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Abstract. In this paper, we introduce a new relational database model and algebra as
an extension of the probabilistic relational database model with uncertain multivalued at-
tributes for representing and handling uncertain information. To develop this new model,
the probabilistic interpretation of binary relations on sets is used for computing uncertain
degree of functional dependencies, keys and relations on attribute values, the extended
probabilistic triples are employed for representing multivalued relational attributes, and
the new combination strategies of extended probabilistic triples are defined for building
probabilistic relational algebraic operations. A set of the properties of the basic probabilis-
tic relational algebraic operations is also formulated and proven. The new probabilistic
relational database model and algebra are coherently and consistently with the classical
relational database model and algebra.
Keywords: Uncertain multivalued attribute, Probabilistic interpretation, Probabilistic
triple, Probabilistic relation, Probabilistic relational algebraic operation

1. Introduction. Although the classical relational database model (CRDB) is very use-
ful for modeling, designing and implementing large-scale systems [1,2], it is restricted for
representing and handling uncertain and imprecise information that are pervasive in the
real world [3-5,9-15,21-27,29,30]. For example, applications of the CRDB model can nei-
ther deal with queries as “find all patients who are old and have to pay a high treatment
cost” nor “find all patients who are at least 95% likely to catch either hepatitis or cirrho-
sis”, etc. Here, “old” and “high” are vague concepts that can be defined by a fuzzy set
[3,4] or a possibility distribution [27], and “hepatitis or cirrhosis” uncertainly expresses a
patient’s possible diseases that can be represented by the discrete set comprising the two
diseases. Meanwhile, “95%” is the uncertainty degree, i.e., probability of that whole fact
about the patient. To overcome the shortcoming of CRDB, this model has to be extended
for uncertain and imprecise information.

For building database models, uncertainty and imprecision are two different aspects of
information that require respective theories and methods to handle. In particular, the
fuzzy set theory is employed to express and handle imprecise information and extend
CRDB to fuzzy relational database (FRDB) models; meanwhile the probability theory
is used to represent and manipulate uncertain information and develop CRDB to proba-
bilistic relational database (PRDB) models.
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Currently, many FRDB models have been built (e.g., [3-6,27]), and a large number
of PRDB models have been proposed (e.g., [7-20,23-30]) for representing and handling
uncertain and imprecise information. However, no model would be so universal that could
include all measures and tackle all facets of uncertain and imprecise information. Thus,
new database models still continue to be developed for modeling data objects of the real
world.
PRDB models have been developed from CRDB by two main directions corresponding

to two extended levels [26]: 1) at the relation level, each relation is defined by a set of
tuples that each tuple is associated with a probability to represent the uncertainty degree
of it in the relation; or 2) at the attribute level, each attribute in a relation is associated
with a probability to define the uncertainty degree of the values that it may take.
At the relation level, as the works in [7-13,29], each tuple of a relation was associated

with a probability in the interval [0, 1] to express the uncertainty membership degree of
that tuple for the relation. The uncertainty degree of the attribute values of a tuple was
inferred from the uncertainty membership degree of that tuple. However, in many real
situations, we do not know exactly the probability as a number in the interval [0, 1] but
only can estimate it as an approximate number in a subinterval of [0, 1]. The models
in [14-17,20,25] were extended with probability intervals associated with each tuple to
overcome the shortcoming.
At the attribute level, as in [18,19], each value of an attribute was associated with a

probability in the interval [0, 1] to represent the uncertain level for that attribute taking
the value. More flexibly, the model in [23] represented the value of each attribute as
a probability distribution on a set. It means that each attribute was associated with a
set of values and a probability distribution expressing the possibility that the attribute
might take one of values of the set with a probability computed from the distribution. The
model in [24] extended more the model in [23], where a pair of lower and upper bound
probability distributions is used instead of a probability distribution as in [23].
In mentioned probabilistic database models including object-oriented ones [21,22], the

attribute of a tuple or an object only took a single, unique value in a set of values with
some probability. For instance, the attribute SOIL of a plant in [21] represented by SOIL:
⟨{loamy, swampy}, 0.8u, 1.2u⟩ said that the suitable soil type for the plant to flourish might
be loamy or swampy with a probability in the interval [0.4, 0.6]. However, in practice,
a plant may also be conformable both loamy and swampy soil types with a determined
probability interval to grow, and then the model in [21] cannot express.
Recently, in [26], the authors introduced a probabilistic relational database model with

uncertain multivalued attributes, (called URDB), to overcome the shortcoming of above
mentioned models. However, in this model, the probabilistic functional dependency and
the relational schema key have not been defined and except the selection operation, other
probabilistic relational algebraic operations have not been built. Thus, the ability of rep-
resenting and dealing with uncertain information of URDB has been limited in the real
world applications.
In this paper, we define notions of the probabilistic functional dependency and the rela-

tional schema key for URDB and extend it with a full set of basic probabilistic relational
algebraic operations. Some properties of URDB algebraic operations are also proposed,
formulated and proven. This new extension for URDB is also consistent with the classical
relational database model in [1,2] and the decision making support system in [28], where
tuples and objects can have multivalued attributes, and the heterogeneous nonlinear non-
affine multi-agent system in [31], where control directions can be uncertain.
Basic probability definitions as a mathematical base for URDB are presented in Section

2. The URDB model including fundamental concepts as the schema, relation, database,
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probabilistic functional dependency and the relational schema key is introduced in Section
3. Section 4 presents probabilistic relational algebraic operations and their properties.
Finally, Section 5 concludes the paper and outlines further research directions in the
future.

2. Probability and Probabilistic Combination Strategies. The URDB model is
developed on a probability base including probability definitions and probabilistic com-
bination strategies for representing and handling uncertain information.

2.1. Probability distribution functions and probabilistic triples. For expressing
uncertain information in URDB, we use probability distribution functions and probabilis-
tic triples over a set in [21,24]. More, probabilistic triples over a set are extended to
probabilistic triples over a set of sets for representing multivalued attributes as in [26].
Probability distribution functions and extended probabilistic triples are defined as below.

Definition 2.1. Let V be a finite set, a probability distribution function α over V is a
mapping α: V → [0, 1] such that Σx∈V α(x) ≤ 1.

An important probability distribution function which we often encounter in practice is
the uniform distribution u(x) = 1/|V |, ∀x ∈ V .

Definition 2.2. Let S be a finite set, a probabilistic triple ⟨V, α, β⟩ over S consists of a
subset V of the set 2S (i.e., the set of all subsets of S) whose elements are disjointed, a
probability distribution function α: V → [0, 1], and a function β: V → [0, 1] such that
α(x) ≤ β(x), ∀x ∈ V and Σx∈V β(x) ≥ 1 hold.

Informally, a probabilistic triple ⟨V, α, β⟩ assigns each x ∈ V a probability interval
[α(x), β(x)] to express the uncertainty degree of x in V . This assignment is consistent
in the sense that each x ∈ V is assigned a probability p(x) ∈ [α(x), β(x)] such that
Σx∈V p(x) = 1.

Example 2.1. When examining a patient, a doctor may be unsure about what disease
the patient is suffered from. However, if the doctor is sure that the patient’s diseases
are duodenitis and gastroenteritis or dyspepsia with a probability between 60% and 80%,
then this knowledge may be encoded by the extended probabilistic triple ⟨{{duodenitis,
gastroenteritis}, {dyspepsia}}, 1.2u, 1.6u⟩. Here, u is the uniform distribution function
over {{duodenitis, gastroenteritis}, {dyspepsia}}, 1.2u and 1.6u are probability distribu-
tion functions α and β respectively with α(x) = 1.2u(x) = 1.2(1/2) = 0.6 and β(x) =
1.6u(x) = 1.6(1/2) = 0.8, ∀x ∈ {{duodenitis, gastroenteritis}, {dyspepsia}}.

We note that an element e in S is also considered as a special set {e} on S; thus a
probabilistic triple ⟨{{e1}, {e2}, . . . , {ek}}, α, β⟩ can be written as ⟨{e1, e2, . . . , ek}, α, β⟩
for simplicity. Also, “an extended probabilistic triple” is called “a probabilistic triple”.

2.2. Probabilistic interpretation of binary relations on sets. For computing un-
certain degree of binary relations on attribute values in URDB, the probabilistic interpre-
tation of binary relations on sets in [26] is extended from [25] as follows.

Definition 2.3. Let A and B be sets, U and V be value domains, and θ be a binary rela-
tion from {=, ̸=,≤,≥, <,>,⊆,⊇}. The probabilistic interpretation of the relation AθB,
denoted Pr(AθB), is a value in [0, 1] that is defined by

1) Pr(AθB) = p(u θ v|u ∈ A, v ∈ B), where A is a subset of U , B is a subset of V
and θ ∈ {=, ̸=,≤, <,≥, >} assumed to be valid on (U × V ), p(u θ v|u ∈ A, v ∈ B) is
the conditional probability of u θ v given u ∈ A and v ∈ B.
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2) Pr(AθB) =

{
p(u ∈ B|u ∈ A), θ is the relation ⊆
p(u ∈ A|u ∈ B), θ is the relation ⊇

where A and B are two subsets of U , p(u ∈ B|u ∈ A) is the conditional probability
for u ∈ B given u ∈ A and p(u ∈ A|u ∈ B) is the conditional probability for u ∈ A
given u ∈ B.

2.3. Probabilistic combination strategies. In this work, we employ the combination
strategies of probability intervals in [21,26] to compute the probability intervals of the
conjunction, disjunction or difference event of two events. Let two events e1 and e2 have
probabilities in the intervals [L1, U1] and [L2, U2], respectively. Then the probability inter-
vals of the conjunction event e1∧ e2, disjunction event e1∨ e2, or difference event e1∧¬e2
can be computed by alternative strategies as follows:

1) Independence conjunction, disjunction and difference strategies, denoted ⊗in, ⊕in,
and ⊖in respectively, are determined by
• [L1, U1]⊗in [L2, U2] ≡ [L1.L2, U1.U2]
• [L1, U1]⊕in [L2, U2] ≡ [L1 + L2 − (L1.L2), U1 + U2 − (U1.U2)]
• [L1, U1]⊖in [L2, U2] ≡ [L1.(1− U2), U1.(1− L2)]

2) Mutual exclusion conjunction, disjunction and difference strategies (when e1 and e2
are mutually exclusive), denoted ⊗me, ⊕me, and ⊖me respectively, are determined
by
• [L1, U1]⊗me [L2, U2] ≡ [0, 0]
• [L1, U1]⊕me [L2, U2] ≡ [min(1, L1 + L2),min(1, U1 + U2)]
• [L1, U1]⊖me [L2, U2] ≡ [L1,min(U1, 1− L2)]

3) Positive correlation conjunction, disjunction and difference strategies (when e1 im-
plies e2, or e2 implies e1), denoted ⊗pc, ⊕pc, and ⊖pc respectively, are determined
by
• [L1, U1]⊗pc [L2, U2] ≡ [min(L1, L2),min(U1, U2)]
• [L1, U1]⊕pc [L2, U2] ≡ [max(L1, L2),max(U1, U2)]
• [L1, U1]⊖pc [L2, U2] ≡ [max(0, L1 − U2),max(0, U1 − L2)]

4) Ignorance conjunction, disjunction and difference strategies, denoted ⊗ig, ⊕ig, and
⊖ig respectively, are determined by
• [L1, U1]⊗ig [L2, U2] ≡ [max(0, L1 + L2 − 1),min(U1, U2)]
• [L1, U1]⊕ig [L2, U2] ≡ [max(L1, L2),min(1, U1 + U2)]
• [L1, U1]⊖ig [L2, U2] ≡ [max(0, L1 − U2),min(U1, 1− L2)]

In the following sections, the notation [L1, U1] ≤ [L2, U2] is used to denote L1 ≤ L2 and
U1 ≤ U2 whereas the notation [L1, U1] ⊆ [L2, U2] is for L2 ≤ L1 and U1 ≤ U2. Also, a
single probability value p can be treated as the probability interval [p, p].

2.4. Conjunction, disjunction and difference of probabilistic triples. For build-
ing probabilistic relational algebraic operations in URDB such as the projection, join,
intersection, union and difference, we extend the conjunction, disjunction and difference
of probabilistic triples in [21,24] to new ones of extended probabilistic triples as the basis
for combining the probability of uncertain multivalued attribute values in outcome rela-
tions of these algebraic operations. First, the conjunction of extended probabilistic triples
is defined as follows.

Definition 2.4. Let pt1 = ⟨V1, α1, β1⟩ and pt2 = ⟨V2, α2, β2⟩ be two probabilistic triples,
and ⊗ be a probabilistic conjunction strategy. The conjunction of pt1 and pt2 under ⊗,
denoted by pt1 ⊗ pt2, is the probabilistic triple pt = ⟨V, α, β⟩, such that

1) V = {v = v1∩v2|v1 ∈ V1, v2 ∈ V2 and [α(v), β(v)] = [α1(v1), β1(v1)]⊗ [α2(v2), β2(v2)]
̸= [0, 0]}, and
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2) [α(v), β(v)] = [α1(v1), β1(v1)]⊗ [α2(v2), β2(v2)], ∀v = v1 ∩ v2 ∈ V , v1 ∈ V1, v2 ∈ V2.

Example 2.2. Let pt1 = ⟨{hepatitis, cholecystitis}, 0.8u, 1.4u⟩ and pt2 = ⟨{{hepatitis,
cirrhosis}}, u, u⟩ be probabilistic triples, and then pt1⊗in pt2 under the independence prob-
abilistic conjunction strategy is the probabilistic triple pt = ⟨{hepatitis}, 0.4u, 0.7u⟩.

Next, the disjunction and difference of probabilistic triples in turn are defined as below.

Definition 2.5. Let pt1 = ⟨V1, α1, β1⟩ and pt2 = ⟨V2, α2, β2⟩ be two probabilistic triples,
and ⊕ be a probabilistic disjunction strategy. The disjunction of pt1 and pt2 under ⊕,
denoted by pt1 ⊕ pt2, is the probabilistic triple pt = ⟨V, α, β⟩, such that

1) V = H ∪Q∪ T , where H = {v1 ∈ V1|¬∃v2 ∈ V2, v1 ∩ v2 ̸= ∅}, Q = {v2 ∈ V2|¬∃v1 ∈
V1, v1 ∩ v2 ̸= ∅}, T = {v = v1 ∪ v2|v1 ∈ V1, v2 ∈ V2, v1 ∩ v2 ̸= ∅}, and

2) [α(v), β(v)] =


[α1(v), β1(v)], ∀v ∈ H,
[α2(v), β2(v)], ∀v ∈ Q,
[α1(v1), β1(v1)]⊕ [α2(v2), β2(v2)], ∀v = v1 ∪ v2 ∈ T,

v1 ∈ V1, v2 ∈ V2.

Example 2.3. Let pt1 = ⟨{{hepatitis, cirrhosis}, cholecystitis}, 0.4u, 1.2u⟩ and pt2 =
⟨{{hepatitis, cirrhosis}, pancreatitis}, 0.6u, 1.3u⟩ be probabilistic triples, then pt1 ⊕in pt2
under the independence probabilistic disjunction strategy is the probabilistic triple pt =
⟨{cholecystitis, pancreatitis, {hepatitis, cirrhosis}}, α, β⟩, where α(cholecystitis) = 0.2,
β(cholecystitis)=0.6, α(pancreatitis)=0.3, β(pancreatitis)=0.65, α({hepatitis, cirrhosis})
= 0.44, β({hepatitis, cirrhosis}) = 0.86.

Definition 2.6. Let pt1 = ⟨V1, α1, β1⟩ and pt2 = ⟨V2, α2, β2⟩ be two probabilistic triples,
and ⊖ be a probabilistic difference strategy. The difference of pt1 and pt2 under ⊖, denoted
by pt1 ⊖ pt2, is the probabilistic triple pt = ⟨V, α, β⟩, such that

1) V = H ∪ T , where H = {v1 ∈ V1|¬∃v2 ∈ V2, v1 ∩ v2 ̸= ∅}, T = {v1 ∈ V1|∃v2 ∈ V2,
v1 ∩ v2 ̸= ∅ and [α1(v1), β1(v1)]⊖ [α2(v2), β2(v2)] ̸= [0, 0]}, and

2) [α(v), β(v)] =

 [α1(v), β1(v)], ∀v ∈ H,
[α1(v1), β1(v1)]⊖ [α2(v2), β2(v2)], ∀v = v1 ∈ T, v1 ∈ V1,

v2 ∈ V2, v1 ∩ v2 ̸= ∅.

Example 2.4. Let pt1 and pt2 be probabilistic triples given as in Example 2.3, and
then pt1 ⊖in pt2 under the independence probabilistic difference strategy is the probabilis-
tic triple pt = ⟨{cholecystitis, {hepatitis, cirrhosis}}, α, β⟩, where α(cholecystitis) = 0.2,
β(cholecystitis) = 0.6, α({hepatitis, cirrhosis}) = 0.07, β({hepatitis, cirrhosis}) = 0.42.

Now, the probabilistic definitions in Section 2 above are used to build the URDB mod-
el and the probabilistic relational algebraic operations of it in Sections 3 and 4. The
probabilistic triples are employed for representing the URDB model (i.e., probabilistic
schemas and relations) while the probabilistic interpretation of binary relations on sets,
conjunction, disjunction and difference of probabilistic triples and probabilistic combina-
tion strategies are for defining probabilistic relational algebraic operations on the model.

3. URDB Model. As CRDB model, URDB model is a structure with fundamental
concepts, such as the schema, relation and database to represent data and the relationship
between them. URDB model is extended from the model in [26] with the probabilistic
functional dependency and relational schema key.
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3.1. URDB schemas. A URDB schema consists of a set of relational attributes respec-
tively associated with domains defining probabilistic triples representing uncertain values
of those attributes. The URDB schema is extended from that of the model [24] with
uncertain multivalued attributes (cf. [26]) as follows.

Definition 3.1. A URDB schema is a pair R = (U , ℘), where

1) U = {A1, A2, . . . , Ak} is a set of pairwise different attributes.
2) ℘ is a function that maps each attribute A ∈ U to the set of all probabilistic triples

on the value domain of A.

For simplicity, the notation R(U , ℘) and then R can be used to denote R = (U , ℘).

3.2. URDB relations. A URDB relation is an instance of a URDB schema, where each
relational attribute may take more than one uncertain value represented by a probabilistic
triple. The URDB relation is extended from that of the model in [24] with uncertain
multivalued attributes (cf. [26]) as the following definition.

Definition 3.2. Let U = {A1, A2, . . . , Ak} be a set of k pairwise different attributes. A
URDB relation r over the schema R(U , ℘) is a finite set of elements {t1, t2, . . . , tn}, where
each element ti = (⟨Vi1, αi1, βi1⟩, ⟨Vi2, αi2, βi2⟩, . . . , ⟨Vik, αik, βik⟩) is a list of k probabilistic
triples such that ⟨Vij, αij, βij⟩ belongs to the set ℘(Aj) and Vij ̸= ∅, for every i = 1, 2, . . . , n
and j = 1, 2, . . . , k.

Each element t in the relation r over R(U , ℘) is called a tuple on U . For each tuple
ti, the probabilistic triple ⟨Vij, αij, βij⟩ represents an uncertain valued set of the attribute
Aj of the tuple ti. We write ti.Aj or ti[Aj] to denote ⟨Vij, αij, βij⟩ and [ti] to replace
(Vi1, Vi2, . . . , Vik).
Note that, if we only care about a unique relation over a schema, then we can unify its

symbol name with its schema’s name.

Example 3.1. In the database about patients at the clinic of a hospital, a simple UR-
DB relation, named PATIENT, over the URDB schema PATIENT({P ID, P NAME,
P AGE, P DISEASE, D COST}, ℘) can be given as Table 1.

Table 1. Relation PATIENT

P ID P NAME P AGE P DISEASE D COST

P165 John ⟨{55}, u, u⟩ ⟨{lung cancer, tuberculosis},
0.6u, 1.2u⟩ ⟨{30, 35}, 0.7u, 1.3u⟩

P224 Paul ⟨{47, 48}, u, u⟩ ⟨{{hepatitis, cirrhosis},
{cholecystitis}}, 0.9u, 1.3u⟩ ⟨{6, 7}, 0.8u, 1.4u⟩

P336 Ann ⟨{15}, u, u⟩ ⟨{dyspepsia, cholelithiasis},
08u, 1.4u⟩ ⟨{7}, u, u⟩

P448 Selena ⟨{52}, u, u⟩ ⟨{{duodenitis, gastroenteritis},
{dyspepsia}}, 1.2u, 1.6u⟩ ⟨{7, 8}, 0.8u, 1.2u⟩

P512 Helen ⟨{42, 43}, u, u⟩ ⟨{dyspepsia, cholelithiasis},
0.6u, 1.2u⟩ ⟨{7}, u, u⟩

In the relation, the attributes P ID, P NAME, P AGE, P DISEASE and D COST
describe the information about the identifier, name, age, disease and daily treatment cost
of each patient, respectively. In reality, while diagnosing, the disease of each patient is
not always determined certainly by the doctors. Similarly, the daily treatment cost for
patients is also not known definitely even as the patients know about their diseases. Here,
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u is the uniform distribution function as presented in Definition 2.1, each tuple in the
relation PATIENT represents uncertain information of a patient, for instance, the tuple
t1 (the first tuple) in this relation expresses that the clinic has a patient whose identifier,
name and age are P165, John and 55, respectively. The patient’s disease is lung cancer or
tuberculosis with a probability between 0.3 and 0.6 and the daily treatment cost is 30 or
35 (USD) with a probability between 0.35 and 0.65. Note that, for each attribute A in the
schema PATIENT, ℘(A) includes all probabilistic triples on the domain of A (Definition
3.1). In addition, for simplicity, each probabilistic triple ⟨V, u, u⟩, where V = {v}, v is not
a set, will be represented as a single value v (such as probabilistic triples for the attribute
P ID). Because if an attribute takes such a probabilistic triple, then, actually it only takes
a value v with the probability as 1 (Definition 2.2). In other words, the attribute certainly
takes the value v.

The URDB database is defined as an extension of CRDB and the probabilistic relational
database in [24] with uncertain multivalued attributes as follows.

Definition 3.3. A URDB database over a set of attributes is a set of URDB relations
corresponding to the set of their URDB schemas.

3.3. URDB functional dependencies. Functional dependencies play an important
role in CRDB. The functional dependent concept in URDB is extended from that in
[24] with uncertain multivalued attributes. We first define the probability measure to
determine the equal degree of two values of the same attribute for two different tuples in
a URDB relation as follows.

Definition 3.4. Let R(U , ℘) be a URDB schema, r be a relation over R(U , ℘) and t1 and
t2 be two tuples in r, A be an attribute of U , and ⊗ be a probabilistic conjunction strategy.
The probability interval for the values of the attribute A of two tuples t1 and t2 to be equal
under ⊗, denoted by p(t1.A =⊗ t2.A), is [Σv∈V α(v).P r(v1 = v2),min(1,Σv∈V β(v).P r(v1 =
v2))], where t1.A = ⟨V1, α1, β1⟩, t2.A = ⟨V2, α2, β2⟩ and [α(v), β(v)] = [α1(v1), β1(v1)] ⊗
[α2(v2), β2(v2)], ∀v = (v1, v2) ∈ V = V1 × V2.

Now, the probabilistic functional dependency in URDB as an extension of the functional
dependency in [24] with uncertain multivalued attributes and is defined as below.

Definition 3.5. Let R = (U , ℘) be a URDB schema, r be any relation over R, ⊗ be a
probabilistic conjunction strategy, X = {Ai, . . . , Al} and Y = {Aj, . . . , Am} be two subsets
of U . A URDB functional dependency of Y on X under ⊗, denoted by X →⊗ Y , holds
if and only if

∀t1, t2 ∈ r, p(t1[X] =⊗ t2[X]) ≤ p(t1[Y ] =⊗ t2[Y ]),

where p(t1[X] =⊗ t2[X]) = p(t1.Ai =⊗ t2.Ai) ⊗ · · · ⊗ p(t1.Al =⊗ t2.Al) and p(t1[Y ] =⊗
t2[Y ]) = p(t1.Aj =⊗ t2.Aj)⊗ · · · ⊗ p(t1.Am =⊗ t2.Am).

One can see that this definition subsumes that of CRDB. Also, it is easy to see that
for every URDB schema R(U , ℘) then U →⊗ Y with Y ⊆ U under all probabilistic
conjunction strategies.

Example 3.2. In every relation r over the schema PATIENT with the set of attributes
U = {P ID, P NAME, P AGE, P DISEASE, D COST} in Example 3.1, the values of the
attribute P ID that describe the identifiers of patients are single and pairwise different.
Thus, for two tuples t1, t2 ∈ r and an attribute A ∈ U , p(t1.P ID =⊗ t2.P ID) = 0,
while p(t1.A =⊗ t2.A) ≥ 0. So, p(t1[Y ] =⊗ t2[Y ]) ≥ 0 with Y ⊆ U , by Definition 3.5,
there is the URDB functional dependency P ID →⊗ Y in the schema PATIENT under
all probabilistic conjunction strategies.
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As in the classical relational database, the keys of a schema in URDB are the basis
for recognizing a tuple of a probabilistic relation. In the model and management systems
of the classical relational database, key attributes are constrained not to take the value
NULL [1,2]. Similarly, in URDB, we assume that the value of each key attribute is always
certain and definite. The key concept of URDB schemas is defined using the probabilistic
functional dependency as follows.

Definition 3.6. Let R(U , ℘) be a URDB schema, r be any relation over R and ⊗ be a
probabilistic conjunction strategy, a set of attributes K ⊆ U is called a key of R under
⊗ if the value of each attribute of K is always certain in r and there is a probabilistic
functional dependency K →⊗ U such that there does not exist any proper subset of K
holding this property.

Example 3.3. In the relation PATIENT above, if we assume that each patient has a
unique identifier corresponding to the value of the attribute P ID, then P ID is a key of
the schema PATIENT under all probabilistic conjunction strategies.

4. URDB Algebra. As the CRDB algebra [1,2], the URDB algebra is a set of basic
operations to manipulate, handle and query data. In [26], a URDB algebra was pre-
sented. However, that algebra only consisted of a defined selection operation, meanwhile
other operations such as the projection, Cartesian product, join, intersection, union and
difference are missing. In this work, we extend the URDB algebra in [26] to a new URDB
algebra with a full set of basic relational algebraic operations taking account of uncertain
multivalued attributes to manipulate, handle and query uncertain information in practice.

4.1. Selection. The selection operation in URDB is extended from that in [24] (cf. [26])
to allow querying with uncertain multivalued relational attributes. Before presenting the
selection operation, the selection expressions and conditions in turn are defined as below.

Definition 4.1. Let R be a URDB schema and X be a set of relational tuple variables.
Then selection expressions are inductively defined and have one of the following forms:

1) x.A θ c, where x ∈ X, A is an attribute in R, θ is a binary relation from {=, ̸=,≤,≥,
<,>,⊆,⊇}, and c is a single value or a set of values.

2) x.A1 =⊗ x.A2, where x ∈ X, A1 and A2 are two different attributes in R, and ⊗ is
a probabilistic conjunction strategy.

3) E1 ⊗ E2, where E1 and E2 are selection expressions on the same relational tuple
variable, and ⊗ is a probabilistic conjunction strategy.

4) E1 ⊕ E2, where E1 and E2 are selection expressions on the same relational tuple
variable, and ⊕ is a probabilistic disjunction strategy.

Definition 4.2. Let R be a URDB schema. Then selection conditions are inductively
defined as follows.

1) If E is a selection expression and [L,U ] is a subinterval of [0, 1], then (E)[L,U ] is
a selection condition.

2) If ϕ and ψ are selection conditions on the same tuple variable, then ¬ϕ, (ϕ ∧ ψ),
(ϕ ∨ ψ) are selection conditions.

Example 4.1. Given the schema PATIENT in Example 3.1, the selection of “all pa-
tients who are over 50 years old with a probability of at least 0.9 or have lung cancer and
pay the daily treatment cost not less than 30 USD with a probability between 0.6 and 0.7”
can be done using the selection condition (x.P AGE > 50)[0.9, 1] ∨ (x.P DISEASE =
lung cancer ⊗ x.D COST ≥ 30)[0.6, 0.7], where x.P AGE > 50 and x.P DISEASE =
lung cancer⊗ x.D COST ≥ 30 are selection expressions under Definition 4.1.
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The probabilistic interpretation (as a probabilistic measure) of selection expressions
in URDB (cf. [26]) is extended from that in [24] with the probabilistic interpretation of
binary relations on sets as follows.

Definition 4.3. Let R be a URDB schema, r be a relation over R, x be a tuple variable,
and t be a tuple in r. The probabilistic interpretation of selection expressions with respect
to R, r and t, denoted by ProbR,r,t, is the partial mapping from the set of all selection
expressions to the set of all closed subintervals of [0, 1] that is inductively defined as follows.

1) ProbR,r,t(x.A θ c) = [Σv∈V α(v).P r(v θ c),min(1,Σv∈V β(v).P r(v θ c))], where t.A =
⟨V, α, β⟩.

2) ProbR,r,t(x.A1 =⊗ x.A2) = [Σv∈V α(v).P r(v1 = v2),min(1,Σv∈V β(v).P r(v1 = v2))],
where t.A1 = ⟨V1, α1, β1⟩, t.A2 = ⟨V2, α2, β2⟩ and [α(v), β(v)] = [α1(v1), β1(v1)] ⊗
[α2(v2), β2(v2)], ∀v = (v1, v2) ∈ V = V1 × V2.

3) ProbR,r,t(E1 ⊗ E2) = ProbR,r,t(E1)⊗ ProbR,r,t(E2).
4) ProbR,r,t(E1 ⊕ E2) = ProbR,r,t(E1)⊕ ProbR,r,t(E2).

Intuitively, ProbR,r,t(x.A θ c) is the probability interval for the attribute A of the tuple
t having a value v such that v θ c, while ProbR,r,t(x.A1 =⊗ x.A2) is the probability interval
for the attributes A1 and A2 of the tuple t having values v1 and v2, respectively, such that
v1 = v2.

Example 4.2. Let R denote the schema PATIENT and r denote the relation PATIENT
in Example 3.1. Consider the fourth tuple in r, denoted by t4. We have

ProbR,r,t4(x.P DISEASE ⊇ {duodenitis, gastroenteritis})
= [1.2u({duodenitis, gastroenteritis}).P r({duodenitis, gastroenteritis}

⊇ {duodenitis, gastroenteritis}) + 1.2u({dyspepsia}).P r({dyspepsia}
⊇ {duodenitis, gastroenteritis}),
min(1, 1.6u({duodenitis, gastroenteritis}).P r({duodenitis, gastroenteritis}
⊇ {duodenitis, gastroenteritis}) + 1.6u({dyspepsia}).P r({dyspepsia}
⊇ {duodenitis, gastroenteritis}))]

= [1.2× 0.5× 1.0 + 1.2× 0.5× 0.0,min(1, 1.6× 0.5× 1.0 + 1.6× 0.5× 0.0)]
= [0.6, 0.8].

The satisfaction (i.e., semantics) of selection conditions in URDB (cf. [26]) is defined
as below.

Definition 4.4. Let R be a URDB schema, r be a relation over R, and t ∈ r. The
satisfaction of selection conditions under ProbR,r,t is defined as follows.

1) ProbR,r,t |= (E)[L,U ] if and only if (iff) ProbR,r,t(E) ⊆ [L,U ].
2) ProbR,r,t |= ¬ϕ iff ProbR,r,t |= ϕ does not hold.
3) ProbR,r,t |= ϕ ∧ ψ iff ProbR,r,t |= ϕ and ProbR,r,t |= ψ.
4) ProbR,r,t |= ϕ ∨ ψ iff ProbR,r,t |= ϕ or ProbR,r,t |= ψ.

Now, the notion of the satisfaction of selection condition is use to define the selection
operation on a URDB relation as follows (cf. [26]).

Definition 4.5. Let R be a URDB schema, r be a relation over R, and ϕ be a selection
condition over a tuple variable x. The selection on r with respect to ϕ, denoted by σϕ(r),
is the relation r∗ = {t ∈ r|ProbR,r,t |= ϕ} over R, including all satisfied tuples of the
selection condition ϕ.

Example 4.3. Let r denote the relation PATIENT in Example 3.1 and R denote its
schema. The query “Find all patients who are over 50 years old with a probability of
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at least 0.9, have both duodenitis and gastroenteritis and pay the daily treatment cost
not less than 7 USD with a probability between 0.4 and 0.8” can be done by the selec-
tion operation σϕ(PATIENT ), where ϕ = (x.P AGE > 50)[0.9, 1] ∧ (x.P DISEASE ⊇
{duodenitis, gastroenteritis} ⊗in x.D COST ≥ 7)[0.4, 0.8].
Only the fourth tuple t4 of the relation PATIENT in Example 3.1 satisfies ϕ, because
ProbR,r,t4(x.P AGE > 50) = [u(52) × Pr(52 > 50),min(1, u(52) × Pr(52 > 50))] =

[1× 1,min(1, 1× 1)] = [1, 1] ⊆ [0.9, 1],
ProbR,r,t4(x.D COST ≥ 7) = [0.8u(7)×Pr(7 ≥ 7)+0.8u(8)×Pr(8 ≥ 7),min(1, 1.2u(7)

×Pr(7 ≥ 7) + 1.2u(8) × Pr(8 ≥ 7))] = [0.8 × 0.5 × 1 + 0.8 × 0.5 × 1,min(1, 1.2 × 0.5 ×
1 + 1.2× 0.5× 1)] = [0.8, 1].
From the result of the computation in Example 4.2, we have
ProbR,r,t4(x.P DISEASE ⊇ {duodenitis, gastroenteritis} ⊗in x.D COST ≥ 7) = [0.6,

0.8]⊗in [0.8, 1] = [0.48, 0.8] ⊆ [0.4, 0.8].
For the other tuples, one has ProbR,r,ti(x.P DISEASE ⊇ {duodenitis, gastroenteritis}

⊗in x.D COST ≥ 7) = [0, 0] ̸⊂ [0.4, 0.8], ∀i ̸= 4.
Thus, the result of the query is the relation σϕ(PATIENT ) that consists of one tuple t4 =

(P448, Selena, ⟨{52}, u, u⟩, ⟨{{duodenitis, gastroenteritis}, {dyspepsia}}, 1.2u, 1.6u⟩, ⟨{7,
8}, 0.8u, 1.2u⟩).

As presented above, except the selection, other basic algebraic operations as the pro-
jection, Cartesian product, join, intersection, union and difference have not been built
for URDB in [26]. In the next sections, we develop a complete algebra for URDB as
an extension of the probabilistic relational algebra in [24] with uncertain multivalued
attributes.

4.2. Projection. A projection of a URDB relation on a set of attributes is a new URDB
relation computed similarly to the projection of a CRDB relation. However, since the value
of relational attributes may be uncertain, the projected tuples that have the same valued
set should be coalesced into a tuple in the result relation by a probabilistic combination
strategy. The projection operation of a URDB relation is defined as follows.

Definition 4.6. Let R(U , ℘) be a URDB schema, r be a relation over R, L be a subset of
attributes of U , ⊕ be a probabilistic disjunction strategy. The projection of r on L under
⊕, denoted by ΠL⊕(r), is the relation r∗ over the schema R∗ determined by

1) R∗ = (L, ℘∗) and ℘∗(A) = ℘(A), ∀A ∈ L.
2) r∗ = {t∗|t∗.A = u.A ⊕ · · · ⊕ w.A, ∀A ∈ L, ∃u, . . . , w ∈ r such that [u[L]] = · · · =

[w[L]]}.

Example 4.4. Consider the relation PATIENT over the schema PATIENT({P ID ,
P NAME , P AGE , P DISEASE , D COST}, ℘) as in Table 1, then the projection of it
on the set of the attributes L = {P DISEASE , D COST} under ⊕in is the relation
Π{P DISEASE ,D COST}⊕in

(PATIENT ) over the schema R∗({P DISEASE , D COST}, ℘∗)
computed as in Table 2, where ℘∗(A) = ℘(A), ∀A ∈ L.
Note that in the relation PATIENT, we have [t3[L]] = [t5[L]]; thus two tuples t3 and

t5 are projected on L and coalesced into the tuple t4 under the independence probabilistic
disjunction strategy ⊕in in Table 2.

4.3. Cartesian product. For the Cartesian product of two URDB relations, as in
CRDB, we assume the set of attributes of their schemas is disjoint and every k-tuple
t = (⟨V1, α1, β1⟩, . . . , ⟨Vk, αk, βk⟩) is an un-ordered list. The Cartesian product of two
URDB relations is extended from the Cartesian product of two CRDB relations with
uncertain multivalued attributes as follows.
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Table 2. Relation Π{P DISEASE ,D COST}⊕in
(PATIENT)

P DISEASE D COST
⟨{lung cancer, tuberculosis}, 0.6u, 1.2u⟩ ⟨{30, 35}, 0.7u, 1.3u⟩

⟨{{hepatitis, cirrhosis}, {cholecystitis}}, 0.9u, 1.3u⟩ ⟨{6, 7}, 0.8u, 1.4u⟩
⟨{{duodenitis, gastroenteritis}, {dyspepsia}}, 1.2u, 1.6u⟩ ⟨{7, 8}, 0.8u, 1.2u⟩

⟨{dyspepsia, cholelithiasis}, 1.16u, 1.76u⟩ ⟨{7}, u, u⟩

Definition 4.7. Let U1, U2 be two sets of attributes that have not any common element,
R1(U1, ℘1), R2(U2, ℘2) be two URDB schemas, and r1, r2 be two relations over R1 and
R2, respectively. The Cartesian product of r1 and r2, denoted by r1 × r2, is the relation r
over R, determined by

1) R = (U , ℘), where U = U1 ∪ U2, ℘(A) = ℘1(A) if A ∈ U1 and ℘(A) = ℘2(A) if
A ∈ U2.

2) r = {t|t.A = t1.A if A ∈ U1, t.A = t2.A if A ∈ U2, t1 ∈ r1, t2 ∈ r2}.

4.4. Join. The join of two URDB relations is extended from the natural join of two
probabilistic relations in [24] with uncertain multivalued attributes as following definition.

Definition 4.8. Let U1 and U2 be two sets of attributes such that if they have the same
name attributes, respectively in those two sets then such attributes have the same value
domain. Let R1(U1, ℘1) and R2(U2, ℘2) be two URDB schemas, r1, r2 be two relations
over R1 and R2, respectively and ⊗ be a probabilistic conjunction strategy. The join of r1
and r2 under ⊗, denoted by r1 ◃▹⊗ r2, is the relation r over the schema R, determined by

1) R = (U , ℘) where U = U1 ∪ U2, ℘(A) = ℘1(A) if A ∈ U1 − U2, ℘(A) = ℘2(A) if
A ∈ U2 −U1 and ℘(A) = ℘1(A) = ℘2(A) if A ∈ U1 ∩U2.

2) r = {t|t.A = t1.A if A ∈ U1−U2, t.A = t2.A if A ∈ U2−U1, t.A = t1.A⊗t2.A if A ∈
U1 ∩U2 and t1.A⊗ t2.A ̸= ⟨∅, α, β⟩, t1 ∈ r1, t2 ∈ r2}.

Example 4.5. Given two URDB relations PATIENT1 and PATIENT2 as in Tables 3
and 4, then the result of the join of them under the probabilistic conjunction strategy ⊗in

is the relation PATIENT1 ◃▹⊗in
PATIENT2 computed as in Table 5. Here, the names of

each relation and its schema are identical, and the set ℘(A) for each attribute A in the
schemas consists of extended probabilistic triples on dom(A).

Table 3. Relation PATIENT1

P ID P DISEASE
P0421 ⟨{bronchitis, bronchiectasis}, 0.9u, 1.2u⟩
P3829 ⟨{{cholecystitis, gall-stone}}, u, u⟩

Table 4. Relation PATIENT2

P NAME P DISEASE
Peter ⟨{bronchiectasis}, u, u⟩
George ⟨{{cholecystitis, gall-stone}, cirrhosis}, 0.8u, 1.4u⟩

4.5. Intersection, union and difference. The intersection, union and difference of two
URDB relations over the same schema is a URDB relation over that schema, where two
tuples that have the same key, respectively of those two relations should be coalesced into
a tuple in the result relation by a probabilistic combination strategy. Here, two tuples
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Table 5. Relation PATIENT1 ◃▹⊗in
PATIENT2

P ID P NAME P DISEASE
P0421 Peter ⟨{bronchiectasis}, 0.45u, 0.6u⟩
P3829 George ⟨{{cholecystitis, gall-stone}}, 0.4u, 0.7u⟩

that have the same key value are similar to two tuples that are identical in the classical
relational database model. Thus, the operations are an extension of the intersection,
union and difference of two CRDB relations with uncertain multivalued attributes. The
intersection, union and difference of two URDB relations in turn are defined as below.

Definition 4.9. Let R(U , ℘) be a URDB schema, r1 and r2 be two relations over R, K
be a key of R and ⊗ be a probabilistic conjunction strategy. The intersection of r1 and
r2 under ⊗, denoted by r1 ∩⊗ r2, is the URDB relation r over R defined by r = {t|t.A =
t1.A⊗ t2.A, t1 ∈ r1, t2 ∈ r2, A ∈ U , such that t1[K] = t2[K] and t1.A⊗ t2.A ̸= ⟨∅, α, β⟩}.
It is noted that, the notation t1[K] = t2[K] is used in the definition due to the value of

each key attribute assumed to be certain and definite as in Definition 3.6. Moreover, each
tuple is uniquely determined by every key of a relation. So, the result relation is unique
by all the keys.

Example 4.6. Given two URDB relations DIAGNOSE1 and DIAGNOSE2 over the same
schema DIAGNOSE(U , ℘) as in Tables 6 and 7, where U = {P ID, D ID, P DISEASE,
D COST}, {P ID, D ID} is the key of DIAGNOSE and the set ℘(A) for each attribute A
in U consists of all probabilistic triples on dom(A). Then the intersection of DIAGNOSE1

and DIAGNOSE2 under ⊗in is the relation DIAGNOSE 1 ∩⊗in
DIAGNOSE 2 computed as

in Table 8.

Table 6. Relation DIAGNOSE1

P ID D ID P DISEASE D COST
P216 D012 ⟨{lung cancer, tuberculosis}, 0.8u, 1.2u⟩ ⟨{30, 35}, 0.7u, 1.3u⟩
P244 D024 ⟨{{hepatitis, cirrhosis}, pancreatitis}, 0.6u, 1.3u⟩ ⟨{8, 9}, 0.5u, 1.2u⟩

Table 7. Relation DIAGNOSE2

P ID D ID P DISEASE D COST
P218 D012 ⟨{lung cancer}, u, u⟩ ⟨{30}, u, u⟩
P244 D024 ⟨{{hepatitis, cirrhosis}, cholecystitis}, 0.4u, 1.2u⟩ ⟨{7, 8}, 0.5u, 1.2u⟩
P252 D025 ⟨{dyspepsia}, u, u⟩ ⟨{5}, u, u⟩

Table 8. Relation DIAGNOSE1 ∩⊗in
DIAGNOSE2

P ID D ID P DISEASE D COST
P244 D024 ⟨{{hepatitis, cirrhosis}}, 0.06u, 0.39u⟩ ⟨{8}, 0.0625u, 0.36u⟩

Definition 4.10. Let R(U , ℘) be a URDB schema, r1 and r2 be two relations over R,
K be a key of R, and ⊕ be a probabilistic disjunction strategy. The union of r1 and r2
under ⊕, denoted by r1 ∪⊕ r2, is the URDB relation r over R(U , ℘) defined by r = {t1 ∈
r1|∀t2 ∈ r2, t1[K] ̸= t2[K]} ∪ {t2 ∈ r2|∀t1 ∈ r1, t2[K] ̸= t1[K]} ∪ {t|t.A = t1.A⊕ t2.A, t1 ∈
r1, t2 ∈ r2, A ∈ U such that t1[K] = t2[K]}.
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Definition 4.11. Let R(U , ℘) be a URDB schema, r1 and r2 be two relations over R,
K be a key of R, ⊖ be a probabilistic difference strategy. The difference of r1 and r2
under ⊖, denoted by r1 ∪⊖ r2, is the URDB relation r over R(U , ℘) defined by r = {t1 ∈
r1|∀t2 ∈ r2, t1[K] ̸= t2[K]}∪{t|t.A = t1.A⊖ t2.A, t1 ∈ r1, t2 ∈ r2, A ∈ U such that t1[K] =
t2[K] and t1.A⊖ t2.A ̸= ⟨∅, α, β⟩}.

We note that as for Definition 4.9, the result relations in Definitions 4.10 and 4.11 do
not depend on choosing the keys of their relational schema.

Example 4.7. Given two URDB relations DIAGNOSE1 and DIAGNOSE2 over the same
schema DIAGNOSE(U , ℘) as in Tables 6 and 7 of Example 4.6. Then the union of
DIAGNOSE1 and DIAGNOSE2 under ⊕in is the relation DIAGNOSE 1∪⊕in

DIAGNOSE 2

computed as in Table 9.

Table 9. Relation DIAGNOSE1 ∪⊕in
DIAGNOSE2

P ID D ID P DISEASE D COST
P216 D012 ⟨{lung cancer, tuberculosis}, 0.8u, 1.2u⟩ ⟨{30, 35}, 0.7u, 1.3u⟩
P218 D012 ⟨{lung cancer}, u, u⟩ ⟨{30}, u, u⟩
P252 D025 ⟨{dyspepsia}, u, u⟩ ⟨{5}, u, u⟩

P244 D024

⟨{pancreatitis, cholecystitis,
{hepatitis, cirrhosis}}, α, β⟩,
where α(pancreatitis) = 0.3,
β(pancreatitis) = 0.65,
α(cholecystitis) = 0.2,
β(cholecystitis) = 0.6,

α({hepatitis, cirrhosis}) = 0.44,
β({hepatitis, cirrhosis}) = 0.86.

⟨{7, 8, 9}, α, β⟩,
where α(7) = 0.25,

β(7) = 0.6,
α(9) = 0.25,
β(9) = 0.6,

α(8) = 0.4375,
β(8) = 0.84.

4.6. Property of algebraic operations. The properties of the algebraic operations in
URDB are extended from those in CRDB. Clearly, these properties say that our URDB
model is sound and coherent.

Proposition 4.1. Let R be a URDB schema, r be a relation over R, ϕ1 and ϕ2 be two
selection conditions. Then

σϕ1(σϕ2(r)) = σϕ2(σϕ1(r)) (1)

Proof: Let s = σϕ2(r), we have

σϕ1(σϕ2(r))
= {t ∈ s|ProbR,s,t |= ϕ1} (Definition 4.5)
= {t ∈ r|(ProbR,r,t |= ϕ2) ∧ (ProbR,s,t |= ϕ1)}
= {t ∈ r|(ProbR,r,t |= ϕ2) ∧ (ProbR,r,t |= ϕ1)} (because s ⊆ r)
= {t ∈ r|ProbR,r,t |= ϕ1 ∧ ϕ2} (Definition 4.4)
= σϕ1∧ϕ2(r).

Thus, the equation σϕ1(σϕ2(r)) = σϕ1∧ϕ2(r) is proven. The equation σϕ2(σϕ1(r)) =
σϕ2∧ϕ1(r) is similarly proven. Since ϕ1 ∧ ϕ2 ⇔ ϕ2 ∧ ϕ1. So, Proposition 4.1 is proven.

Proposition 4.2. Let R be a URDB schema, r be a relation over R, ⊕ be a probabilistic
disjunction strategy, A and B be two subsets of attributes of R, A ⊆ B. Then

ΠA⊕(ΠB⊕(r)) = ΠA⊕(r) (2)
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Proof: Because A ⊆ B, A ∩B = A and sides of (2) are the relations over the same
schema. From Definition 4.6, it is easy to see ΠA⊕(ΠB⊕(r)) = ΠA∩B⊕(r) = ΠA⊕(r) under
the probabilistic disjunction strategy ⊕. Thus, Equation (2) is proven.

Proposition 4.3. Let R1, R2 and R3 be the URDB schemas such that if they have the
same name attributes then such attributes have the same value domain, r1, r2 and r3 be
relations over R1, R2 and R3 respectively, and ⊗ be a probabilistic conjunction strategy.
Then

r1 ◃▹⊗ r2 = r2 ◃▹⊗ r1 (3)

(r1 ◃▹⊗ r2) ◃▹⊗ r3 = r1 ◃▹⊗ (r2 ◃▹⊗ r3) (4)

Equations (3) and (4) say that the join operation of URDB relations is commutative
and associative.

Proof: Clearly, r1 ◃▹⊗ r2 and r2 ◃▹⊗ r1 are two relations over the same schema. By
Definition 2.4, the conjunction of probabilistic triples is commutative (due to the commu-
tativity of probabilistic conjunction strategies and the intersection of sets). Therefore, by
Definition 4.8, it yields r1 ◃▹⊗ r2 = r2 ◃▹⊗ r1.
By Definition 4.8, the results of two sides of (4) are the relations over the same schema.

Moreover, the intersection of sets has the associativity, by Definition 2.4, it follows that the
conjunction of probabilistic triples is associative. From the associativity of the classical
relational join and by Definition 4.8, it is easy to see that the join of URDB relations is
associative. Thus, it results in (r1 ◃▹⊗ r2) ◃▹⊗ r3 = r1 ◃▹⊗ (r2 ◃▹⊗ r3).
Because the Cartesian product (Definition 4.7) is a particular case of the join, it yields

the straight corollary of Proposition 4.3 below.

Corollary 4.1. Let R1, R2 and R3 be URDB schemas such that each pair of them has
not any common attribute, r1, r2 and r3 be relations over R1, R2 and R3, respectively.
Then

r1 × r2 = r2 × r1 (5)

(r1 × r2)× r3 = r1 × (r2 × r3) (6)

Proposition 4.4. Let R be a URDB schema, r1, r2 and r3 be relations over R. Let ⊗/⊕
be a probabilistic conjunction/disjunction strategy. Then

r1 ∩⊗ r2 = r2 ∩⊗ r1 (7)

(r1 ∩⊗ r2) ∩⊗ r3 = r1 ∩⊗ (r2 ∩⊗ r3) (8)

r1 ∪⊕ r2 = r2 ∪⊕ r1 (9)

(r1 ∪⊕ r2) ∪⊕ r3 = r1 ∪⊕ (r2 ∪⊕ r3) (10)

Equations of (7), (8), (9) and (10) say that the intersection, union and difference of
relations in URDB are commutative and associative.

Proof: From commutativity and associativity of the intersection of sets, it follows that
the conjunction of probabilistic triples has commutativity and associativity (Definition
2.4). So, the intersection of URDB relations r1, r2 and r3 under the probabilistic con-
junction strategy ⊗ and every chosen key also has commutativity and associativity. From
that, by Definition 4.9, it follows Equations (7) and (8).
From commutativity and associativity of the union, intersection of sets, it yields commu-

tativity and associativity of the union of probabilistic triples (Definition 2.5). Therefore,
the union of URDB relations r1, r2 and r3 under the probabilistic disjunction strategy ⊕
and every chosen key also has commutativity and associativity. From that, by Definition
4.10, it follows Equations (9) and (10).
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For ending this section, we note that the computing complexity of URDB algebraic
operations is a polynomial under the size of relations. For instance, regarding the selection
operation, since the computation time that a tuple holds or does not hold a selection
condition is bounded above by some constant (Definitions 4.3 and 4.4), then the cost for
the selection of each tuple in a URDB relation (Definition 4.5) also is some constant (i.e.,
O(1)). It results in the computing time complexity of the selection operation on a URDB
relation having n tuples is O(n). Similarly, the computing time complexity of Cartesian
product and join operations on two URDB relations having n and m tuples is O(nm).
Thus, we can say that the performance of URDB model in computing and manipulating
uncertain information is good and can apply it in practice.

5. Conclusions. We have introduced a new relational database model and algebra, ab-
breviated to URDB, as a development following the probabilistic relational database mod-
el with multivalued attributes for representing and dealing with uncertain information. In
URDB, each relation is a set of tuples whose attributes may take more than one uncertain
value represented by an extended probabilistic triple. The uncertain degree of functional
dependencies, keys and relations on attribute values as well as the satisfied degree of data
queries are computed and determined by using the probabilistic interpretation of binary
relations on sets. The URDB algebra with a full set of basic operations is defined and built
by using the new combination strategies of extended probabilistic triples. Basic proper-
ties of the URDB operations are proposed and proven completely to say that URDB is a
sound and coherent model.

Towards applying URDB in practice, we will build a management system for URDB
with the familiar querying and manipulating language like SQL that is able to represent
and handle uncertain information in the real world.
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