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Abstract. In the process of target tracking, since the target of interest is arbitrary, it is
very important to construct an effective model to represent the target. Usually, the track-
ing model uses pre-trained convolutional neural network to extract features and represent
the target. However, it is found that pre-trained depth features have poor representation
ability for target in modeling targets. In order to fully explore the target representation
ability of feature channels in feature layer of convolutional neural network, an online
target-aware tracking method via shrinkage loss is proposed in this paper. Specifically,
we introduce a shrinkage loss function which can reduce the influence of simple negative
samples in the background information on tracking results, and combine the ranking loss
function to select feature channel with strong target representation ability. At the same
time, we design a template updating method based on the linear combination of initial
template and nearest optimal template, which is fully adapted to the subsequent changes
of tracking target state. The experimental results of OTB-50 and OTB-100 datasets show
that the proposed solution can represent the target features more effectively than the tradi-
tional pre-trained feature extraction network, efficaciously improve the accuracy of target
tracking and ensure the real-time performance of object tracking.
Keywords: Deep learning, Target-aware, Template update, Object tracking

1. Introduction. Object tracking has become an important research direction in the
field of computer vision, the basic task [1] of the visual single target tracking is to predict
the size and position of the target in the subsequent frames when the target size and posi-
tion of the initial frame of a given video sequence are known, through model construction
and model training. Single target tracking has been widely used in various fields, such as
monitoring system, unmanned vehicle, UAV tracking and other realistic scenes, which re-
quires target tracking algorithm to have better real-time performance. The existing single
target tracking problem [2] mainly includes fast moving of target, the target deformation,
occlusion issue, etc., and these problems increase the difficulty of accurate tracking of sin-
gle target. In order to solve these problems, the researchers have developed deformation
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sensing, target re-detection, template updating and other measures to reduce the impact
of the problems encountered in the process of target tracking.
It is found that the effective representation of the target is very important in tracking

tasks. Traditional tracking frameworks often use hand-designed invariant features to rep-
resent targets, such as color histogram [3], HOG [4], Haar-like feature [5], SURF [6], ORB
[7], subspace representation [8] and super pixel [9]. This kind of methods mostly appears
in correlation filter tracking algorithms, and the representative ones are Kernel Correla-
tion Filter (KCF) [10] and Correlation Filter with Discriminative Scale Space Tracking
(DSST) [11]. However, the experiment [12] finds that this method only defines the shal-
low features of the target, and cannot represent the features of the target effectively. It is
only suitable for some specific scenes. As deep learning [13] has achieved better and better
results [14, 15, 16, 17, 18, 19] in target tracking, convolutional network models [20] and
deep convolutional features are also used to improve the performance of computer vision
tasks. In recent years, it has become a trend to use trained feature extraction networks
to extract target depth features, such as some frameworks of Siam series. Although SGD
method is also used in these methods to fine-tune the multi-layer network, it is difficult
to meet the real-time requirements.
To solve the real-time problem, Siamese network [21] is introduced into target tracking.

The target tracking algorithm based on the full convolutional Siamese network considers
the deep convolutional network as a more general similarity learning problem in the initial
off-line stage, uses the full convolutional neural network for feature extraction, and realizes
the cross-correlation operation between the search area and the template. Distractor-
aware Siamese Networks (DaSiamRPN) [22] added the difficult sample of background
interference in the network off-line training stage to improve the discriminant ability of
the tracker. The above studies only focus on the global feature representation and ignore
the representation of the target’s own feature. Hierarchical Convolutional Features (HCF)
[23] found through experiments that different convolutional layers (Conv3, Conv4 and
Conv5) presented different performance to the target, and proposed to replace the original
HOG feature with hierarchical convolutional feature, which effectively utilized the feature
layer feature and further accurately represented the target feature. Target-Aware Deep
Tracking (TADT) [24] found that the differences between classes were mainly related to a
few feature channels, and the others were redundant information; therefore, the authors

Figure 1. (color online) Tracking results in comparison with other trackers
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proposed a target-aware method to enable the network to better identify the targets with
significant appearance changes. The latest studies also embed the target-aware module
into the target tracking network, but in different ways of thinking. For example, Guo et
al. [25] used the prior knowledge of multi-branch interactive network and reference image
to realize target-aware and candidate feature representation. Wang et al. [26] proposed
a target-aware attention mechanism, which realized local and global target tracking by
combining with multiple trackers. Similarly, in the small target detection task [27], the
perceptual network also provides better prediction for the classification task.

In this way [24], based on the shrinkage loss function, the tracking effect can be im-
proved, the training can be accelerated and the convergence can be accelerated. We in-
troduce the shrinkage loss function into the Siamese network. Firstly, it regresses the
pre-extracted features to the soft label generated by the Gaussian function. Then the
network is trained by the corresponding soft label, and the filter with active objects
is selected by the way of reverse gradient propagation. Combined with the sorting loss
function, 23 pairs of scale training samples are used to train the network, and the filter
active to the target scale is also selected by the reverse gradient propagation (the filter
mentioned above refers to the appropriate filter kernel, and the processed features are
obtained through convolution). Through the reverse gradient propagation of the two loss
functions, the convolution filter of the corresponding channel is activated to guide the
selection of characteristic channels with good target representation ability.

At the same time, in order to adapt to the change of subsequent tracking status, we
designed a template update method, by setting a high quality frame selection mechanism
to choose high quality video frame, using the linear combination of the way and the
initial template frame for feature fusion, put the fused features into the target perception
network for training similarly, and update the convolution filter of the corresponding
channel. Thus, stronger target feature representation can be obtained to adapt to the
morphological changes of subsequent targets. It avoids the tracking failure caused by the
target template not being updated in time in target tracking.

The rest of this paper is organized as follows. We first introduce the CNN features of
pre training in Section 2. Our method will be described in Section 3, which is mainly
divided into perception part and template update part. The experimental results and
ablation studies are shown in Section 4. Finally, summarize this paper in the fifth part.

2. Features of Pre-Trained CNN. The pre-trained deep VGG16 network is used as
the basic feature extraction network, and the target-aware features are extracted from the
trained target-aware network. As for the feature extraction network, there is often a big
gap between the features extracted from the trained network and the features that can ef-
fectively represent the target in visual tracking. This framework extracts the preprocessed
Conv4-1 and Conv4-3 output maps of VGG16 as the base depth features of 512 channels.
Then, target activity features (300 channels) and target scale features (80 channels) are
extracted by using target-aware module as the description of target depth features. In
the tracking task, only a few convolution filters are active when describing the target.
A large part of convolution filter contains redundant and irrelevant information, which
requires a lot of calculation and is prone to over-fitting. Therefore, the importance of each
convolution filter to the target feature is calculated through the target-aware framework,
and the convolution filter that is interested in the target is selected.

The importance of convolution filter in capturing the information of category-level
objects can be calculated by the corresponding gradient [28]. Therefore, based on the
gradient descent method, a target-aware model using loss function to filter feature channels
is constructed through gradient guidance. Assuming that the feature extracted by the
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pre-trained VGG16 network is F , the sub-channel spatial feature f can be generated
according to the importance of channel ∆. The calculation relation is as follows:

F = ϕ(f,∆) (1)

where ϕ refers to the selection of important feature channel, ∆ refers to the gradient value
of each feature channel, reflecting the gradient value of the corresponding channel when
the gradient drops. ∆ is computed from Equation (2).

∆i = GAP

(

∂L

∂zi

)

(2)

where ∆i = GAP(•) is often used to represent the gradient value of the corresponding
channel in gradient descent, the magnitude of the gradient value represents the importance
of the channel, L refers to the loss function, and zi refers to the i-th feature channel
output by the feature extraction network. The loss function represented by L includes the
shrinkage loss function and the rank loss function, whose detailed content and attribute
comparison of similar functions will be introduced in the next section.

3. Proposed Work. Our overall framework is shown in Figure 2, and it is divided
into two parts: target-aware feature extraction and template update. The target-aware
model consists of sorting loss and shrinkage loss. The weight of target-aware channel is
determined by back gradient propagation algorithm. Cross-correlation operation obtains
the final score response map, and the maximum value of the score represents the target
location. The template updating module selects video frames through the high-quality
video frame selection mechanism, adaptively updates the tracking template and updates
the channel weight of the target-aware model.

3.1. Target-aware feature extraction. In this section, we will describe how target-
aware features are extracted and how loss functions are used to select convolution filters.

Figure 2. (color online) Overall tracking framework. The framework con-
sists of pre-trained feature extraction network, target-aware module and
template update module.
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In feature extraction network, each filter helps us extract different features. In pre-
trained neural network, convolution filter constructs depth feature space with different
objective prior information to classify or recognize objects. Therefore, for the tracking
task, in order to achieve more efficient target tracking, we can obtain the subset space
of the convolution filter by training the target-aware network. Subset space is the subset
of the convolution filter in which the pointer is active to the target, and the convolution
feature is obtained from the subset of the convolution filter, which represents the depth
feature with more difference between the tracked target and the background.

Ridge regression loss functions are often used to solve dichotomies, so they are suitable
for tasks such as distinguishing target from backgrounds. Ridge regression loss function:
ridge regression on the basis of the standard linear regression function of variable added
a small square deviation factor (actually, that is the regularization), the square deviation
factor to the model, the introduction of a small deviation, but greatly reduces the variance,
compared with the commonly used linear regression model, and improved the operation
efficiency and also to prevent the phenomenon of over fitting.

Before the regression loss function is used, Gaussian label mapping Y (i, j) is generally
performed on all sample Xi,j with the target as the center. The calculation formula of
Gaussian label mapping is shown in Equation (3).

Y (i, j) = e−
i2+j2

2σ2 (3)

where (i, j) is the offset to the target, and σ is the kernel width. The derivation formula
is as follows:

L = argmin ‖Y (i, j)−W ∗Xi,j‖
2 + λ‖W‖2 (4)

where ∗ represents the convolution operation, W represents the weight of convolution,
and Y (i, j) is the soft label of the sample generated using the Gaussian function. The
importance of each convolution filter can be calculated in terms of its contribution to the
fitting of the corresponding label graph, that is, the derivation of the input feature Xin

by the loss function L.

∂Lreg

∂Xin

=
∑

i,j

∂Lreg

∂Xo(i, j)
×

∂Xo(i, j)

∂Xin(i, j)
=

∑

i,j

2 (Y (i, j)−Xo(i, j))×W (5)

where Xo(i, j) represents the output of the result obtained by the regression loss function.
The gradient value of each convolution filter is calculated by back gradient propagation.
Values of gradient represent the performance strength of the convolution filter to the
target. Using the gradient, a fixed number of filters with the highest importance score
can be selected from the pre-trained neural network to filter the feature channels.

In order to only add penalty for simple samples, so that their loss becomes smaller, and
difficult samples are not affected, we introduce shrinkage loss [29] function as regression
loss function to calculate the importance of each convolution filter:

Ls(W ) =
exp(Y ) · ‖W ∗X − Y ‖2

1 + exp(a · (c− (W ∗X − Y )))
+ λ

∥

∥W 2
∥

∥ (6)

The “dissimilarity” is defined as l = |p− y|, written in the form of mean square error,
and the loss function can be defined as: l2 = |p− y|2. By adding penalties to the simple
sample, the loss function becomes

Ls = f(l) · L2 (7)

In the dissimilarity equation, the loss of simple samples is reduced, but the loss of
difficult samples is also reduced, so the loss of such samples is a lot. Figure 3 shows the
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advantages of our selected loss compared with other losses. Thus, a function is proposed
to replace the loss function defined by dissimilarity:

f(l) =
1

1 + exp(a · (c− l))
(8)

Figure 3. Training loss plot, which shows the comparison between the
shrinkage loss with L1 loss and L3 loss. It can be seen from the figure that
the shrinkage loss function has the fastest convergence speed, and it only
needs a few to make the loss function converge.

The final loss function (9) is obtained from Equations (7) and (8):

Lreg =
exp(Y ) · ‖W ∗X − Y ‖2

1 + exp(a · (c− (W ∗X − Y )))
+ λ

∥

∥W 2
∥

∥ (9)

In addition, for the change of target scale, smooth approximated ranking loss [30]
is introduced, which aims to select the target-aware features with shrinkage loss. Its
definition is as follows:

Lrank = log



1 +
∑

(xi,xj)∈Ω

exp (f (xi)− f (xj))



 (10)

where (xi, xj) refers to paired training samples, which are sample labels of different scales
(target scale ratio is set as 0.5-2) generated by extracted feature layers. The scale size
of xj is closer to that of the target than that of xi. f(•) represents the scale prediction
model, and represents the sample set containing different scales. A total of 23 groups
of scale samples were prepared for target scale training. Lrank’s derivation of f(x) is as
follows:

∂Lrank

∂f(x)
= −

1

Lrank

∑

Ω

∆zi,j exp (−f(x)∆zi,j) (11)

where ∆zi,j = zi−zj , zi and zj are a single heat vector, zi means the i-th element is 1 and
everything else is 0, zj means the j-th element is 1 and everything else is 0. According
to the chain rule and Equation (11), the gradient of Lrank relative to depth features is
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calculated as follows:
∂Lrank

∂xin
=

∂Lrank

∂xo

×
∂xo

∂xin
=

∂Lrank

∂f (xin)
×W (12)

where W represents the weight of the convolution filter. The convolution filter sensitive
to the target scale is found by the gradient obtained from the target scale rank loss.

We combine shrinkage loss function and rank loss function to select feature channels
with strong target characterization ability through gradient descent. Specifically, the effect
is displayed in Figure 4, and each line from left to right is the search area of the input
image, the visual feature image of the target-aware module and the visual feature image
formed after adding the template and updating the module. Note that it can be seen that
the target can be easily separated from the background by obtaining the target perceptual
features, and the updated template is more representative of the target.

(a) Search region (b) Target-aware features (c) Updated features

Figure 4. Visualization of the learned target-aware features. Target-aware
module and template update module feature visualization image in the
search area.

Compared with the features extracted from the pre-trained depth network, our method
finds more effective depth features for the target. This not only alleviates the over fitting
problem in the target tracking model, but also reduces the interference of other feature
layers to the target itself. Experiments show that the shrinkage loss function can improve
the tracking effect, speed up the training speed and accelerate the convergence speed.
The target perception function can effectively represent any target or invisible object in
the training dataset.

3.2. Template update mechanism. We propose an online updating mechanism based
on the problem of target deformation and mutation during tracking. In this section, we
will show you how to implement target template updates during online tracking.

Standard Template Update Method.

In order to adapt to the problem of state changes of subsequent targets in video se-
quences, researchers have proposed many methods to avoid this situation. The recent



1402 J. ZHANG, H. WANG, H. ZHANG, J. WANG, M. MIAO AND J. WANG

tracking approach [10, 31, 32, 33, 34, 35] uses a simple averaging strategy to update
the target’s appearance model. This strategy method is derived from the previous track-
ing method, and has become a standard for online tracking, although there are certain
limitations, but it does play a very good effect.
The standard template update is called the running average, and its weight decreas-

es exponentially over time. The selection of exponential weight mainly depends on the
recursive formula of the standard template update:

T̃i = (1− γ)T̃i−1 + γTi (13)

where i represents the serial frame label, Ti refers to using the current frame as the latest
template sample, T̃i−1 refers to the accumulated template sample, and the update rate
γ is usually set to a fixed value (e.g., = 0.0102, 0.25). T in here refers to the feature
extracted by the feature extraction network. In the discriminant correlation filtering
tracking method, T refers to the correlation filter.
Although the standard template update algorithm provides a way to integrate historical

frame information, it also contains many drawbacks.
1) It requires that the template update rate of each video be the same, and the template

should be updated without considering whether the updated template is reasonable. How-
ever, in actual tracking tasks, the status of the target in the video cannot be guaranteed
under the condition of constant template update.
2) If the updated template added in the tracking process is partially or completely

occluded, template drift will occur, which will make it difficult for the tracker to capture
the features of the target in the update process, resulting in tracking failure.
3) Once template drift occurs, the tracker cannot restore the template again, because

it loses the most accurate template T0, and the original template is undoubtedly the most
accurate frame describing target information.
Our Template Update Method.

In the traditional method, the network usually uses the comprehensive feature of linear
combination of the target feature obtained in the current frame and the template feature
accumulated in the previous frame to guide the target tracking. This method not only
leads to the exponential decay of target information with time, but also leads to the
consumption of a lot of computing power. In addition, the traditional method lacks the
information of the template frame. Once it follows the wrong target, it cannot be corrected
to tracking the target.
We solved the above problems by designing an adaptive template update strategy, as

shown in Equation (14):

T̃i = (1− γ)T0
GT + γTi (14)

where Ti refers to the video frame that can be used as template sample and the high-
quality video frame selected by template selection mechanism; T0

GT refers to the template
frame with initial truth value; γ refers to the template update rate, which can adjust the
learning rate according to different video frames.
It is not hard to see in Equation (14), we design the template update algorithm in-

cluding the initial frame target information and recently optimal template information,
make full use of the target information effectively, and from Figure 5, we also add the
initial template frame feature in the template updating algorithm, also prevent caused
by target hide partially or completely block template drift phenomenon. We add high-
quality frame filtering mechanism and learning update rate fine-tuning mechanism to the
template update mechanism for adaptive template update.
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Figure 5. Template update mechanism. The template update mechanism
only works when the high quality frame selection mechanism is triggered.
In other words, when the evaluation score of the video frame is greater than
the set threshold, the template update mechanism will start and update the
latest template features.

The experimental results prove that the adaptive template updating method proposed
by us is effective in improving the ability of target representation, and its renderings can
be seen in the third column of Figure 4.

4. The Experiment.

4.1. Tracking process. Our tracking framework includes pre-trained deep feature ex-
traction network, target-aware module and template update module. The feature extrac-
tion module is used to extract simple depth features by training in the classification task,
and the awareness module firstly determines the target-aware weight by training in the
first frame. Then the template update module selects high-quality video frames by using
high-quality frame selection mechanism. High-quality video frames are mainly selected
by a certain threshold. Then, the filtered video frames and template frames are linearly
combined to update the latest template. Meanwhile, the target-aware module is retrained
to update the more advantageous target-aware weights for continuous target tracking.

4.2. Implementation details. All experiments were performed on a server with 8 TI-
TAN RTX GPUs, with an average tracking speed of 42.5. We used the VGG16 model as
the backbone network. In order to maintain a more efficient use of spatial and semantic
information, we chose to use the activation features of CONV4-1 and CONV4-3 layers
as the base depth features. When training the target-aware model for the first time, we
use the initial frame as the template. Since different tracking targets have different sizes,
the search area is expanded to 3 times the size of the target area in order to adapt to
different tracking objects. We selected the top 80 important convolutional filters from
512 channels in Conv4-1 layer as the target scale sensitive feature model by rank, and
selected the top 250 important convolutional filters from 512 channels in Conv4-3 layer as
the feature model to extract the active target. We set the convergence loss threshold of
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the regression loss function as 0.02 and the maximum number of iterations as 100. Updat-
ing mechanism, in addition, we also set up in the template update mechanism, we set a
certain threshold to filter the high quality video frame, this paper sets the threshold value
as 2.96, by adjusting the weight of the initial template and the latest template updates
the template online, by theoretical analysis, experiment and mathematical weight value
is set to 0.25. In the estimation of target scale, the target scale is evaluated by generating
a scale pyramid, which contains three scales, respectively 45/47, 1 and 45/43 times the
previous target size. We set the corresponding scale change penalties for pyramids to
0.990, 1, and 1.005, respectively.

4.3. Overall performance. We evaluate the proposed algorithm on OTB-50 and OTB-
100 benchmark datasets, compared with existing trackers CFNet [36], fDSST [11], KCF
[10], LCT [37], LMCF [38], SAMF [39], SiamFC [40], SRDCF [41], Staple [42], etc. In
addition, we also conducted tests on TC-128 dataset with KCF [10], Frag [43], VTD [44],
MIL [45], OAB [46], etc. We present the results on each dataset and analyze them below.
OTB-50 dataset

OTB-50 dataset refers to a dataset containing 50 video sequences, which, together with
OTB-100 dataset, is the most commonly used tracking benchmark in the field of tracking.
This class of dataset is characterized by a manually annotated ground truth boxes, and
also contains 25% gray scale datasets. OTB dataset involves 11 attributes of target track-
ing, including illumination change, scale change, occlusion, deformation, motion blur, fast
motion, in-plane rotation, out-of-plane rotation, out of field of view, background interfer-
ence, low pixel and so on. Each image sequence corresponds to two or more attributes,
and each sequence corresponds to a text file, which records the target center position and
the size of the target manually marked. Generally, the basic parameters to measure the
target tracking accuracy include precision plot and success plot. Precision plot mainly
refers to the Euclidean distance between the center point of the predicted position and
the center point marked in the benchmark, which is calculated in pixels. Success plot
mainly refers to the degree of coincidence of the benchmark where the predicted target is
located.
Table 1 shows the performance of each tracker on OTB-50 dataset. Among many track-

ers, this algorithm has the best score in the OTB dataset accuracy statistics and ranks
second in the success rate score. This is because the proposed target-aware depth fea-
ture and template update algorithm effectively make use of the unique appearance and
semantic features of the target. Other trackers also achieve good tracking results, but the

Table 1. Performance of each tracker on OTB-50 dataset

Tracker Success Precision

SRDCF [41] 0.539 0.731

CFNet [36] 0.535 0.724

LMCF [38] 0.533 0.729

SiamFC [40] 0.519 0.693

Staple [42] 0.506 0.683

LCT [37] 0.488 0.689

SAMF [39] 0.464 0.649

fDSST [11] 0.460 0.616

KCF [10] 0.403 0.610

Ours 0.543 0.757
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Figure 6. Success and precision plots on the OTB-50 dataset

tracking results are not good because of time-consuming online training and the limitation
of over-fitting model. The algorithm adopts Siamese network which is more suitable for
target tracking and feature layer which is more suitable for target expression to achieve
42.526 FPS real-time tracking speed. It is proved that the target-aware feature and tem-
plate update method are effective. Figure 6 shows the good performance of the proposed
tracker in OTB-50 compared to advanced real-time trackers.

OTB-100 dataset

The OTB-100 dataset is a dataset containing an additional 50 video sequences in ad-
dition to the OTB-50 dataset. The characteristics of OTB-50 dataset are the same, but
the difference is that its dataset contains more video sequences, which greatly tests the
tracking stability of the tracker. OTB dataset starts from random frames, or rectangular
frames are initialized with random interference to run, which is more consistent with the
target frame given by the detection algorithm. The OTB-100 benchmark adopts center
positioning error and overlap ratio as evaluation criteria. On the basis of the two eval-
uation criteria, accuracy graph and success graph are often used to evaluate the overall
performance of the tracker.

Table 2 shows the performance of each tracker on OTB-100. Among many trackers, the
algorithm has the best score in precision and success rate of OTB-100 dataset, 0.597 and
0.816 respectively. Meanwhile, the high success rate reflects that the coincidence rate be-
tween the obtained target position and the original target position is very high, and it has
strong adaptability in target positioning and scale prediction. The high accuracy indicates
that the center offset between the target position estimated by the tracking algorithm and
the manually marked target position is very small. To be specific, our estimation of the
target location is very accurate. In general, the proposed tracking framework achieves
good performance in accuracy, robustness and running speed. This proves the validity of
the target scale sensitive feature and target semantic depth feature, which contributes to
better target tracking. Figure 7 shows the good performance of the proposed tracker in
OTB-100 compared to advanced real-time trackers.

Temple Color 128 dataset

Temple Color 128 is also referred to as TC-128. The TC-128 dataset contains 128 origi-
nal image sequences (color sequences), which contain a large amount of color information
and provide rich discrimination clues for visual reasoning. In addition, the TC-128 dataset
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Table 2. Performance of each tracker on OTB-100 dataset

Tracker Success Precision

SRDCF [41] 0.598 0.789

CFNet [36] 0.587 0.778

SiamFC [40] 0.587 0.772

LMCF [38] 0.578 0.784

Staple [42] 0.578 0.783

LCT [37] 0.558 0.761

SAMF [39] 0.548 0.750

fDSST [11] 0.517 0.686

KCF [10] 0.477 0.695

Ours 0.597 0.816

Figure 7. Success and precision plots on the OTB-100 dataset

Table 3. Experimental results on the Temple Color 128 dataset

Strategy Success (AUC) Precision

KCF [10] 0.418 0.588

Frag [43] 0.408 0.538

VTD [44] 0.407 0.527

MIL [45] 0.393 0.539

OAB [46] 0.389 0.526

Ours 0.437 0.606

contains other files, such as a file for evaluating the initial and last frames of the image
sequence, a file containing the real positions of all targets, and a file containing the chal-
lenge sequence. AUC score is the evaluation index of TC-128. As can be seen from Table
3, the AUC score of the algorithm designed by us is only 0.437. The reason is that our
algorithm is a model specially created for targets and lacks solutions for colors, but the
score is not too bad. This shows that the algorithm also has some generalization ability.
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4.4. Ablation studies. In this section, we will introduce the performance of our pro-
posed method on OTB datasets in different states. We analyzed the proposed method on
OTB datasets, including OTB-50 and OTB-100 (OTB-2015) datasets, to study the con-
tribution of different losses to different layer characteristics and the addition of templates.

Table 4 lists the tracking effects under different conditions. Conv4-1 and Conv4-3 rep-
resent the output characteristics of CONV4-1 and CONV4-3, respectively. We compare
the effects of different conditions on tracking results based on shrinkage regression losses,
rank losses, and template updates, which are represented by rank, shrinkage, and update,
respectively. By comparison, it was found that the AUC score obtained by Conv4-3 or
Conv4-1 was lower than that obtained by the combination of the two datasets, OTB-50
and OTB-100. This is attributed to the effective use of deep semantic features for the
target and appearance features for the scale, and the selection of the most effective con-
volution filter to generate target-aware features. In addition, from Table 4, we find that
the AUC score (0.548 and 0.597) of OTB-50 and OTB-100 datasets has gained significant
gains after the template updating mechanism is added. This indicates that although
some channels of the feature layer were effectively utilized before, the target information
was not updated. The performance of both datasets was slightly improved by adding a
template update algorithm. This indicates that the added template updating mechanism
plays a certain role, and can adapt to the changes of subsequent targets, ensuring the
effectiveness of tracking.

Table 4. Tracking effects under different conditions

Conv4-1 Conv4-3 Update template OTB-50 OTB-100
Null Shrinkage Null 0.475 0.596
Rank Null Null 0.452 0.595
Rank Shrinkage Null 0.544 0.596
Rank Shrinkage Update 0.548 0.597

5. Conclusions. In this paper, we mainly filter the optimal feature channel from the
extracted features through the two loss functions of shrinkage loss and rank loss to learn
the target-aware features, which makes up for the defect that the features extracted from
the pre-trained feature extraction network have poor ability to represent the target. In
addition, we design a linear template updating method, which uses the template selection
mechanism to select the latest video frame as the latest template, and fuse the features
with the initial template frame through linear combination as the new template features.
The fusion features are input into the target-aware network as input items to update the
learned target-aware features. It avoids the tracking failure caused by failure to update
the template in target tracking. We integrate the target-aware feature model and template
update model with Siamese tracking framework to prove its effectiveness and efficiency in
visual tracking. A large number of experimental results on public datasets show that the
proposed algorithm effectively enhances the representation ability of the extracted features
to the target and improves the tracking efficiency of the tracking algorithm. Nevertheless,
we also have some deficiencies. For instance, in the part of template updating, the new
research method has used simplified memory network to remember a batch of favorable
video frames. Using only one historical video frame is not enough for template updating.
We also explore new research methods in this respect.
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Roth (eds.), Cham, Springer, 2018.

[18] M. Kristan et al., The seventh visual object tracking VOT2019 challenge results, 2019 IEEE/CVF In-
ternational Conference on Computer Vision Workshop (ICCVW), pp.2206-2241, DOI: 10.1109/ICC
VW.2019.00276, 2019.

[19] M. Kristan et al., The eighth visual object tracking VOT2020 challenge results, in Computer Vision –
ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science, A. Bartoli and A. Fusiello
(eds.), Cham, Springer, 2020.

[20] O. Natan, D. U. K. Putri and A. Dharmawan, Deep learning-based weld spot segmentation using
modified UNet with various convolutional blocks, ICIC Express Letters, Part B: Applications, vol.12,
no.12, pp.1169-1176, 2021.

[21] R. Tao, E. Gavves and A. W. M. Smeulders, Siamese instance search for tracking, 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[22] Z. Zhu, Q. Wang, B. Li, W. Wu, J. Yan and W. Hu, Distractor-Aware Siamese Networks for Visual
Object Tracking, Springer, Cham, 2018.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.5, 2022 1409

[23] M. Chao, J. B. Huang, X. Yang and M. H. Yang, Hierarchical convolutional features for visual
tracking, 2016 IEEE International Conference on Computer Vision (ICCV), 2016.

[24] X. Li, C. Ma, B. Wu, Z. He and M. H. Yang, Target-aware deep tracking, 2019 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), 2019.

[25] M. Guo, Z. Zhang, H. Fan, L. Jing, Y. Lyu, B. Li and W. Hu, Learning target-aware representation
for visual tracking via informative interactions, arXiv Preprint, arXiv: 2201.02526, 2022.

[26] X. Wang, J. Tang, B. Luo, Y. Wang, Y. Tian and F. Wu, Tracking by joint local and global search: A
target-aware attention-based approach, IEEE Trans. Neural Networks and Learning Systems, 2021.

[27] K. Wang, S. Du, C. Liu and Z. Cao, Interior attention-aware network for infrared small target
detection, IEEE Trans. Geoscience and Remote Sensing, vol.60, pp.1-13, 2022.

[28] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh and D. Batra, Grad-CAM: Visual ex-
planations from deep networks via gradient-based localization, 2017 IEEE International Conference
on Computer Vision (ICCV), pp.618-626, 2017.

[29] X. Lu, C. Ma, B. Ni, X. Yang and M. H. Yang, Deep regression tracking with shrinkage loss, Proc.
of the 15th European Conference, Munich, Germany, 2018.

[30] Y. Li, Y. Song and J. Luo, Improving pairwise ranking for multi-label image classification, 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.3617-3625, 2017.

[31] D. S. Bolme, J. R. Beveridge, B. A. Draper and Y. M. Lui, Visual object tracking using adaptive
correlation filters, 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
San Francisco, CA, USA, 2010.

[32] L. Bo, J. Yan, W. Wei, Z. Zheng and X. Hu, High performance visual tracking with Siamese re-
gion proposal network, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp.8971-8980, 2018.

[33] Q. Wang, Z. Teng, J. Xing, J. Gao and S. Maybank, Learning attentions: Residual attentional
Siamese network for high performance online visual tracking, 2018 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp.4854-4863, 2018.

[34] J. Kwon, Particle swarm optimization-Markov Chain Monte Carlo for accurate visual tracking with
adaptive template update, Applied Soft Computing, vol.97, DOI: 10.1016/j.asoc.2019.04.014, 2019.

[35] J. Leng, H. Cai, W. Wang and Z. Ma, Double stage Siamese network object tracking algorithm
based on template update, 2021 International Conference on Electronic Information Engineering
and Computer Science (EIECS), pp.140-143, 2021.

[36] J. Valmadre, L. Bertinetto, J. Henriques, A. Vedaldi and P. H. S. Torr, End-to-end representation
learning for correlation filter based tracking, 2017 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp.5000-5008, 2017.

[37] C. Ma, X. Yang, C. Zhang and M.-H. Yang, Long-term correlation tracking, 2015 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.5388-5396, 2015.

[38] M. Wang, Y. Liu and Z. Huang, Large margin object tracking with circulant feature maps, 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.4800-4808, 2017.

[39] Y. Li and J. Zhu, A scale adaptive kernel correlation filter tracker with feature integration, in
Computer Vision – ECCV 2014 Workshops. ECCV 2014. Lecture Notes in Computer Science, L.
Agapito, M. Bronstein and C. Rother (eds.), Zurich, Switzerland, Springer, 2015.

[40] L. Bertinetto, J. Valmadre, J. F. Henriques, A. Vedaldi and P. H. S. Torr, Fully-convolutional Siamese
networks for object tracking, in Computer Vision – ECCV 2016 Workshops. ECCV 2016. Lecture
Notes in Computer Science, G. Hua and H. Jégou (eds.), pp.850-865, Amsterdam, Netherlands,
Springer, 2016.

[41] M. Danelljan, G. Hager, F. S. Khan and M. Felsberg, Learning spatially regularized correlation
filters for visual tracking, International Conference on Computer Vision (ICCV2015), Santiago,
Chile, pp.4310-4318, 2015.

[42] L. Bertinetto, J. Valmadre, S. Golodetz, O. Miksik and P. H. S. Torr, Staple: Complementary
learners for real-time tracking, 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp.1401-1409, 2016.

[43] A. Adam, E. Rivlin and I. Shimshoni, Robust fragments-based tracking using the integral histogram,
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR),
pp.798-805, 2006.

[44] J. Kwon and K. M. Lee, Visual tracking decomposition, 2010 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR), pp.1269-1276, 2010.

[45] B. Babenko, M.-H. Yang and S. Belongie, Robust object tracking with online multiple instance
learning, IEEE Trans. Pattern Analysis and Machine Intelligence, vol.33, no.8, pp.1619-1632, 2011.



1410 J. ZHANG, H. WANG, H. ZHANG, J. WANG, M. MIAO AND J. WANG

[46] H. Grabner, M. Grabner and H. Bischof, Real-time tracking via on-line boosting, Proc. of the British
Machine Vision Conference, pp.6-11, 2006.

Author Biography

Jianwei Zhang received his Ph.D. degree in computer application technology from
PLA Information Engineering University in 2010. He is a professor at Zhengzhou
University of Light Industry, Zhengzhou, China. His research interest covers broad-
band information networks, network security and visual tracking.

He Wang graduated from the International Education College, Zhengzhou Univer-
sity of Light Industry, Zhengzhou, China, in 2020. He is pursuing a master’s degree
at the College of Computer and Communication Engineering, Zhengzhou University
of Light Industry, Zhengzhou, China. His current research interests include deep
learning and visual tracking.

Huanlong Zhang received his Ph.D. degree in control science and engineering from
Shanghai Jiao Tong University, China, in 2015. He is currently an associate professor
with the College of Electrical and Information Engineering, Zhengzhou University
of Light Industry, Zhengzhou, China. His research has been funded by the National
Natural Science Foundation of China (NSFC), the Key Science and Technology
Program of Henan Province, etc. He has published more than 40 technical articles in
refereed journals and conference proceedings. His research interests include pattern
recognition, machine learning, image processing, computer vision, and intelligent
human machine systems.

Jingchao Wang graduated from the College of Computer and Communication En-
gineering, Zhengzhou University of Light Industry, Zhengzhou, China, in 2020. He is
currently pursuing a master’s degree at the College of Software, Zhengzhou Univer-
sity of Light Industry, Zhengzhou, China. His research interests include computer
vision, object detection, and object tracking.

Meng-En Miao graduated from International Education College, Zhengzhou Uni-
versity of Light Industry, Zhengzhou, China, in 2020. He is currently pursuing a
master’s degree at the College of Software, Zhengzhou University of Light Industry,
Zhengzhou, China. He has published an SCI paper. His research interests include
computer vision tracking, and object tracking.



INT. J. INNOV. COMPUT. INF. CONTROL, VOL.18, NO.5, 2022 1411

Jiandong Wang received his master’s degree in computer engineering from PLA
National Defense University in 1992. He founded Zhengzhou Huajun Technology
Co., LTD. in 2006. Currently, he is a senior engineer in Zhengzhou Huajun Technol-
ogy Co., LTD. His main research field is computer information processing, including
big data, artificial intelligence, machine learning, target tracking, etc.


