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Abstract. Neural cryptography is a public key exchange protocol based on mutual learn-
ing of two identically structured neural networks. After learning each other and eventual-
ly reaching full synchronization, the two networks attain common network weights which
can be used as a secret key for cryptographic purposes. The most common model used in
neural cryptography is the tree parity machine (TPM). In this paper, neural cryptography
is proposed based on quaternion-valued TPM (QVTPM). The mutual learning strategy is
established and the security of QVTPM is theoretically analyzed. The main advantages
of the proposed QVTPM are twofold: (i) the two communicating parties can exchange
four group keys during one neural synchronization process; (ii) the security of QVTPM
is higher than that of TPM and that of complex-valued TPM with the same number of
input neurons and hidden units. Numerical simulation results ascertain the efficiency of
QVTPM and our theoretical findings.
Keywords: Neural cryptography, Tree parity machine, Quaternion-valued neural net-
work, Neural synchronization

1. Introduction. The public key exchange protocol (PKEP) has become an important
component of cryptosystems since it was first proposed by Diffie and Hellman [1]. PKEP
allows two parties to jointly establish a shared secret key over an insecure communication
channel, and the key can then be used to encrypt subsequent communication in a number
of applications such as identification, authentication, and data encryption.

PKEPs are traditionally built upon number theory, thus needing a high cost in computa-
tion and memory during the process of protocol implementation. Neural synchronization
provides another way to design public key exchange protocols, which are the so-called
neural cryptography [2-9]. Equipped with two identically structured neural networks, two
parties A and B start with randomly chosen weight vectors. During the mutual learning
process, they share a common input vector in each step and update the network weights
according to certain learning rules. Eventually, the two neural networks are synchronized
with a common weight vector which can be used as a secret key [10-24]. Though an at-
tacker E has the ability to access the communication channel, he cannot retrieve the
key.

The most popular model used for neural cryptography is the tree parity machine (TPM)
[25]. It has been proved that the synchronization of TPMs can be achieved with the
Hebbian learning rules [26], thus establishing the feasibility for TPM to be used as a
key exchange protocol. For the purpose of cryptanalysis, four types of attack algorithms
for neural cryptography have been proposed: simple attack [25], geometric attack [27],
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majority attack [28], and genetic attack [29]. Though TPM with one or two hidden units
was found insecure, TPM with three (or more) hidden units can successfully resist the
four aforementioned attack algorithms by increasing the synaptic depth of its networks
[30-32]. Based on the original TPM model, several variants or improvement models of
TPM have also been proposed, such as tree state classification machine (TSCM) [33],
two-layer tree-connected feed-forward neural network (TTFNN) [34], and “Don’t trust
my partner (DTMP)” [35]. Tree committee machine (TCM) [26] and permutation parity
machine (PPM) [36] are two other neural cryptography models which are different from
TPM, however, they have been proved insecure under attacks [37].
Recently, Dong and Huang [38] proposed a neural cryptography model based on the

complex-valued tree parity machine network (CVTPM), and they found that CVTPM is
more secure than TPM and can exchange two group keys in one neural synchronization
process [39,40].
The aforementioned neural cryptosystems are all based on the real-valued or complex-

valued neural network models, and that based on the quaternion-valued neural networks
is still lacking in the literature. In order to further improve the security and efficiency of
neural cryptography, in this paper, we propose a neural cryptography model based on the
quaternion-valued tree parity machine (QVTPM). The main contributions of this paper
are as follows.
(i) We establish the network structure and the information flowing mechanism of

QVTPM, whose input, output and network weights are all quaternion values.
(ii) We propose the mutual learning rules for QVTPM, by which four group keys can

be exchanged during one neural synchronization process.
(iii) The security and time efficiency of QVTPM is theoretically investigated. Bene-

fitting from the quaternion network structure and the quaternion mutual learning rules,
QVTPM enjoys higher security than TPM and CVTPM, while remaining the same order
of synchronization time as TPM and CVTPM.
The remainder of this paper is organized as follows. The network architecture and the

mutual learning process of QVTPM are elaborated in the next section. In Sections 3 and
4, we analyze the security and synchronization time of the QVTPM, respectively. Several
numerical examples are conducted in Section 5 to illustrate the advantages of the proposed
QVTPM. This paper is concluded in Section 6.

2. Model Description. Different from TPM [25] and CVTPM [38], the weight, input
vector and output vector of QVTPM are all quaternion-valued. This new characteristic
brings out the need for new learning rules to attain synchronization. In the following, we
give a description of QVTPM from the viewpoints of the network architecture and the
mutual learning process.

2.1. Network architecture. As shown in Figure 1, the structure of QVTPM is inherited
from TPM and can be regarded as a tree neural network constituted by three layers: input
layer, hidden layer, and output layer. There are K ×N input neurons in the input layer,
K hidden units in the hidden layer, and one output neuron in the output layer. Each
hidden unit works as a perceptron with independent receptive fields, including N input
neurons and one output neuron. Each weight ωu,v connecting the uth hidden unit and its
vth input neuron is a quaternion value and can be described as follows:

ωu,v = au,v + bu,vi+ cu,vj + du,vk, (1)

where au,v, bu,v, cu,v, du,v ∈ {−L,−L + 1, . . . , L}, L represents the synaptic depth of the
networks, u = 1, 2, . . . , K, and v = 1, 2, . . . , N . Let (xu,v)1×KN be the input vector with
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xu,v = ax + bxi+ cxj + dxk, (2)

where ax, bx, cx, dx ∈ {−1, 1}. The input of the uth hidden unit is defined by

hu =
1√
N

(
N∑
v=1

(au,vax) + i
N∑
v=1

(bu,vbx) + j
N∑
v=1

(cu,vcx) + k
N∑
v=1

(du,vdx)

)
, (3)

and the output of the uth hidden unit is defined by

σu = aσu + bσui+ cσuj + dσuk, (4)

where aσu = sgn(R(hu)), bσu = sgn(T(hu)), cσu = sgn(J(hu)), dσu = sgn(K(hu)), and R,
T, J, K denote the real part and the three imaginary parts, respectively. The output τ of
the QVTPM can then be defined as follows:

τ =
K∏

u=1

R(σu) + i

K∏
u=1

T(σu) + j

K∏
u=1

J(σu) + k

K∏
u=1

K(σu). (5)

Figure 1. A QVTPM network with K = 3 and N = 4

Remark 2.1. If cx = dx = 0 and cu,v = du,v = 0, then the QVTPM reduces to the
CVTPM. Thus, the CVTPM can be regarded as a special case of our model.

2.2. Mutual learning process. The flow diagram for the two parties A and B to ne-
gotiate a secret key based on QVTPM is given in Figure 2. A detailed description for the
negotiation procedure is provided as follows.

(I) Equip both the two parties A and B with a QVTPM. The quaternion-valued weight
vectors (ωu,v)

A
1×KN of A’s QVTPM and (ωu,v)

B
1×KN of B’s QVTPM are randomly and

independently initialized and then kept secretly.
(II) At each time step, a common input vector (xu,v)1×KN is randomly generated. Once

receiving (xu,v)1×KN , A and B compute the output τA and τB according to (3)-(5). Then,
A and B exchange their output values on the public channel.

(III) When A(B) receives τB(τA), then A(B) judges whether or not to update the weight
according to the following rules.

a) If R(τA) ̸= R(τB), T(τA) ̸= T(τB), J(τA) ̸= J(τB) and K(τA) ̸= K(τB), then the

weight (ωu,v)
A/B
1×KN cannot be updated.

b) If R(τA) = R(τB) = R
(
σ
A/B
u

)
, T(τA) = T(τB) = T

(
σ
A/B
u

)
, J(τA) = J(τB) =

J
(
σ
A/B
u

)
and K(τA) = K(τB) = K

(
σ
A/B
u

)
, then update the weight ω

A/B
u .
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Figure 2. The flow diagram for the mutual learning process

c) If R(τA) = R(τB) = R
(
σ
A/B
u

)
, T(τA) = T(τB) ̸= T

(
σ
A/B
u

)
, J(τA) = J(τB) ̸=

J
(
σ
A/B
u

)
and K(τA) = K(τB) ̸= K

(
σ
A/B
u

)
, then only update the real part R(•) of the

weight ω
A/B
u ; other cases can be conducted similarly.

d) If R(τA) = R(τB) = R
(
σ
A/B
u

)
, T(τA) = T(τB) = T

(
σ
A/B
u

)
, J(τA) = J(τB) ̸=

J
(
σ
A/B
u

)
and K(τA) = K(τB) ̸= K

(
σ
A/B
u

)
, then update the real part R(•) and the

imaginary part T(•) of the weight ω
A/B
u ; other cases can be conducted similarly.

e) If R(τA) = R(τB) = R
(
σ
A/B
u

)
, T(τA) = T(τB) = T

(
σ
A/B
u

)
, J(τA) = J(τB) =

J
(
σ
A/B
u

)
, K(τA) = K(τB) ̸= K

(
σ
A/B
u

)
, then only the imaginary part K(•) of the weight

ω
A/B
u cannot be updated; other cases can be conducted similarly.
(IV) Update the weight according to one of the following learning rules.
a) Hebbian learning rule

R
(
ω+
u,v

)
= g

(
ωR
u,v +

[
xR
u,vR(τ)

]
Θ
[
R
(
σ
A/B
u

)
R(τ)

]
Θ
[
R
(
τA
)
R
(
τB
)])

,

T
(
ω+
u,v

)
= g

(
ωT
u,v +

[
xT
u,vT(τ)

]
Θ
[
T
(
σ
A/B
u

)
T(τ)

]
Θ
[
T
(
τA
)
T
(
τB
)])

,

J
(
ω+
u,v

)
= g

(
ωJ
u,v +

[
xJ
u,vJ(τ)

]
Θ
[
J
(
σ
A/B
u

)
J(τ)

]
Θ
[
J
(
τA
)
J
(
τB
)])

,

K
(
ω+
u,v

)
= g

(
ωK
u,v +

[
xK
u,vK(τ)

]
Θ
[
K
(
σ
A/B
u

)
K(τ)

]
Θ
[
K
(
τA
)
K
(
τB
)])

;

(6)

b) Anti-Hebbian learning rule
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R
(
ω+
u,v

)
= g

(
ωR
u,v −

[
xR
u,vR(τ)

]
Θ
[
R
(
σ
A/B
u

)
R(τ)

]
Θ
[
R
(
τA
)
R
(
τB
)])

,

T
(
ω+
u,v

)
= g

(
ωT
u,v −

[
xT
u,vT(τ)

]
Θ
[
T
(
σ
A/B
u

)
T(τ)

]
Θ
[
T
(
τA
)
T
(
τB
)])

,

J
(
ω+
u,v

)
= g

(
ωJ
u,v −

[
xJ
u,vJ(τ)

]
Θ
[
J
(
σ
A/B
u

)
J(τ)

]
Θ
[
J
(
τA
)
J
(
τB
)])

,

K
(
ω+
u,v

)
= g

(
ωK
u,v −

[
xK
u,vK(τ)

]
Θ
[
K
(
σ
A/B
u

)
K(τ)

]
Θ
[
K
(
τA
)
K
(
τB
)])

;

(7)

c) Random walk learning rule

R
(
ω+
u,v

)
= g

(
ωR
u,v + xR

u,vΘ
[
R
(
σ
A/B
u

)
R(τ)

]
Θ
[
R
(
τA
)
R
(
τB
)])

,

T
(
ω+
u,v

)
= g

(
ωT
u,v + xT

u,vΘ
[
T
(
σ
A/B
u

)
T(τ)

]
Θ
[
T
(
τA
)
T
(
τB
)])

,

J
(
ω+
u,v

)
= g

(
ωJ
u,v + xJ

u,vΘ
[
J
(
σ
A/B
u

)
J(τ)

]
Θ
[
J
(
τA
)
J
(
τB
)])

,

K
(
ω+
u,v

)
= g

(
ωK
u,v + xK

u,vΘ
[
K
(
σ
A/B
u

)
K(τ)

]
Θ
[
K
(
τA
)
K
(
τB
)])

.

(8)

Here Θ(y) is the heavyside function [26], which equals zero for y < 0 and 1 otherwise,
and g(ω) is defined as follows:

g(ω) =

{
sgn(ω)L, for |ω| > L,
ω, otherwise.

(9)

(V) Repeat procedures (II)-(IV) until synchronization
(
(ωu,v)

A
1×KN = (ωu,v)

B
1×KN

)
is

attained. The final weight vector (ωu,v)
A/B
1×KN can then be used as a common secret key

between A and B.
During procedure (III), if the weight of at least one network can be updated, then the

update step can be classified into two cases to characterize the behaviour of hidden nodes.
Case 1: An attractive step. This case involves four possible behaviours: R

(
τA
)
=

R
(
τB
)

= R
(
σ
A/B
u

)
, T

(
τA
)

= T
(
τB
)

= T
(
σ
A/B
u

)
, J
(
τA
)

= J
(
τB
)

= J
(
σ
A/B
u

)
,

and K
(
τA
)
= K

(
τB
)
= K

(
σ
A/B
u

)
. In any of those behaviours, the real part or the

three imaginary parts of (ωu,v)
A/B
1×KN are updated respectively in the same direction, which

increases the overlap on average. Such steps help to attain synchronization.
Case 2: A repulsive step. This case involves four possible behaviours: if R

(
τA
)
=

R
(
τB
)
, but R

(
σA
u

)
̸= R

(
σB
u

)
, only one real part of (ωu,v)

A/B
1×KN is updated, while that

of another party B/A is unchanged; if T
(
τA
)
= T

(
τB
)
, but T

(
σA
u

)
̸= T

(
σB
u

)
, only one

i-imaginary part of ω
A/B
u is updated, while that of another party B/A is unchanged; if

J
(
τA
)
= J

(
τB
)
, but J

(
σA
u

)
̸= J

(
σB
u

)
, only one j-imaginary part of ω

A/B
u is updated,

while that of another party is unchanged; if K
(
τA
)
= K

(
τB
)
, but K

(
σA
u

)
̸= K

(
σB
u

)
,

only one k-imaginary part of ω
A/B
u is updated, while that of another party B/A is un-

changed. The above four behaviours decrease the overlap on average, and thus reduce the
synchronization speed.

3. Security Analysis of QVTPM. A computationally secure system should satisfy
the following two conditions [41-43]:

1) The average synchronization time of the mutual learning between A and B grows at
a polynomial rate with the increase of the synaptic depth L;

2) The average synchronization time of the unidirectional learning for an attacker E
grows at an exponential rate.
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The synchronization degree of QVTPM is measured by the overlap between the corre-
sponding hidden units of the two parties A and B in the form of

ρ̄ =
ρR + ρT + ρJ + ρK

4
, (10)

where

ρR =
R
(
ωA
u

)
R
(
ωB
u

)√
R (ωA

u )R (ωA
u )
√

R (ωB
u )R (ωB

u )
, ρR ∈ [0, 1];

ρT =
T
(
ωA
u

)
T
(
ωB
u

)√
T (ωA

u )T (ωA
u )
√

T (ωB
u )T (ωB

u )
, ρT ∈ [0, 1];

ρJ =
J
(
ωA
u

)
J
(
ωB
u

)√
J (ωA

u ) J (ω
A
u )
√

J (ωB
u ) J (ω

B
u )

, ρJ ∈ [0, 1];

ρK =
K
(
ωA
u

)
K
(
ωB
u

)√
K (ωA

u )K (ωA
u )
√

K (ωB
u )K (ωB

u )
, ρK ∈ [0, 1];

R(ωu) = (R(ωu,1),R(ωu,2), . . . ,R(ωu,N)) ;

T(ωu) = (T(ωu,1),T(ωu,2), . . . ,T(ωu,N)) ;

J(ωu) = (J(ωu,1), J(ωu,2), . . . , J(ωu,N)) ;

K(ωu) = (K(ωu,1),K(ωu,2), . . . ,K(ωu,N)) .

(11)

As the network weights are initialized randomly, ρ̄ approximately equals zero at the start
of the synchronization process. During the mutual learning stage, ρu moves towards 1 and
eventually stabilizes at 1 when the synchronization is attained. In order to characterize
the probability that the outputs σu of the two corresponding hidden units are different,
define the generation errors of the real and three imaginary components as

εR =
1

π
arccos(ρR), εT =

1

π
arccos(ρT), εJ =

1

π
arccos(ρJ), εK =

1

π
arccos(ρK). (12)

From the above discussion, the QVTPM-based neural synchronization can be viewed
as a stochastic process consisting of attractive steps and repulsive steps. Write the prob-
ability of the event of an attractive step and that of a repulsive step by Pa(•) and Pr(•),
and the average step size of an attractive step and a repulsive step by ∆ρa(•) and ∆ρr(•),
respectively. By jointly considering the two types of steps, the average change of overlaps
can be componentwisely defined by

∆ρ(ρR) = Pa(ρR)∆ρa(ρR) + Pr(ρR)∆ρr(ρR),

∆ρ(ρT) = Pa(ρT)∆ρa(ρT) + Pr(ρT)∆ρr(ρT),

∆ρ(ρJ) = Pa(ρJ)∆ρa(ρJ) + Pr(ρJ)∆ρr(ρJ),

∆ρ(ρK) = Pa(ρK)∆ρa(ρK) + Pr(ρK)∆ρr(ρK).

(13)

According to [41], once ∆ρ(•) > 0, the synchronization time grows at a polynomial
rate with the increase of L; otherwise, at an exponential rate. Thus, QVTPM is secure if
and only if it satisfies the following two conditions.
Condition I. For A and B, during the synchronization process, there holds that

∆ρ(ρ) > 0, ρ ∈ (0, 1). (14)

Condition II. For E, there exists a region G in (0, 1), such that

∆ρ(ρ) < 0, ρ ∈ G. (15)
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In this paper, we only consider Condition I. By substituting (13) into (14) we have

Pa(ρR)∆ρa(ρR) + Pr(ρR)∆ρr(ρR) > 0, (16)

where ∆ρa(ρR) and ∆ρr(ρR) depend on and can be obtained from the motion equations
which are introduced in [33,34]. According to (12), there is a one-to-one correspondence
between ρR and εR; thus, (16) can also be described with respect to εR. Let U(εR) =

−∆ρa(εR)
∆ρr(εR)

and R(εR) =
Pr(εR)
Pa(εR)

, and then (16) is equivalent to

U(εR) > R(εR), (17)

where εR ∈ [0, 0.5]. According to the definitions of attractive step and repulsive step, the
transition probabilities Pr(εR) and Pa(εR) take the forms

Pa(εR) = P
(
R
(
τA/B

)
= R

(
σA
u

)
= R

(
σB
u

) ∣∣R (τA) = R
(
τB
))

,

Pr(εR) = P
(
R
(
σA
u

)
̸= R

(
σB
u

) ∣∣R (τA) = R
(
τB
))

.
(18)

Let Pe(εR) = P
(
R
(
τA
)
= R

(
τB
))
, then

Pa(εR) =
1

2Pe

(K−1)/2∑
l=0

(
K − 1
2l

)
(1− εR)

K−2lε2lR,

Pr(εR) =
1

Pe

K/2∑
l=1

(
K − 1
2l − 1

)
(1− εR)

K−2lε2lR,

Pe = Pe(εR) =

K/2∑
l=0

(
K
2l

)
(1− εR)

K−2lε2lR.

(19)

Taking K = 3, which used to be a common choice for neural cryptosystem [42], we have

Pa(εR) =
1
2
(1− εR)

3 + 1
2
(1− εR)ε

2
R

(1− εR)3 + 3(1− εR)ε2R
,

Pr(εR) =
2(1− εR)ε

2
R

(1− εR)3 + 3(1− εR)ε2R
.

(20)

As a result, we have

R(εR) =
Pr(εR)

Pa(εR)
=

4ε2R
(1− εR)2 + ε2R

. (21)

During the bidirectional synchronization for TPM, ∆ρ(ρ) is always positive until the
process almost reaches an absorbing state at ρ = 1. When ρR → 1 (εR → 0), based on
the motion equations we can obtain U(εR) ∼ (7/12)π2ε2R [33,34]. Thus, we have

lim
εR→0

R(εR)

U(εR)
=

48

7π2
< 1. (22)

Similarly, we also have

lim
εT→0

R(εT)

U(εT)
< 1, lim

εJ→0

R(εJ)

U(εJ)
< 1, lim

εK→0

R(εK)

U(εK)
< 1. (23)

Thus, Condition I is satisfied for ρR, ρT, ρJ, and ρK.

Remark 3.1. According to the above discussion, the synchronization process of the real
part (three imaginary parts) of QVTPM evolves just like that of TPM. Thus, the suc-
cess probability PR

E

(
P T
E , P

J
E, P

K
E

)
of an attack on the real part (three imaginary parts) of

QVTPM is the same as the success probability PTPM
E of an attack on TPM. Recalling
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that the synchronization processes of the real part and the three imaginary parts are in-
dependent of each other, the success probability for an attacker to know the group keys at
synchronization time can then be computed by

PQVTPM
E = PR

E P T
EP

J
EP

K
E ,

which is less than PTPM
E . This means that QVTPM is more secure than TPM of the same

structure. Similarly, we can also deduce that QVTPM is more secure than CVTPM.

4. Synchronization Time of QVTPM. In this section, we discuss the synchronization
time of QVTPM. According to [42], Pa(•) and Pr(•) are immune to the change of L, while
the step sizes ∆ρa(•) and ∆ρr(•) increase in proportional to L−2. So ∆ρ(ρR), ∆ρ(ρT),
∆ρ(ρJ) and ∆ρ(ρK) also increase in proportional to L−2. Thus, the synchronization time
of the real part and these of the three imaginary parts obey that

tsyncR ∝ 1

∆ρ(ρR)
∝ L2, tsyncT ∝ 1

∆ρ(ρT)
∝ L2,

tsyncJ ∝ 1

∆ρ(ρJ)
∝ L2, tsyncK ∝ 1

∆ρ(ρK)
∝ L2, (24)

which indicate that the synchronization time of QVTPM

tsyncQVTPM ∝ max

{
1

∆ρ(ρR)
,

1

∆ρ(ρT)
,

1

∆ρ(ρJ)
,

1

∆ρ(ρK)

}
∝ L2. (25)

Remark 4.1. According to (25), we can observe that the synchronization time of QVTPM
is at the same order of magnitude as TPM and CVTPM. Thus our proposed QVTPM
model gains the enhanced security without increasing the order of synchronization time.

5. Simulations. In this section, several numerical experiments are conducted to illus-
trate the performance of the QVTPM. As mentioned in Section 3, we set K = 3. Without
losing generality, we take N = 1000 in our simulation (other choices of N will lead to the
similar simulation results). The learning rule used during the experiments is the random
walk learning rule.

Example 5.1. In order to describe the degree of synchronization, we define the Euclidean
distance as follows:

ED =
K∑

u=1

N∑
v=1

∥∥ωA
u,v − ωB

u,v

∥∥ . (26)

Firstly, we take the synaptic depth L = 9. In Figure 3, the horizontal axis indicates
the number of iterations and the vertical axis indicates the Euclidean distance. It can be
observed that the iteration numbers to attain the synchronization of QVTPM, CVTPM
and TPM are in the same order of magnitude.
Secondly, we compare the running time and the number of iterations to attain the

synchronization for TPM, CVTPM, and QVTPM when increasing the synaptic depth L.
The comparison results are illustrated in Figure 4, where the horizontal axis indicates

the synaptic depth, and the vertical axis indicates the running time in (a) and number of
iterations in (b). It can be observed that the running time and the number of iterations
of QVTPM grow at a polynomial rate with the increasing of L. It is of the same order of
magnitude as CVTPM and TPM. This coincides with Remark 4.1.
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Figure 3. Euclidean distance between weight vectors of TPM, CVTPM,
and QVTPM
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Figure 4. Running time and number of iterations of TPM, CVTPM, and
QVTPM

Example 5.2. In this example, we numerically investigate the security of QVTPM under
simple attacks and geometric attacks [31,33,42]. The success probabilities of simple attack
and geometric attack on QVTPM, CVTPM and TPM are illustrated in Figure 5, where
the horizontal axis indicates the synaptic depth and the vertical axis indicates the success
probability PE. Here we define a successful attack when the attacker knows 90 percent
of the weights at synchronization time. We can observe from Figure 5 that the success
probabilities of both the simple attack and the geometric attack on QVTPM are lower
than those on TPM and CVTPM, which justifies our statement in Remark 3.1.

Example 5.3. In this example, we compare the synchronization time and the security of
QVTPM with those of TPM and CVTPM when their secret keys to be generated are of the
same length. The number of the input neurons for QVTPM, CVTPM and TPM are 1000,
2000, and 4000 respectively. It can be observed from Figure 6 that the synchronization
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(b) Geometric attack

Figure 5. Comparison of the success probabilities of the simple attack
and geometric attack on TPM with those of CVTPM and QVTPM
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Figure 6. Running time of the TPM, CVTPM and QVTPM for generat-
ing keys whose length is 4000

times for QVTPM, CVTPM and TPM are very close. As shown by Figure 7, QVTPM
is more secure than CVTPM and TPM in terms of the success probabilities of the simple
attack and geometric attack. This validates our theoretical analysis.

6. Conclusion. In this paper, we proposed a neural cryptography model based on the
quaternion-valued tree parity machine (QVTPM) and established the corresponding mu-
tual learning rule. The security analysis revealed that the proposed model is more secure
in theory than its real counterpart TPM and complex-valued counterpart CVTPM, while
keeping the same order of the synchronization time as the two counterparts. Numerical
examples verified the advantages of the proposed models and validated the theoretical
analysis.
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Figure 7. Success probabilities of the simple attack and geometric attack
of the TPM, CVTPM and QVTPM for generating keys whose length is
4000
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