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Abstract. A vehicle windshield with deformation flaws will likely distort the driver’s
view of surrounding objects, leading to errors in visual judgment that may be danger-
ous to other road users. Since imaging deformations directly affect the quality of the
see-through glass products, the measure and control of such deformations are crucial for
industrial manufacturers. This study proposes an alternative to human evaluators in the
process through developing a frequency reconstruction method established on computer vi-
sion to automatically detect deformation flaws in transparent glass products. To quantify
the deformation level of a curved glass product, we exploit the digital imaging of a known
standard pattern with regular elements through a testing sample to capture a transmitted
deformation image of that sample. Then, the proposed method applies the Hough trans-
form voting scheme to finding the peak points of the base elements in parameter space,
and reconstructs the base elements of the captured image by the inverse Hough transform.
The binary testing image subtracts the binary reconstructed image to obtain a binary
difference image displaying the detected deformations. Experimental outcomes present
the proposed approach using grids pattern reaches a high 83.85% probability of exactly
discriminating deformation flaws on transmitted appearances of transpicuous glass.
Keywords: Transpicuous glass product, Transmitted imaging, Imaging deformation,
Optical inspection, Hough transform voting scheme

1. Introduction. Transparency in materials allows light to travel through them unaf-
fected, thus making the materials see-through. Transparent materials are used in the
production of many commercial products, such as clear substrates, polarizing film, dif-
fusers, optical fibers, plastics, and glass. Since imaging deformations directly affect the
quality of the see-through glass products, the measure and control of these deformations
are crucial for industrial manufacturers. Such deformations may occur when the object
is subjected to mechanical or thermal loads.

In the vehicle windshield production process, deformation flaws may form on the wind-
shield if the furnace temperature is not properly controlled during the baking procedure.
Deformation flaws in the windshield will distort the driver’s perception of the shape and
motion of nearby objects, causing visual misjudgments that may be dangerous to other
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road users. Compared to regular plane glass, outwardly curved glass usually exhibits high-
er transmission, higher reflectance, and wider field of view. Currently, outwardly curved
glass is widely used in vehicle windscreens, rearview mirrors, and security mirrors to pro-
vide drivers with better fields of vision on the road. Since the transmitted deformation
flaws directly affect the imaging quality of vehicle glass, the detection of the kinds of flaws
is very important for car windshield manufacturers.
Transmitted deformation regularly has existence in vehicle glass to a certain level be-

cause of the glass curvature. Figure 1 shows two transmitted deformation scenes through
defective car windscreens. The transmitted shapes of objects in the images are significant-
ly distorted; deformation flaws in the windscreen make the transmitted objects appear
irregular, out of focus, or blurry to the driver. These distortions may contribute to driver
errors and lead to dangerous accidents.

Figure 1. Two transmitted deformation scenes through defective car windscreens

Inspection of deformation flaws during the manufacturing process has its own set of diffi-
culties. Deformation flaws influence as well the imaging quality of industrial glass products
as their performance, features and aesthetics. Currently, the most common methods for
detecting deformation flaws in the industry rely on human visual inspections. Human in-
spection is prone to errors due to the inspectors’ subjectivity, especially when the eyes are
fatigued. Figure 2 shows a typical human inspection task, including a windscreen sample,
a windscreen support frame, and an inspector measuring transmitted deformations in the
imaging area of a standard pattern, and testing the sample by hand with a sliding caliper.
Figure 3 illustrates three standard pattern shapes commonly used in human visual inspec-
tion: straight lines shape, grids shape, and checkerboard shape. Furthermore, difficulties

(a) (b) (c) (d)

Figure 2. (a) A windscreen sample; (b) a windscreen support frame; (c)
and (d) an inspector measuring transmitted deformations in the imaging
area of a standard pattern through a windscreen by hand with a sliding
caliper
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(a) (b) (c)

Figure 3. Three standard pattern shapes commonly used in human visual
inspection: (a) Straight lines shape; (b) grids shape; and (c) checkerboard
shape

also exist in accurately evaluating deformation flaws by computer-aided optical inspection
systems since when imaging images are being acquired, the regions of deformation faults
would enlarge, lessen or surprisingly pass from sight due to unbalanced lighting of the
surroundings, distinct view angles of the evaluators, forms of transmitted patterns, and a
variety of other factors.

The practical computer-aided vision system worked with the offline and sampling strat-
egy uses a standard pattern imaged on glass to capture images and measure deformation
magnitudes by hands with gauges. The high transmission and reflectance of glass samples
often hinder the ability of current optical systems to precisely inspect glass deformation
flaws. The properties of higher transmission and reflection on curved outward glass in-
crease the difficulty of discrimination of the deformation flaws on vehicle glass products.
This study presents the design of an automated distortion flaw detection system for trans-
parent glass and proposes a Hough transform (HT) based approach to distinguish trans-
mitted deformation flaws on curved car glass.

The HT is an efficient skill for isolating features of a specific shape in an image. It
converts an object detection question in the image domain into a simpler local peak
detection issue in the parameter domain [1]. The use of HT is suggested for having gap
tolerance in feature border representations and is comparatively uninfluenced by image
noise. The HT has superior capabilities for handling the cases of partially deformed
and noisy shapes due to its voting scheme. Encouraged by these excellent properties, this
study proposes the method of applying the HT voting scheme to finding the peak points of
the base elements in parameter space, and reconstructs the base elements of the captured
image by the inverse HT for finding the deformation flaws. The proposed approach, based
on computer vision, can substitute for human inspectors in the traditional deformation
inspection tasks during transparent glass production.

The rest of the article is composed as follows. Firstly, we review the articles on current
techniques of computer vision for deformation flaw inspection. Secondly, we describe the
proposed image procedures for detecting deformation flaws in transparent glass products.
Thirdly, we execute the trials and assess the manifestation of the suggested model with
a traditional technique. Finally, we conclude the contributions and indicate the further
directions.

2. Automated Defect Inspections. Automatic optical inspection (AOI) in quality
evaluation has become an essential process for production as it ensures that product
quality is assured and production efficiency is enhanced through strict inspection and
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testing of all products in the manufacturing processes [2-6]. The AOI systems based on
image processing and machine learning techniques have generated many applications in
the manufacturing industry, such as examination of holes on printed circuit boards [7],
surface defect inspection in crucial parts of the high-speed trains [8], detection of appear-
ance defects under unbalanced lighting condition using four real-world defect datasets
[9], evaluation of slate slabs with regard to visual quality for construction purpose [10],
and classification of steel exterior defects [11]. Surface quality inspection based on optical
technology satisfies the quick and precision needs of a fabrication line and has been widely
utilized in various industrial areas [2-4,6,12].
To improve glass product qualities, many studies have been developing non-contact

automatic inspection devices inspecting the shape and poor surface of a glass product
with the latest and image processing technologies, analyzing the characteristics of glass.
These researches investigated the surface defect inspection of glass-related products, such
as developing a defect tracking system for optical thin film products in smart-display-
device industry [13], implementing an inspection system for surface defects of car bodies
[14], proposing a multi-crisscross filtering method established on Fourier domain to inspect
surface defects of capacitive touch panels [15], applying the Hotelling’s T2 statistic and
grey clustering methods to cosine transform for detection of visible defects in appearances
of LED lenses [16], and designing a visual inspection system for non-spherical lens modules
of semiconductor sensors [17]. These optical inspection systems focus mainly on the surface
flaw detection on glass related products.
Image distortions because of perspective have to be corrected to permit further im-

age processing. Regarding the distortion detection and correction techniques, Mantel et
al. [18] proposed two methods for determining the perspective distortion on electrolumi-
nescence images of photovoltaic panels, and Cutolo et al. [19] presented a quick method
to calibrate transparent head-mounted panels making the use of a calibrated camera. It
is evident that most of the distortion related works due to perspective concentrate on the
distortion correction of optical lenses.
Transmitted deformation is the image degeneration of a visible object incurred by a

transpicuous material. In inspection studies of transmitted deformation in industrial parts,
Gerton et al. [20] investigated deformation patterns of Ronchi grids mathematically for
determining the effects of distortions in eyewear products. Youngquist et al. [21] presented
a novel explanation of optical deformation and permitted the use of a phase-shifting
interferometer for determining the distortion of a large optical window. Dixon et al. [22]
developed a system using the digital imaging and a classifier based on decision trees for
quantifying optical deformation in aircraft transparencies. Lin and Hsieh [23] designed a
vision system with a trapezoidal mask for image acquisition and applied slight deviation
control techniques to inspecting distortion defects on curved car mirrors.
Currently, the majority of AOI systems of glass products mainly detect surface flaws and

the deformation blemishes are not included. It is hard to accurately detect transmitted
deformation flaws embedded on surface of curved glass of vehicles with the properties of
higher transmission and reflection. Presently, very few research studies apply automated
visual detection systems to detecting glass deformation flaws. Therefore, we propose a
vision system based on Hough transform techniques to inspect transmitted deformation
flaws on see-through glass products.
Hough transform, initially proposed by Hough [24] in 1962, can detect lines, circles and

other structures if their parametric equations are known. It is a good way to improve
image form detection when the form can be parameterized by a set of parameters in an
equation [25]. The major merit of the HT skill is that it has gap tolerance in feature
border representations and is comparatively uninfluenced by image noise. This can be
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very helpful when trying to discover lines with small interruptions in them due to image
noise, or when searching objects are partly blocked [26]. Related studies used HT based
shape detections and its derivatives in defect inspections, such as detecting the little-
contrast mura defects in uneven lighting images of liquid crystal display panels [27], using
the adaptive thresholding, canny detector to take out edges and HT to locate the linear
weld defects in noisy background [28], presenting a superior HT method to inspect surface
defects of products with central symmetry distribution patterns having similarity between
object and background [29]. Some works proposed hybrid approaches based on HT for
defect detections and classifications, such as combining with the deep learning technique
to achieve quick product inspection of bottled wine [30], fusing with the support vector
machine classifier to inspect loosened bolts in civil structures with more bolt connection
[31].

Most of the distortion related works focus on the distortion correction of optical lenses.
Many of the automated inspection systems of glass and mirrors mainly detect surface
defects and the distortion flaws are not included. It is difficult to precisely detect reflect-
ed distortion flaws embedded on surface of curved car mirrors with high reflection [23].
Currently, there is very little literature on inspection of transmitted distortion flaws on
transpicuous glass using automated visual inspection system. This study develops an HT
based vision system to inspect transmitted distortion flaws on curved car glass. Not only
the serious deformation faults but also the minor flaws can be identified by the proposed
method under proper parameter selection.

3. Proposed Methods. This study proposes a vision-based system with a known stan-
dard pattern for image acquisition and applies HT voting scheme to inspecting defor-
mation flaws on curved vehicle windscreen glass. Five stages are developed to perform
the process of deformation flaw inspection. First, to quantify the deformation level of
a curved vehicle glass, we apply the digital imaging of the standard pattern through a
testing windscreen to creating a transmitted deformation map of that windscreen. This
deformation map is regarded as a testing image to be analyzed to find the existence of
deformations and locations of the flaws. Second, the testing image is transformed to
Hough space to obtain the coordinates of the correct axis positions of the multiple base
elements. Third, through the accumulator’s voting technique to find the peak points of
the base elements in Hough domain, an image with new base elements is reconstructed
from the selected peak points by taking the inverse HT. Fourth, the binary testing image
subtracts the binary reconstructed image to obtain a binary difference image displaying
the detected deformation flaws. Fifth, three common standard patterns are used to detect
deformation regions by the proposed approach for differentiating effects of deformation
flaw inspection.

3.1. Image acquisition. In this study, testing samples with length 25.4 cm, width 20.4
cm, and thickness 0.2 cm, are randomly selected from the fabrication line of a vehicle
glass manufacturer. To clearly acquire images with digital imaging of a standard pattern
through a testing sample for creating a transmitted deformation map of the sample,
this study proposes a vision system with a standard pattern for image capture shown in
Figure 4. Figure 4 explains the diagrammatic drawings (the front, top and side views)
and the apparatus arrangement of image acquisition for capturing a testing glass. The
testing sample is inserted in a custom-made fixture vertically and is located in front of
the standard pattern. The testing sample is partitioned into 4 regions for individual
image acquisitions. The standard pattern with base checkers is attached on a wall. A
CCD (charge coupled device) camera with stand is used to take images from the view
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(a) (b)

Figure 4. The proposed vision system using the checkers pattern for image
acquisition: (a) The front view from a CCD camera fixed on a stand, (b)
the three perspective views of a testing glass sample inserted in a fixture
and in front of a standard pattern

transmitted on the standard pattern through the testing glass. To acquire the digital
imaging of a standard pattern with proper intensity, the lighting control of environment
is also important when acquiring images.

3.2. Image pre-processing. For capturing better image resolution and representation
of flaw evaluation, a trial specimen is partitioned into 4 parts for image capture. The
captured image is pre-processed in several steps to increase the clearness of object ap-
pearances on transpicuous glass. Figure 5 shows the original testing image and enhanced
image using two standard patterns performing the histogram equalization approach [32]
for increasing contrast in gray levels. From the analysis of two corresponding intensity
histograms, the contrasts of gray levels have been increased and the grids pattern and
checkers pattern looked clearer in the enhanced images. To quantify the deformation level
of the pattern image, Figure 6 depicts the binary edge images of the defective areas and
normal regions that the Canny edge detector [33] and Otsu method [34] are applied to do-
ing edge detection and segmentation sequentially while using the two standard patterns.
Most of the base grids are clearly segmented from background in the binary images by the
two methods. The results disclose that the slight deformation faults in transpicuous glass

(a1) (b1) (a1-1) (b1-1)

Figure 5. The transmitted deformation images from digital imaging of the
two standard patterns through testing defective windscreens: the captured
images ((a1) and (b1)), the enhanced images ((a1-1) and (b1-1))
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(a1) (a2) (b1) (b2)

Figure 6. The binary edge images ((a1) and (b1)) of defective areas and
the corresponding images ((a2) and (b2)) of normal regions for using the
two standard patterns

surfaces are rightly divided in the binary images, irrespective of insignificant deformation
differences.

3.3. Reconstruction of base element image by HT voting scheme. The algorithm
of HT can discover incomplete examples of objects inside some categories of shapes
through a voting procedure. The motive of the HT is to fulfill clustering of boundary
points into object potentials by conducting a clear voting process upon a group of param-
eterized image objects [24-26].

3.3.1. Hough transform. Straight line detection in binary images is a typical example by
applying HT. The edge detectors are used as a preprocessing phase to gain boundary
points that are on the wanted bend in the spatial domain. Owing to incompleteness in
either the boundary pixels or the edge detectors, there perhaps have been losing pixels
on the wanted bends and spatial variations between the perfect line forms and the noisy
border pixels when they are gained from the edge detectors. For these causes, it is fre-
quently a delicate matter to gather the extracted edge attributes to a suitable group of
lines.

The common general form of a straight line equation is y = ax + b. This equation
could be expressed as a pixel point (a, b) in the parameter domain. However, vertical
lines would go up to boundless values of the slope parameter a. Therefore, for calculating
causes, the Hesse polar form is proposed of employing the parametric expression of a line:

x cos θ + y sin θ = ρ (1)

where variables θ and ρ are the angle between this vector and the x-axis, and the length
from the origin to the line along a vector vertical to the line, respectively. Each point
in the (x, y) plane gives a sinusoid in the (ρ, θ) plane. M collinear points lying on the
line (Equation (1)) will give M curves that intersect at (ρi, θj) in the parameter plane.
The HT creates a parameter domain matrix whose rows and columns correlate with
these corresponding ρ and θ values. The linear HT arithmetic employs an accumulator,
a two-dimensional array, to discover the presence of a line. The dimensionality of the
accumulator is equivalent to the amount of not known parameters, i.e., two values in the
pair (ρ, θ). The input to an HT is normally a binary image that has been segmented. We
cannot find any significant visual difference between the normal and defective images in
these Hough parameter domains.

3.3.2. Accumulators and voting procedure in Hough domain. Every component of the ma-
trix is with a value equivalent to the amount of the pixels located on the line expressed
by measurable parameters H(ρ, θ). In this way, the component having the largest value
denotes the direct line which is highly representative in the original image. For every point
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at f(x, y) and its neighborhood, the HT arithmetic decides if there exists adequate proof
of a straight line at that point. In this situation, we could compute the line parameters
H(ρ, θ), and next seek the accumulator’s bin which the parameters drop into, as well as
cause a discrete increase in the value of that bin. The local maxima of the accumulators
will give the significant lines. Figure 7 shows the relationship diagram between the binary
edge image in spatial space and the corresponding accumulators in Hough parameter do-
main. It indicates that the standard pattern with 7 horizontal and vertical line segments
is displayed on the binary image of a testing sample and there are 14 corresponding inter-
section points of curves in the Hough parameter space. The 7 horizontal and vertical line
segments are the targets that need to be detected and their positions are located between
the coordinates H(107, 0◦) and H(362, 0◦) for the horizontal line segments, and the co-
ordinates H(362, 91◦) and H(617, 91◦) for the vertical line segments in Hough parameter
domain.

(a) (b)

Figure 7. The relationship diagram between the binary edge image in
spatial space and the corresponding accumulators in Hough parameter do-
main

By discovering the bins having the largest values, usually by seeking for local maxima in
the accumulator’s domain, the highly probable lines could be found. The straightforward
means of discovering these peaks is via employing certain type of threshold. Because the
lines went back do not include any length details, it is frequently needed to discover which
parts of the image correspond to with which lines. In addition, owing to unideal variations
in the edge detection procedure, there would generally be deviations in the accumulator
domain, which might cause it complicated to discover the suitable peaks, and hence
the adequate lines. Figure 8 shows the accumulators of the vertical and horizontal line
segments for the dots pattern and checkers pattern in Hough parameter domains. For the
grids pattern, Figures 8(a) and 8(b) indicate that there are 7 peaks in the accumulators
of coordinates H(362, 90◦) to H(617, 90◦) and 7 peaks in the accumulators of coordinates
H(107, 0◦) to H(362, 0◦) in Hough parameter domain. These two 7 peaks represent 7
vertical and 7 horizontal line segments in the spatial domain, respectively. Similarly,
Figures 8(c) and 8(d) show two 9 peaks are found in the accumulators, representing 9
vertical and 9 horizontal line segments for the checkers pattern in spatial domain.
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(a) (b)

(c) (d)

Figure 8. The accumulators of the vertical and horizontal line segments
for the grids pattern ((a) and (b)) and checkers pattern ((c) and (d)) in
Hough parameter domains

The HT generates parameter values ρ and θ for all lines that could go through each
detected (by a threshold, in this example) image point. Each possible line through each
point then votes for its ρ and θ values in a parameter space of possible ρ and θ values. We
limit and quantize this parameter space to get an accumulator space which accumulates
votes for ρ and θ values. After all possible lines through all detected points have voted, the
accumulator space is searched for peaks that indicate which pairs of ρ and θ parameters
got the most votes. A peak indicates the presence of line and gives its parameters and
equation in the image. For the vertical line segments, let the ρi be the location of peak
i in the parameter space, d is the distance between two line segments, x0 is the initial
location of the first vertical line segment in spatial domain. The location of peak i can
be determined as follows:

ρi = Max {H [x0 + ((i− 1)d), 90◦] ∼ H [x0 + (i× d), 90◦]} (2)

3.3.3. Reconstructed base element images. After the positions of all peaks are located
in parameter space, we need to transform them back to spatial domain for obtaining a
base-line image. We assume xi,k be the coordinate of the i-th vertical line segment with
the k-th peak for the image reconstruction in the spatial domain. It can be obtained as
follows:

xi,k = ρi − (ρ1 − 1) (3)

where the ρ1 = 362 (i.e., 256×
√
2) for image with size 256×256. The peaks in parameter

domain transformed back to spatial domain are the vertical baselines in the reconstructed
image. Similarly, the horizontal line segments follow the same voting procedure in Hough
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domain and take inverse transform to obtain the horizontal baselines in the reconstructed
image. Figure 9 shows the reconstructed images from the Hough domain for the grids
pattern and checkers pattern images. The width of the vertical and horizontal baselines
for the grids pattern is 4 pixels in Figure 9(a) and that for the checkers pattern is 1
pixel in Figure 9(b). These grids of the base-line image for the checkers pattern need
to be further filled to become black and white checkers shown in Figure 9(b). These
reconstructed images will be the binary base element images for comparing with those of
the testing images to locate deformation flaws.

(a) (b)

Figure 9. The reconstructed images from the Hough domains of using (a)
grids pattern, and (b) checkers pattern

3.4. Binary difference images displaying the detected deformation. If the binary
testing image and the reconstructed base element image are precisely aligned, the defor-
mation flaws can be identified and located through image subtraction. The binary testing
image subtracts the binary reconstructed image to obtain a binary difference image in-
dicating the locations of detected deformation flaws. The cumulative deviation ratios of
deformed segments are calculated and the offset pixel ratio of deformed segments reveals
the level of deformation in the image. Figure 10 shows the resulting binary images for
the grids pattern and checkers pattern images.

(a) (b)

Figure 10. The resulting binary images of using (a) grids pattern, and
(b) checkers pattern

4. Experiments and Results. To assess performance of the suggested approach with
three common standard patterns, assessments are performed on 80 real vehicle glass prod-
ucts (40 faultless samples without any flaws and 40 faulty samples with various transmit-
ted deformation flaws) to evaluate the capability of the recommended technique. Every
captured image including a quarter of a vehicle glass is with 256 × 256 pixels and each
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pixel has 8 bits. The developed deformation flaw inspection arithmetic is compiled in
Matlab platform and carried out on the version 7.9 of MATLAB interactive environment
on a desktop computer (INTEL CORE i5-3230M 3.2GHz 8GB RAM).

To numerically verify the capability of the deformation flaw inspection methods, we
discern the results of our assessments from those provided by the empirical evaluators (gold
standard). Two indicators, (1−α) and (1−β), are employed to indicate suitable detection
appraisals; the greater the two indicators, the more accurate the detection consequences.
Fake alert error α, considering regular regions as deformation flaws, divides the districts
of regular regions inspected as deformation flaws by the districts of true regular regions to
acquire the error. Losing alert error β, defeating to alert true deformation flaws, divides the
districts of undetected true deformation flaws by the districts of overall true deformation
flaws to gain the error.

4.1. Successful rates for reconstructing base element images with various in-

terval sizes among accumulators in Hough domain. The interval size among ac-
cumulators in HT parameter domain will affect the success of producing a reconstructed
image containing the whole base elements. An unsuitable interval among accumulators
will result in producing a reconstructed image with incomplete base elements. Figures

Figure 11. The initial images and corresponding reconstructed base-grid
images with various interval sizes among accumulators in HT parameter
domain

Figure 12. The initial images and corresponding reconstructed base-
checker images with various interval sizes among accumulators in HT pa-
rameter domain
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Table 1. The success rates of producing reconstructed base-grid images
with various interval sizes among accumulators in HT parameter domain

Interval sizes 35 36 37 38 39
Failure number 24 1 0 13 13
Success number 305 328 329 316 316
Success rate 92.71% 99.70% 100% 96.04% 96.04%

Table 2. The success rates of producing reconstructed base-checker images
with various interval sizes among accumulators in HT parameter domain

Interval sizes 25 26 27 28 29 30
Failure number 60 21 3 0 22 60
Success number 0 39 57 60 39 0
Success rate 0% 65% 95% 100% 63% 0%

11 and 12 show the initial and corresponding reconstructed base-grid and base-checker
images with various interval sizes among accumulators in HT parameter domains, re-
spectively. Tables 1 and 2 indicate the corresponding success rates of the reconstructed
base-grid and base-checker images with various interval sizes among accumulators. With
selected interval sizes of 37 and 28 among accumulators for the grids pattern and checkers
pattern in HT domains, we have the highest success rates of the reconstructed base-grid
and base-checker images, respectively. The other interval sizes cause the reconstructed
images without containing the whole base elements. The complete reconstructed base
element images will be the standard pattern images for comparing with the binary testing
images to identify transmitted deformation flaws and locate the flaw positions.

4.2. Detection results of using two standard patterns with different numbers

of line segments and line widths. How many horizontal and vertical line segments
are suitable for a standard pattern to project the line segments on testing images through
the transmission of transpicuous glass? In theory, the more line segments in a standard
pattern are used, the more precise to present the deformation levels in a testing image.
If we change the standard patterns with various numbers of line segments, the detection
results of deformation flaws will be different. We examine the grids patterns with three
different numbers of line segments, 6, 7, and 8, to quantify the deformation levels of testing
images. Figure 13 shows the initial, processed, and resulting images by the proposed
method using the grids patterns with the three numbers of line segments. With the selected
line segments of 7 and 8 used in the proposed method, more detailed deformation flaws
are identified on the testing images. Table 3 indicates the comparisons of performance
indices and the detection result using the standard pattern with 7 line segments has better
deformation inspection performance because of higher detection rate and middle fake alert
rate.
The pixel size of line width in the reconstructed base element image also will affect

the detection performance of deformation flaws by the proposed method. If a suitable
pixel size of line width is selected in the reconstructed base element image, the smaller
deformation flaws will be more completely identified. We examine the grids patterns with
3, 4, and 5 pixel widths and the checkers patterns with 1, 2, and 3 pixel widths of lines
in the reconstructed base element images by the proposed method. Figures 14 and 15
show the initial, processed, and resulting images by the proposed method using the grids
patterns and the checkers patterns with the three pixel widths, respectively. We find
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Figure 13. Partial results of transmitted deformation inspection by the
proposed method for testing images using grids patterns with various num-
bers of line segments

Table 3. Performance indices of transmitted deformation inspection by
the proposed method for testing images using grids patterns with various
numbers of line segments

6 lines 7 lines 8 lines
Fake alert rate (α) 1.172% 0.526% 0.390%

Detection rate (1− β) 79.07% 83.92% 81.55%

that the smaller pixel widths are more sensitive to the detection of deformation flaws
and cause more fake alert errors. Tables 4 and 5 indicate the detection results using the
4-pixel width for the grids pattern and 2-pixel width for the checkers pattern are suitable
and have better deformation inspection performance because of higher detection rate and
middle fake alert rate.

4.3. Performance assessment of different deformation flaw detection techni-

ques. Three common standard patterns are used to detect deformation by the proposed
approach for differentiating outcomes of deformation flaw inspection. To reveal the defor-
mation inspection effects of original captured images, Figure 16 illustrates partial results
of inspecting deformation flaws by the proposed approach using the lines pattern, grids
pattern, and checkers pattern, and the gold standard (ground truth) supplied by empir-
ical evaluators, separately. The method using the lines pattern produces some incorrect
discernments in losing alerts and the method using the checkers pattern causes several
of incorrect discernments in fake alerts on deformation flaw inspection. The proposed
method using the grids pattern inspects most of the deformation flaws and produces less
incorrect discernments. Consequently, the proposed method with grids pattern is superior
to the methods using lines pattern and checkers pattern in the deformation flaw inspection
of transpicuous glass images.
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Figure 14. Partial results of transmitted deformation inspection by the
proposed method for producing reconstructed base-grid images with various
line widths

Figure 15. Partial results of transmitted deformation inspection by the
proposed method for producing reconstructed base-checker images with var-
ious line widths
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Table 4. Performance indices of transmitted deformation inspection by
the proposed method for producing reconstructed base-grid images with
various line widths

3-pixel width 4-pixel width 5-pixel width
Fake alert rate (α) 1.951% 0.545% 0.302%

Detection rate (1− β) 87.3% 83.02% 59.64%

Table 5. Performance indices of transmitted deformation inspection by
the proposed method for producing reconstructed base-checker images with
various line widths

1-pixel width 2-pixel width 3-pixel width
Fake alert rate (α) 3.308% 2.568% 1.661%

Detection rate (1− β) 60.24% 75.69% 64.41%

Figure 16. Partial results of transmitted deformation inspection by the
proposed method using three common standard patterns

Table 6. Performance indices of transmitted deformation inspection by
the proposed method using three common standard patterns and the Lin
and Hsieh method

Standard patterns
Lines

pattern

Grids

pattern

Checkers

pattern
Lin and Hsieh [23]

Detection rate (1− β) 67.58% 83.85% 75.69% 71.26%

Fake alert rate (α) 0.266% 0.468% 2.568% 0.392%

Processing time (sec.) 0.0845 0.1122 0.4972 0.1486

Table 6 evidences the differentiating outcomes of deformation flaw inspection effects
in the conducted experiments. The suggested methods individually using three common
standard patterns and the Lin and Hsieh method [23] are evaluated contrary to the results
by empirical evaluators. The average deformation detection rates (1−β) of entire testing
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samples by using the three standard patterns are 67.58% by using line pattern, 83.85%
by using grids pattern, 75.69% by using checkers pattern, and 71.26% by the Lin and
Hsieh method. Nevertheless, the proposed method with checkers pattern has a remarkably
greater fake alert rate 2.568%, and the scheme with grids pattern has a rather smaller
fake alert rate 0.468%. More specifically, the suggested method with grids pattern has
a greater deformation detection rate and possesses a smaller fake alert rate employed to
transmitted deformation inspection of transpicuous glass images. The mean processing
times for dealing with a captured image having 256 × 256 pixels are as follows: 0.0845
seconds by using lines pattern, 0.1122 seconds by using grids pattern, 0.4972 seconds by
using checkers pattern, and 0.1486 seconds by the Lin and Hsieh method. The average
conducting time of the recommended method with checkers pattern is practically four
times longer than that of the method with grids pattern. The suggested approach using
the grids pattern overcomes the difficulties of inspecting deformation flaws on transpicuous
glass images with transmitted and reflected exteriors as well as excels in its capability of
accurately discerning deformation flaws from regular regions. Furthermore, through self
contrasting the binary testing image and the binary reconstructed image from HT voting
procedure, the proposed method is better than the Lin and Hsieh method since it does
not require any template for pattern accordance check and there is no need for precise
positioning of testing glass products in fixtures.

5. Conclusions. This study attempts to find a way to substitute the human evaluators
in fabrication process by developing a frequency reconstruction technique established on
HT to examine deformation flaws on clear glass products. This research recommends a
base element reconstruction approach by HT voting scheme to the visual inspection of de-
formation flaws on high transmitted appearances of glass images. Experimental outcomes
present the proposed method achieves a high 83.85% probability of exactly discriminat-
ing deformation flaws and a low 0.468% probability of incorrectly investigating regular
districts as deformation flaws on transmitted appearances of transpicuous glass. The
suggested method effectively and efficiently prevails over the troubles of inspecting slight
deformation flaws on vehicle glass with high transmitted exteriors. Primary limitations
of the proposed approach need to be conquered as follows, the method will often fail to
detect deformation flaws if they are congregating in narrow neighborhoods of edges, and
the method is not sufficiently sensitive to differentiate the deformation flaws with slow
variabilities in the deformed shapes. Therefore, further study directions can focus on in-
creasing the sensitivity of detecting the deformation flaws and assessing current techniques
to seek for the highly efficient and effective approach for the raised application.
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