 2021; revised April 2022

Abstract. Role-based access control (RBAC) is a widely popular access control mech-
anism because of its convenience for authorization administration, as well as various
security policies, such as the separation-of-duty constraint and cardinality constraint. In
recent few years, role-engineering technology has emerged as an efficient approach to
constructing optimal RBAC systems. However, the bottom-up approaches lack flexibility
and extendibility as the organizational requirements change dynamically. Furthermore,
most conventional methods do not consider multiple cardinality constraints. To address
these issues, this paper proposes a novel role-engineering method. First, to flexibly meet
diverse organizational requirements while enhancing the security of role-engineering pro-
cesses, according to different evaluation measures or optimization objectives, we define
several variants of the optimization problem with the cardinality constraint using Boolean
matrix decomposition technique. Second, we present a unified modelling framework for
these variants using integer linear programming technique, and propose heuristic opti-
mization algorithms in the bottom-up way, in order to verify whether the constraints can
be satisfied in the constructed access control model. The experimental evaluations demon-
strate the effectiveness and efficiency of the proposed method.
Keywords: Role-based access control, Role engineering, Cardinality constraint, Boolean
matrix decomposition, Integer linear programming

1. Introduction. With the rapid development and comprehensive application of net-
work information technology, there are large amounts of information storages as well as
frequent data exchanges in large-scale and complex management information systems [1].
Role-based access control (RBAC) mechanism, which is featured by its convenience for
authorization administration and various security policies, is widely accepted and adopted
in organizations of different sizes [2-7]. With the successful deployments of RBAC systems,
accomplishing the task of devising a complete, correct and effective role set and construct-
ing a good RBAC system become more and more crucial. As a solution to facilitate the
process of migrating from a non-RBAC system to an RBAC system, role-engineering tech-
nology has been proposed in the literature, which consists of two main approaches: The
top-down [8], and bottom-up [9].

The top-down role-engineering approach defines particular roles for job responsibilities,
and decomposes them into smaller units by analyzing the business processes in detail.
Once the required privileges for performing specific tasks are identified, they are grouped
into appropriate functional roles [10]. This process is repeated until all the job functions

DOI: 10.24507/ijicic.18.04.1037

1037

1038 W. SUN

are covered. Such technique discovers roles that can well reflect the functional require-
ments of organizations. However, it is very complex and tedious to identify the access
privileges from a large number of business processes, when there are thousands of users
and millions of permissions. On the other hand, the bottom-up approach, also known
as role mining, starts from the existing user-permission assignments, and then aggregates
them into roles by applying data mining techniques. It has received considerable attention
in recent years, and numerous role mining approaches have been developed subsequently
[11-14]. The role-mining problem can be viewed as an instantiation of Boolean matrix
decomposition [15,16]. Although a Boolean matrix can be decomposed in various ways,
different optimal decomposition solutions may match various semantics with respect to
different criteria. Different RMP variant can help pick and choose the mining results
that perfectly suit a particular organizational need. However, most existing role mining
methods lack flexibility and extendibility, and cannot handle all these RMP variants in a
unified way. System engineers need to deal with each problem variant individually, and
these methods cannot mine valuable or meaningful results when the organizational needs
change dynamically.
A key characteristic of the RBAC mechanism is that it allows the specification and

enforcement of various security policies [17], which can reflect the constraint requirements
of organizations while ensuring system security. The commonly used constraint in actual
scenarios is referred to as the cardinality constraint. It involves the user-to-role cardinality
constraint (URCC), permission-to-role cardinality constraint (PRCC), role-to-user cardi-
nality constraint (RUCC) and role-to-permission cardinality constraint (RPCC), which
restrict the maximum number of roles assigned to a user, the maximum number of roles
to which a permission can be assigned, the maximum number of permissions assigned to
a role, and the maximum number of users to which a role can be assigned, respectively
[18]. For example, the general-manager role in a company is only assigned to one person;
ordinary users cannot possess too many roles; otherwise there is the possibility of the
abuse of privileges. Moreover, meeting one cardinality constraint should not violate an-
other one in the constrained role-engineering process. Specifically, if any role r meets the
URCC constraint in the optimization process, then any permission assigned to r should
not violate the PRCC constraint. Similarly, if any role r meets the PRCC constraint,
then any user possessing r should not violate the URCC constraint. In the approaches
for role engineering with cardinality constraints, however, most existing methods do not
consider the URCC and PRCC constraints simultaneously.
To address the above-mentioned issues, this paper proposes a novel method, called

constrained role-engineering optimization using Boolean matrix decomposition and integer
linear programming techniques (CREO BMD&ILP). In summary, the main contributions
of this work are as follows.

1) To flexibly suit the organizational needs, while enhancing the security of role engineer-
ing, we convert the role-engineering problem into the Boolean matrix decomposition
(BMD) problem, and define several variants of the optimization problem with multiple
cardinality constraints, according to different optimization objectives.

2) We present a unified modelling representation for all these variants using integer linear
programming technique (ILP). To verify whether the cardinality constraints can be
satisfied in the constructed RBAC model, we propose heuristic algorithms to uniformly
solve the optimization problems, and evaluate its performance using synthetic datasets.

The rest of the paper is organized as follows. In Section 2, we discuss the related work
and present some necessary preliminaries. In Section 3, we propose a novel constrained
role-engineering method, and present heuristic algorithms. We implement the experiments

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.4, 2022 1039

and present the performance evaluations and comparisons in Section 4. Section 5 concludes
the paper and discusses future work.

2. Related Work and Preliminaries.

2.1. Methods of role engineering. According to whether or not constraints are taken
into account, the state-of-the-art studies are further divided into two categories: The
unconstrained role engineering, and role engineering with constraints.

Vaidya et al. [15] converted the role mining problem into a Boolean matrix decomposi-
tion problem, and presented a definition for the basic role mining problem (basic RMP),
which aims to discover a minimal set of roles that fully cover all the permission assign-
ments. Lu et al. [16] used the methods of Boolean matrix decomposition and integer
linear programming to propose a unified framework for several variants of role mining,
including the basic RMP, δ-approx RMP, edge-RMP and min-noise RMP, and present-
ed the heuristic algorithms for solving these problems. However, the mining processes
are complex and the mining scales are very large. To reduce the complexity of solving
problems, Colantonio et al. [19] separated the dataset of user-permission assignments into
several subsets. To reduce the mining scale, Verde et al. [20] converted the role mining
problem into a clustering problem, which compresses each single partition into a cluster,
extracts similar features from different clusters, and ensures the integrity of the mining
results. The constraints play a crucial role for ensuring system security. However, none
of these methods take consideration of constraints in the role engineering processes.

In order to limit the maximum number of users or that of permissions related to a role,
Ma et al. [18] proposed a role mining algorithm to generate roles using the permission
cardinality constraints and user cardinality constraints. In order to limit the maximum
number of roles assigned to a user and a related permission simultaneously, Harika et al.
proposed two optimization methods for role mining: The post processing and concurrent
processing. The former mines roles without considering the cardinality constraints, and
constructs the initial user-role and role-permission assignments. Then these assignment
relationships are checked for constraint violation in the optimization phase and appro-
priately re-assigned, if necessary [21]. The latter implements the optimization with the
double cardinality constraints, during the process of role mining. Blundo et al. [22] com-
prehensively examined different types of cardinality constraints, defined the constrained
mining problem for each constraint type, and presented efficient heuristics for solving
these problems. Subsequently, to restrict the number of roles assigned to a user and the
number of permissions assigned to a role simultaneously, they presented two heuristics to
produce roles compliant with both the constraints [23]. In addition, other constraints are
also considered in the literature. Sarana et al. [24] proposed three methods for role opti-
mization with the separation-of-duty constraints, during or after the mining process. To
eliminate the redundancy of the mining roles, while satisfying single or double cardinality
constraints, Sun et al. [25] used the cluster partitioning and compressing technologies,
and proposed a novel role-mining optimization method.

Obviously, there are two main drawbacks in the existing studies. The first drawback is
that, the bottom-up approaches lack flexibility and extendibility, and they cannot generate
valuable or meaningful roles when the organizational requirements change dynamically.
The second is that most existing studies do not consider the URCC and PRCC constraints
simultaneously. In this work, we propose a novel role-engineering optimization method,
called CREO BMD&ILP, in order to flexibly satisfy different optimization objectives for
organizational requirements, while ensuring the system security. We also evaluate the
performance of the proposed method using the synthetic datasets.

1040 W. SUN

2.2. Preliminaries. Before actually proposing our novel method, we present some pre-
liminaries that are discussed in this paper, including the basic components of role engi-
neering, several representative RMP variants, and cardinality constraints.

2.2.1. Basic components of role engineering. According to the NIST standard of RBAC,
conventional role engineering consists of the following basic components:

1) U , P and R are the basic set elements of RBAC, which represent the sets of users,
permissions, and roles, respectively;

2) UPA ⊆ U × P , which represents a many-to-many mapping relationship of user-
permission assignments;

3) URA ⊆ U × R, which represents a many-to-many mapping relationship of user-role
assignments;

4) RPA ⊆ R × P , which represents a many-to-many mapping relationship of role-
permission assignments;

5) user roles(u) = {r|∃r ∈ R : (u, r) ∈ URA}, which represents the set of roles assigned
to user u;

6) role users(r) = {u|∃u ∈ U : (u, r) ∈ URA}, which represents the set of users associ-
ated with role r;

7) perm roles(p) = {r|∃r ∈ R : (r, p) ∈ RPA}, which represents the set of roles associated
with permission p;

8) role perms(r) = {p|∃p ∈ P : (r, p) ∈ RPA}, which represents the set of permissions
assigned to role r;

9) user perms(u) = {p|∃p ∈ P, ∃r ∈ R : ((u, r) ∈ URA) ∧ ((r, p) ∈ RPA)}, which
represents the set of permissions assigned to user u in RBAC;

10) perm users(p) = {u|∃u ∈ U,∃r ∈ R : ((u, r) ∈ URA) ∧ ((r, p) ∈ RPA)}, which
represents the set of users associated with permission p in RBAC.

For convenience, the UPA, URA, and RPA are also used to represent Boolean matrices
corresponding to their respective assignment relationships.

2.2.2. Several representative RMP variants. According to different constraint conditions
and objectives in the mining process, we consider four different RMP variants with no
constraints, including the basic RMP, δ-approx RMP, edge-RMP, and min-noise RMP.
They can be converted into the BMD problem as follows [16].
The basic RMP states that, given a set U of users, a set P of permissions, and a matrix

UPA of user-permission assignments, find a set R of roles, a matrix URA of user-role
assignments, and a matrix RPA of role-permission assignments, such that the UPA can
be precisely Boolean decomposed as the URA and RPA, and the number of the mining
roles is minimum. This process is formalized as follows:{

min |R|
URA⊗ RPA = UPA

(1)

Different from the basic RMP, the δ-approx RMP allows the matrix reconstruction with
an error value δ when the UPA is approximately Boolean decomposed as the URA and
RPA, which is formalized as follows:{

min |R|
||URA⊗ RPA− UPA||1 ≤ δ

(2)

Different from the basic RMP, the edge-RMP aims to minimize the summing of the
number of the user-role assignments and that of the role-permission assignments, which
is formalized as follows:

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.4, 2022 1041{
min(|URA|+ |RPA|)
URA⊗ RPA = UPA

(3)

At last, the min-noise RMP aims to minimize the reconstruction error, while considering
that the number of the mining roles is less than a fixed value k, which is formalized as
follows: {

min ||URA⊗ RPA− UPA||1
|R| ≤ k

(4)

Although there are similarities and differences towards the constraint conditions and
mining objectives for all these RMP variants, the basic RMP is the primary RMP variant.
The Fast Miner method, which is used to solve the basic RMP, mainly consists of the
following steps:

1) According to the hash mapping rule, a given access control matrix is converted into
the user-permission assignment relationship;

2) To reduce the role-engineering scale, different users who have the same permissions
in the permission assignments are grouped together, and an initial set of roles is con-
structed.

All the potentially interesting roles are identified by implementing intersections between
any pair of the initial roles, and they are regarded as new candidate roles.

2.2.3. Cardinality constraint. Two typical cardinality constraints, URCC and PRCC,
which have been proven to be mutually exclusive [21], are taken into consideration.

The URCC states that, given a set U of users, a set R of roles, and threshold MRC user,
the maximum number of roles assigned to any user should not exceed MRC user. This can
be formalized as follows:

∀u ∈ U : |user roles(u) ∩R| ≤ MRC user (5)

The PRCC states that, given a set P of permissions, a set R of roles, and threshold
MRC perm, the maximum number of roles to which any permission can be assigned should
not exceed MRC perm. This can be formalized as follows:

∀p ∈ P : |perm roles(p) ∩R| ≤ MRC perm (6)

3. Proposed Method. In this section, we propose a novel research method, named as
CREO BMD&ILP, which is twofold: 1) Definitions for different constrained RMP variants
via Boolean matrix decomposition, and 2) modelling representation for all these RMP
variants via integer linear programming in a unified form. Specifically, we first construct
an unconstrained role engineering system according to the initial access control matrix.
Subsequently, we convert the role-engineering problem with the URCC and PRCC into
the BMD problem, and use the 0-1 programming method to uniformly model different
constrained RMP variants. Last, we implement the role-engineering optimization, and
present heuristic algorithms to further verify whether the cardinality constraints can be
satisfied in the constructed model. An overall view of the proposed framework is shown
in Figure 1.

3.1. Problem definitions. Based on the basic RMP, δ-approx RMP, edge-RMP and
min-noise RMP, as well as the cardinality constraints URCC and PRCC, we present the
definitions for the optimization problems using the BMD method as follows.

Definition 3.1.
(Basic role-engineering optimization problem, basic REOPURCC&PRCC). Given a matrix
UPAn×m of user-permission assignments, the initial Boolean decomposed matrices for
the UPAn×m, and two particular constraint thresholds MRC user and MRC perm, find two

1042 W. SUN

Figure 1. Overview of the proposed role-engineering optimization framework

matrices URAn×k and RPAk×m such that, 1) the number k of the optimal roles, which is
regarded as the optimization objective, should be minimum; 2) the UPAn×m is precisely
Boolean decomposed as the URAn×k and RPAk×m to ensure the integrity of the matrix
reconstruction, the number of roles assigned to any user is less than or equal to MRC user,
and/or the number of roles to which any permission can be assigned is less than or equal
to MRC perm, which are together regarded as the constraint conditions. This process can
be formalized as follows:

min k

URAn×k ⊗ RPAk×m = UPAn×m∑
j

URA[i][j] ≤ MRC user ≤ k, ∀i ∈ [1, n]∑
j

RPA[j][t] ≤ MRC perm ≤ k, ∀t ∈ [1,m]

(7)

Definition 3.2.
(δ-approx role-engineering optimization problem, δ-approx REOPURCC&PRCC). Compared
to Definition 3.1, the integrity constraint becomes that, the UPAn×m can be approximately
reconstructed by the URAn×k and RPAk×m with a reconstruction error δ. This process
can be formalized as follows:

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.4, 2022 1043

min k

||URAn×k ⊗ RPAk×m − UPAn×m||1 ≤ δ∑
j

URA[i][j] ≤ MRC user ≤ k, ∀i ∈ [1, n]∑
j

RPA[j][t] ≤ MRC perm ≤ k, ∀t ∈ [1,m]

(8)

Definition 3.3.
(Edge-role-engineering optimization problem, edge-REOPURCC&PRCC). Compared to Def-
inition 3.1, the optimization objective becomes that, the summing of the number of the
user-role assignments and that of the role-permission assignments should be minimum.
This process can be formalized as follows:

min(|URAn×k|+ |RPAk×m|)
URAn×k ⊗ RPAk×m = UPAn×m∑
j

URA[i][j] ≤ MRC user ≤ k, ∀i ∈ [1, n]∑
j

RPA[j][t] ≤ MRC perm ≤ k, ∀t ∈ [1,m]

(9)

Definition 3.4.
(Min-noise role-engineering optimization problem, min-noise REOPURCC&PRCC). Com-
pared to the above definitions, the optimization objective becomes that, the reconstruction
error should be minimum when the number k of the mining roles is no more than k′. This
process can be formalized as follows:

min ||URAn×k ⊗ RPAk×m − UPAn×m||1
k ≤ k′∑
j

URA[i][j] ≤ MRC user ≤ k, ∀i ∈ [1, n]∑
j

RPA[j][t] ≤ MRC perm ≤ k, ∀t ∈ [1,m]

(10)

3.2. Complexity analysis. Now we analyze the computational complexity of the above
four optimization problems.

Statement 1. The basic REOPURCC&PRCC , δ-approx REOPURCC&PRCC ,
edge-REOPURCC&PRCC , and min-noise REOPURCC&PRCC are all NP-hard.

The basic RMP is known to be NP -hard, as it can be converted into the set cover
problem that is NP -hard. Notice that, the basic RMP can be viewed as a special case of
the basic REOPURCC&PRCC when both the constraint thresholds take values of the num-
ber of mining roles. Since the decision version of the basic RMP has been proven to be
NP -complete [16], so is the basic REOPURCC&PRCC. Similarly, the basic REOPURCC&PRCC

can be viewed as a special case of the δ-approx REOPURCC&PRCC when the reconstruction
error takes a value of 0, and then the δ-approx REOPURCC&PRCC is also NP -hard. Fur-
ther, since the difference between the basic REOPURCC&PRCC and edge-REOPURCC&PRCC

is only in terms of the optimization objective, the edge-REOPURCC&PRCC is NP -hard.
Last, the δ-approx REOPURCC&PRCC can be viewed as a special case of the min-noise
REOPURCC&PRCC when the reconstruction error is less than δ, while minimizing the num-
ber of mining roles, then the min-noise REOPURCC&PRCC is also NP -hard.

3.3. Unified modelling framework. The differences among all the variants lie in the
constraint conditions and optimization objectives. The basic REOPURCC&PRCC is the
most basic and important variant, and the others can be easily extended once the basic
REOPURCC&PRCC is modelled. Here, for the convenience of discussion, Boolean matrices

1044 W. SUN

Xn×m, Cn×k, and Rk×m are used to represent matrices UPAn×m, URAn×k, and RPAk×m,
respectively, and the variants xit, cij and rjt are used to denote the cells of matrices Xn×m,
Cn×k, and Rk×m, respectively.
The ILP problem is an important branch of operational research, and it is widely used

in economic analysis, operation management and engineering technology [16]. The 0-1
programming method in the ILP is often used to solve the practical problems such as the
assignment, location, and delivery. According to Definitions 3.1-3.4, the unified modelling
representations for all the RMP variants via 0-1 programming are presented as follows.
Step 1. Suppose there are q candidate roles: r1, r2, . . . , rq, and the set of all these roles

can be represented as the matrix R. Next, define a new set {d1, d2, . . . , dq} of identifier
variables, in which role rj is present when dj = 1; otherwise, rj is absent. Thus, the
number of roles can be denoted as k =

∑q
j=1 dj. Furthermore, several observations can

be concluded as follows.

1) To ensure the integrity of the optimization process, if one user has a permission, which
is represented as xit = 1, then at least one role containing permission t should be
assigned to user i, which can be denoted as

∑q
j=1 cij · rjt ≥ 1, ∀xit = 1; otherwise, any

role containing permission t should not be assigned to user i, which can be denoted as∑q
j=1 cij · rjt = 0, ∀xit = 0.

2) At least one user has role rj when dj=1, that is, at least one variable in {c1j, c2j, . . . , cnj}
has a value of 1, which can be denoted as ∀i : dj ≥ cij. Similarly, at least one variable
in {rj1, rj2, . . . , rjm} has a value of 1, which can be denoted as ∀t : dj ≥ rjt.

3) The cardinality constraints URCC and PRCC should be taken into consideration,
which can be denoted as

∑q
j=1 cij ≤ MRC user, and

∑q
j=1 rjt ≤ MRC perm, respectively.

Based on these analyses, we model the basic REOPURCC&PRCC in Equation (11) as
follows, where min

∑q
j=1 dj represents the optimization objective, and the other parts of

the equation represent the constraint conditions.

min
q∑

j=1

dj

s.t.



q∑
j=1

cij · rjt ≥ 1, ∀xit = 1

q∑
j=1

cij · rjt = 0, ∀xit = 0

q∑
j=1

cij ≤ MRC user

q∑
j=1

rjt ≤ MRC perm

dj ≥ cij, dj ≥ rjt, dj ∈ {0, 1}, cij ∈ {0, 1}, rjt ∈ {0, 1}
1 ≤ j ≤ q, 1 ≤ i ≤ n, 1 ≤ t ≤ m

(11)

Step 2. Compared with the basic REOPURCC&PRCC, the optimization objective of the
δ-approx REOPURCC&PRCC remains unchanged, while the constraint conditions vary and
tolerate a reconstruction error. Thus, we only need to update the constraints and follow
the same target function as shown in Step 1. We model the δ-approx REOPURCC&PRCC

in Equation (12), where min
∑q

j=1 dj represents the optimization objective, and the other
parts of the equation represent the updated constraint conditions. The detailed descrip-
tions of the constraints are as follows.

1) In the first two constraint conditions, an auxiliary variable x′
it is employed to relax

the completeness constraint and make sure the reconstruction matrix is acceptable.

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.4, 2022 1045

Without x′
it, the constraint is to enforce the exact permission coverage, as shown in

Equation (11).
2) The third constraint indicates that the reconstruction error does not exceed a specific

value δ.
3) The other constraints remain consistent with those in Equation (11).

min
q∑

j=1

dj

s.t.



q∑
j=1

cij · rjt + x′
it ≥ 1, ∀xit = 1

q∑
j=1

cij · rjt − x′
it = 0, ∀xit = 0

n∑
i=1

m∑
t=1

x′
it ≤ δ

q∑
j=1

cij ≤ MRC user

q∑
j=1

rjt ≤ MRC perm

dj ≥ cij, dj ≥ rjt, dj ∈ {0, 1}, cij ∈ {0, 1}, rjt ∈ {0, 1}, x′
it ∈ {0, 1}

1 ≤ j ≤ q, 1 ≤ i ≤ n, 1 ≤ t ≤ m

(12)

Step 3. Compared with the basic REOPURCC&PRCC, the constraint conditions of the
edge-REOPURCC&PRCC remain unchanged, while the optimization objective varies. Thus,
we only need to update the target function and follow the same constraints as shown in
Step 1. To reduce the space cost of the modelling, users with the same permission set
are clustered for a given set R of candidate roles. Assume that there are n′ different
permission sets, the numbers of users corresponding to these sets are u1, u2, . . . , un′ , re-
spectively. Then, we model the edge-REOPURCC&PRCC in Equation (13) as follows, where

min
(∑n′

i=1

(
ui ·
∑q

j=1 cij

)
+
∑q

j=1

(
dj ·

∑m
t=1 rjt

))
represents the updated optimization

objective, and the other parts of the equation represent the constraint conditions.

min

(
n′∑
i=1

(
ui ·

q∑
j=1

cij

)
+

q∑
j=1

(
dj ·

m∑
t=1

rjt

))

s.t.



q∑
j=1

cij · rjt ≥ 1, ∀xit = 1

q∑
j=1

cij · rjt = 0, ∀xit = 0

q∑
j=1

cij ≤ MRC user

q∑
j=1

rjt ≤ MRC perm

dj ≥ cij, dj ≥ rjt, dj ∈ {0, 1}, cij ∈ {0, 1}, rjt ∈ {0, 1}
1 ≤ j ≤ q, 1 ≤ i ≤ n′, 1 ≤ t ≤ m

(13)

Step 4. Compared with the δ-approx REOPURCC&PRCC, both the optimization ob-
jective and constraint conditions vary for the min-noise REOPURCC&PRCC. To address
these issues, we need to make some improvements: Remove the expressions with the slack
variables from the constraint conditions, construct a new objective function using these
slack variables, and add a new expression of the upper limit number of roles into the con-
straint conditions. We model the min-noise REOPURCC&PRCC in Equation (14) as follows,

1046 W. SUN

where min
∑n

i=1

∑m
t=1 x

′
it represents the optimization objective, and the other parts of the

equation are the constraint conditions.

min
n∑

i=1

m∑
t=1

x′
it

s.t.



q∑
j=1

dj ≤ k′

q∑
j=1

cij ≤ MRC user

q∑
j=1

rjt ≤ MRC perm

dj ≥ cij, dj ≥ rjt, dj ∈ {0, 1}, cij ∈ {0, 1}, rjt ∈ {0, 1}, x′
it ∈ {0, 1}

1 ≤ j ≤ q, 1 ≤ i ≤ n, 1 ≤ t ≤ m

(14)

3.4. Heuristic algorithms. First, to construct an initial RBAC system, the Fast Miner
and BMD methods are used to mine various types of role sets according to the uncon-
strained RMP variants, as shown in Algorithm 1.

Algorithm 1. Initial construction of role engineering
Input: the original access control matrix Xn×m

Output: the initial role set Init Roles, and decomposed matrices Cn×k and Rk×m

The Fast Miner and BMD methods are adopted to derive Init Roles and configure
an initial RBAC system, in order to satisfy different RMP variants, such as the basic
RMP, δ-approx RMP, edge-RMP, and min-noise RMP.

Next, it is necessary to study how to implement both the URCC and PRCC in the
optimization process. For this purpose, a role set RU, which would not cause any new
violations to RPA, needs to be identified. Another role set RI, which would not cause
any new violations to URA, also needs to be identified. The optimization process with
the double cardinality constraints is presented in Algorithm 2.
In Algorithm 2, we first identify RU, RI, and determine the violating users or permis-

sions using a heuristic strategy in lines 2-4. Then, if user u is chosen, the first l roles are
chosen from RU ; if permission p is chosen, the first l roles are chosen from RI. Similar
to updating the URA and RPA using Algorithm 4 and Algorithm 5 in [25], the detailed
specifications of the algorithm are omitted owing to the limited space.

4. Experimental Analysis. To validate the effectiveness and efficiency of the CREO
BMD&ILP, we conduct experiments using synthetic datasets and evaluate its perfor-
mance in this section.

4.1. Performance evaluations. Taking the basic REOPURCC&PRCC,
edge-REOPURCC&PRCC and δ-approx REOPURCC&PRCC as the research objects, we ran-
domly construct synthetic matrices UPA, URA and RPA via Algorithm 1 with 80 number
of users, 250 number of permissions, and 20 number of initial roles, such that matrix
UPA is Boolean decomposed as matrices URA and RPA according to different optimized
variants.
First, we carry out Algorithm 2 in order to study how the constraint URCC and other

factors affect the optimized results of our method in the optimization phase, when the
value of the cardinality constraint varies from 2 to 8 with a step of 1. We take account of
the number of the constrained roles, and the size of the optimized assignment relationships
URA and RPA, as evaluation measures. The experimental results are shown in Figures

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.4, 2022 1047

Algorithm 2. Constrained role-engineering optimization
Input: the preprocessed results Cn×k and Rk×m, candidate role set Init Roles, and
thresholds MRC user and MRC perm

Output: the optimized role set Cons Roles, and updated matrices Cn×k and Rk×m

1. Create and identify functions count user roles(u), count role users(r),
count perm roles(p), and count role perms(r), respectively;

2. Identify RU, RI, such that
∀r ∈ RU, ∀p ∈ role perms(r) : count perm roles(p) ≤ MRCperm − 1;
∀r ∈ RI, ∀u ∈ role users(r) : count user roles(u) ≤ MRCuser − 1;

3. while ((∃u ∈ U : count user roles(u) > MRCuser) or (∃p ∈ P : count perm roles(p)
> MRCperm)) do

4. Choose violating users or violating permissions based on a heuristic strategy;
5. if user u is chosen then
6. l = count user roles(u)− (MRCuser − 1);
7. Choose the first l roles of u from RU with the greatest values of

count role users(r) to constitute set S;
8. Merge the permissions of all the l roles and denote the union as set PS;
9. Create a new role rnr such that role perms(rnr) = PS;
10. Update the RPA and URA via Algorithm 4 in [25];
11. else
12. l = count perm roles(p)− (MRCperm − 1);
13. Choose the first l roles of p from RI with the greatest values of

count role perms(r) to constitute set S;
14. Intersect the permissions of all the l roles and denote the intersection as set PS;
15. Create a new role rnr such that role perms(rnr) = PS;
16. Update the URA and RPA with rnr via Algorithm 5 in [25];
17. end if
18. end while

2-4. In Figure 2, the lateral axis represents the constraint threshold MRC user, and the
vertical axis represents the number of roles. In Figure 3, the lateral axis represents
MRC user, and the vertical axis represents the size of the assignments relationships URA
and RPA. In Figure 4, the lateral axis represents the approximation rate, simply denoted
as δ, which is calculated by |URA ⊗ RPA|/|UPA|, and the vertical axis represents the
number of roles.

Figure 2 demonstrates that the number of roles tends to decrease slightly as the value of
MRC user increases. When the value of MRC user increases to a certain value, the number
of roles tends to be stable and becomes unchanged. Specifically, the number of roles
does not obviously vary and remains close to 15 when the value of MRC user exceeds
6. However, the number of roles increases as MRC user decreases. When the value of
MRC user equals 2, the number of roles becomes 23. Figure 3 demonstrates the effects of
the constraint MRC user on the size of the relationships between URA and RPA, which
is also regarded as the administrative cost of the system. Obviously, it tends to decrease
as the value of MRC user increases, which is similar to the variation tendency of Figure
2. This is because the greater the value of MRC user is, the weaker the constraint will
be. More general roles are assigned to any user, in other words, when MRC user takes
a greater value, general roles that do not include many permissions are more practical
and can be utilized frequently. Thus, fewer irregular roles need to be generated, and the
number of roles and size of assignments do not vary considerably. On the contrary, the

1048 W. SUN

Figure 2. Optimized results for the basic REOPURCC&PRCC

Figure 3. Optimized results for the edge-REOPURCC&PRCC

Figure 4. Optimized results for the δ-approx REOPURCC&PRCC

less the value of MRC user, the stricter the constraint. When the constraint becomes strict
and takes a small value, each user is allowed to associate with few roles. Thus, these roles
need to possess more access permissions, in order to ensure that each user can still get
enough access permissions. As a result, the number of roles and size of the assignment
relationships increase remarkably. For the same dataset, in order to evaluate the effects
of the approximation ratio on the mining roles, the value of MRC user is fixed at 4, and
the value of δ varies from 0.6 to 1. From Figure 4 it is observed that, the number of roles
increases as δ increases. This is because the greater value of the approximation rate, the
better the integrity of the matrix reconstruction. Thus, more roles are needed for covering
the original permission assignments.
Similarly, we evaluate the effects of the constraint PRCC and other factors on the

optimized results, with respect to the same evaluation measures. The experimental results
are shown in Figures 5-7. Figure 5 shows that, when MRC perm ≥ 52, the number of roles
first decreases slightly and then grows to be stable as the value of MRC perm increases.
Specifically, when MRC perm equals 1, 231 roles are developed, and each role includes

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.4, 2022 1049

only one permission, which is not practical; when 2 ≤ MRC perm < 52, the number
of roles decreases remarkably from 231 to 35 with the increasing value of MRC perm;
when 52 ≤ MRC perm < 112, the number of roles decreases slightly from 35 to 18; when
MRC perm ≥ 112, it grows to be stable. Figure 6 demonstrates the effects of the constraint
MRC perm on the size of assignments URA and RPA, which tends to decrease as the value
ofMRC perm increases and is similar to the variation tendency of Figure 5. This is because,
the less the value of MRC perm is, the stricter the constraints and the more roles and role-
permission assignments that satisfy the constraint requirements will be. As a result, the
value of (|URA| + |RPA|) increases accordingly as MRC perm decreases. For the same
dataset, to evaluate the effects of the approximation ratio on the mining roles, the value
of MRC perm is fixed at 80, and the value of δ varies from 0.6 to 1. From Figure 7 it
is observed that, the number of roles increases as δ increases. This is attributed to the
fact that, more roles are needed, in order to ensure the better integrity of the matrix
reconstruction.

Figure 5. Optimized results for the basic REOPURCC&PRCC

Figure 6. Optimized results for the edge-REOPURCC&PRCC

Figure 7. Optimized results for the δ-approx REOPURCC&PRCC

1050 W. SUN

4.2. Performance comparisons. Next, we study the role selection strategy as shown
in Line 4 of Algorithm 2. Taking the basic REOPURCC&PRCC as the evaluation object,
we randomly construct a synthetic matrix UPA consisting of 50 number of users and 50
number of permissions. We adopt the parameter settings as follows: The value ofMRC user

is fixed at 3; the number of initial roles varies from 2 to 10 with a step of 2, denoted as
q; the density value of matrix UPA varies from 0.05 to 0.25 with a step of 0.05, denoted
as ρ. Furthermore, we utilize four different types of role selection strategies: 1) Greedy,
which identifies the role that can cover the most remaining permission assignments, has
been widely used for solving different role engineering problems on large-scale datasets;
2) fewest, which identifies the role that contains the fewest permissions; 3) most, which
identifies a role that contains the most permissions; 4) random, which optionally chooses
a role from the initial set.
To study the effects of different combinations of parameters on the mining results, we

generate 5 synthetic matrices of permission assignments and take consideration of the
number of roles and execution time as measures. The results are shown in Figures 8-
11. In Figures 8 and 9, the lateral axes represent the varying values of matrix density,
and the vertical axes respectively represent the number of roles and execution time. In
Figures 10 and 11, the lateral axes represent the varying number of initial roles, and the
vertical axes respectively represent the number of optimal roles and execution time. From
the viewpoint of number of roles, the fewest and greedy strategies have the comparable
performance and perform better than the other two. From the viewpoint of execution
time, the random performs the best, and the greedy performs the worst. This is because
the greedy method needs to consider and check all of the candidate roles at any iteration,
in order to discover the best one, which costs much computational time. However, the
fewest and most methods only need to consider the candidate role that includes either
the minimum or the maximum number of permissions. The random method runs fast
and costs the least execution time, as any candidate role may be selected at any iteration.
It is also observed that, in terms of the number of roles and execution time, the fewest
always outperforms the greedy with a fewer values of parameter settings, though the
greedy method is a classic searching strategy that attempts to find a global optimal
solution for a specific optimization problem. For the other variants such as the δ-approx
REOPURCC&PRCC, edge-REOPURCC&PRCC and min-noise REOPURCC&PRCC, the fewest has
the similar performance to that of the basic REOPURCC&PRCC. Therefore, the fewest
is more applicable than the greedy method for solving the different role-optimization
problems on small-scale datasets.

Figure 8. Number of roles using different strategies

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.4, 2022 1051

Figure 9. Execution time using different strategies

Figure 10. Number of roles using different strategies

Figure 11. Execution time using different strategies

4.3. Advantages of the CREO BMD&ILP. From the above experimental analysis,
we find the CREO BMD&ILP has the following main advantages.

1) It can flexibly satisfy different optimization objectives for organizational requirements
in a unified modelling framework by using the BMD and ILP techniques.

2) It can verify whether the cardinality constraints URCC and PRCC can be simultane-
ously satisfied in the constructed model by using the proposed heuristic algorithms.

Compared with the existing studies, the characteristics of our method are shown in
Table 1, where a tick

√
indicates that the characteristic is available.

1052 W. SUN

Table 1. Comparison of characteristics

Characteristic
Ma

et al. [18]
Harika

et al. [21]
Blundo

et al. [22]
Blundo

et al. [23]
Sarana

et al. [24]
Sun

et al. [25]
Our

method
URCC

√ √ √ √ √

PRCC
√ √ √ √ √

Other constraints
√ √ √ √

Flexibility √
and extendibility

5. Conclusions. A novel role-engineering method, called CREO BMD&ILP, was pro-
posed in this paper. We first converted the role-engineering problem into the BMD prob-
lem, defined several variants of the optimization problem with multiple cardinality con-
straints, and proposed a unified modelling framework using the ILP technique. Then,
we presented the heuristic algorithms for solving all the optimization problems in the
constructed system model. The experiments on synthetic datasets demonstrated that the
proposed method is efficient and effective. However, a few interesting issues remain to be
resolved. To further enhance the interpretability of mining results, one issue is how to im-
plement the other cardinality constraints or other types of constraints for role-engineering
optimization in future work.

Acknowledgment. This work is partially supported by the National Natural Science
Foundation of China (61501393), the Natural Science Foundation of Henan Province of
China (182300410145, 182102210132), and the Foundation of Henan Educational Com-
mittee under Contract No. 20B520031.

REFERENCES

[1] W. Sun, H. Su and H. Xie, Policy-engineering optimization with visual representation and separation-
of-duty constraints in attribute-based access control, Future Internet, vol.12, no.10, p.164, 2020.

[2] G. Batra, V. Atluri, J. Vaidya and S. Sural, Deploying ABAC policies using RBAC systems, Journal
of Computer Security, vol.27, no.4, pp.483-506, 2019.

[3] M. Ghafoorian, D. Abbasinezhad-Mood and H. Shakeri, A thorough trust and reputation based
RBAC model for secure data storage in the cloud, IEEE Transactions on Parallel and Distributed
Systems, vol.30, no.4, pp.778-788, 2018.

[4] J. P. Cruz, Y. Kaji and N. Yanai, RBAC-SC: Role-based access control using smart contract, IEEE
Access, no.6, pp.12240-12251, 2018.

[5] W. Sun and H. Su, Role-engineering optimization with mutually exclusive permissions constraints
and permission-to-role cardinality constraints, International Journal of Innovative Computing, In-
formation and Control, vol.17, no.4, pp.1373-1390, 2021.

[6] N. Pan, Z. Zhu, L. He and L. Sun, An efficiency approach for RBAC reconfiguration with minimal
roles and perturbation, Concurrency and Computation: Practice and Experience, vol.30, no.11,
p.e4399, 2018.

[7] G. Seannery, Yacob, N. Chandra and D. David, Optimization of hospital patient management in
hospitals with Android-based applications, ICIC Express Letters, vol.14, no.3, pp.211-217, 2020.

[8] M. Narouei and H. Takabi, Towards an automatic top-down role engineering approach using natural
language processing techniques, Proc. of the 20th ACM Symposium on Access Control Models and
Technologies, pp.157-160, 2015.

[9] B. Mitra, S. Sural, J. Vaidya and V. Atluri, A survey of role mining, ACM Computing Surveys,
vol.30, no.11, pp.1-37, 2016.

[10] S. Schefer-Wenzl and M. Strembeck, Modeling support for role-based delegation in process-aware
information systems, Business & Information Systems Engineering, vol.6, no.4, pp.215-237, 2014.

[11] W. Bai, Z. Pan, S. Guo and Z. Chen, RMMDI: A novel framework for role mining based on the
multi-domain information, Security and Communication Network, 2019.

[12] S. D. Stoller and T. Bui, Mining hierarchical temporal roles with multiple metrics, Journal of Com-
puter Security, vol.26, no.1, pp.121-142, 2018.

INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.4, 2022 1053

[13] N. Gal-Oz, Y. Gonen and E. Gudes, Mining meaningful and rare roles from web application usage
patterns, Computers & Security, vol.82, pp.296-313, 2019.

[14] B. Mitra, S. Sural, J. Vaidya and V. Atluri, Mining temporal roles using many-valued concepts,
Computers & Security, vol.60, pp.79-94, 2016.

[15] J. Vaidya, V. Atluri and Q. Guo, The role mining problem: Finding a minimal descriptive set of
roles, Proc. of the 12th ACM Symposium on Access Control Models and Technologies, pp.175-184,
2007.

[16] H. Lu, J. Vaidya and V. Atluri, An optimization framework for role mining, Journal of Computer
Security, vol.22, no.1, pp.1-31, 2014.

[17] F. Nazerian, H. Motameni and H. Nematzadeh, Emergency role-based access control (E-RBAC) and
analysis of model specifications with alloy, Journal of Information Security and Applications, vol.45,
pp.131-142, 2019.

[18] X. Ma, R. Li, H. Wang and H. Li, Role mining based on permission cardinality constraint and user
cardinality constraint, Security and Communication Networks, vol.8, no.13, pp.2317-2328, 2015.

[19] A. Colantonio, R. D. Pietro, A. Ocello and N. V. Verde, Visual role mining: A picture is worth a
thousand roles, IEEE Transactions on Knowledge and Data Engineering, vol.24, no.6, pp.1120-1133,
2012.

[20] N. V. Verde, J. Vaidya, V. Atluri and A. Colantonio, Role engineering: From theory to practice,
Proc. of the 2nd ACM Conference on Data and Application Security and Privacy, pp.181-192, 2012.

[21] P. Harika, M. Nagajyothi, J. C. John, S. Sural, J. Vaidya and V. Atluri, Meeting cardinality con-
straints in role mining, IEEE Transactions on Dependable and Secure Computing, vol.12, no.1,
pp.71-84, 2014.

[22] C. Blundo, S. Cimato and L. Siniscalchi, Managing constraints in role based access control, IEEE
Access, no.8, pp.140497-140511, 2020.

[23] C. Blundo, S. Cimato and L. Siniscalchi, Role mining heuristics for permission-role-usage cardinality
constraints, The Computer Journal, no.2, pp.1-26, 2021.

[24] P. Sarana, A. Roy, S. Sural, J. Vaidya and V. Atluri, Role mining in the presence of separation of
duty constraints, International Conference on Information Systems Security, pp.98-117, 2015.

[25] W. Sun, H. Su and H. Liu, Role-engineering optimization with cardinality constraints and user-
oriented mutually exclusive constraints, Information, vol.10, no.11, p.342, 2019.

Author Biography

Wei Sun received his B.S. and M.S. degrees from the School of Information Engi-
neering, Zhengzhou University, China, in 2003 and 2008, respectively. He is currently
working in the School of Computer and Information Technology, Xinyang Normal
University. His current research interests include access control and system security.

