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Abstract. In this paper, mean square exponential stability (MSES) for semi-linear par-
tial differential equations (PDEs) involving Lèvy type noise is investigated. By construct-
ing an appropriate Lyapunov function, a new set of sufficient conditions is established in
terms of linear matrix inequalities (LMIs) ensuring that the given system with Neumann
boundary conditions is MSES. The semilinear functions in the system are assumed to
have sector bounds. The robust boundary feedback controller is designed to handle the
noise and inappropriate behavior of the considered system. The boundary control gain is
obtained by solving the derived results using the standard MATLAB software. Finally,
two numerical examples are given to demonstrate effectiveness of the proposed results.
Keywords: Parabolic system, Lèvy noise, Boundary control, Lyapunov stability, LMIs

1. Introduction. PDEs are widely used to describe the complex phenomenons existing
in nature. Mainly, semi-linear reaction-diffusion PDEs are suitable model to determine the
various real-life phenomenon such as population dynamics, and chemical reactions [4, 5].
Many researchers focused their attention on semi-linear reaction-diffusion equations due
to their wide range of applications, see [6, 7, 8]. External disturbances, measurement error
and lack of knowledge in specific parameters may contribute to random noise in dynamical
systems [1, 2, 3]. To express such type of dynamical system, deterministic systems were
extended to stochastic systems. Stochastic PDEs (SPDEs) help to describe the dynamics
of chemical engineering, ecology, neurophysiology, statistical physics, biology and martial
science [9, 10]. In recent years, SPDE is an active research area with many new results
and developments, see [11, 12, 13] and references therein. One of the most fundamental
concept in control theory is stability [14]. Lyapunov theory is a more familiar method
in the field of stability analysis and found useful for nonlinear uncertain systems with
bounded disturbances. Hung et al. [23] proposed a modified Takagi-Sugeno fuzzy model
intelligent control design. In recent years, many stability results for SPDEs can be found
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in literature. For example, Luo and Zhang in [15] addressed the exponential stability
results for PDEs with uncertainties and used the Lyapunov technique to achieve the
necessary conditions. Ngoc [18] investigated the exponential stability analysis of stochastic
functional differential equations.
On the other side, most of the stability results are presented for SPDEs in the literature

dealt with Brownian motion. For instance, Pan et al. [16] studied mean square asymp-
totical stability of nonlinear stochastic reaction-diffusion systems with Brownian motion.
Wu et al. [17] investigated MSES of nonlinear stochastic reaction-diffusion systems with
Brownian motion. Wu and Zhang [34] proposed an MSES analysis for Takagi-Sugeno
fuzzy stochastic nonlinear systems with Brownian motion. For instant, Brownian motion
is a stochastic process with continuous paths; hence, it could not be applied to describ-
ing stochastic disturbances in real-world systems such as population dynamics, financial
systems, neurobiology systems and genetic regulatory networks [19, 20]. These systems
are complicated in nature, with discontinuous paths; as a result, the Brownian motion
stochastic differential equation is falling to deal with these issues. In this connection,
Lèvy noise is introduced to deal with the system’s small and large fluctuations, as it
combines Brownian motion and the Poisson process [21, 22, 24]. Lèvy process is one of
the stochastic processes with fixed and independent increments. Stochastic results were
analyzed for different kinds of systems in [25, 26]. Brzezniak et al. [27] have studied the
concept of Lèvy noise to analyze the strong solutions of SPDE. Song et al. [28] addressed
the robust stability analysis for stochastic systems with random jumps. The reaction-
diffusion equations with Lèvy noise addressed for stochastic systems in [29] and sufficient
conditions are established to analyze the exponential stability results. Recently, Li and
Yang [30] investigated the results for continuous-time stochastic systems with Lèvy noise.
Applications of Lèvy noise can be explained clearly through Chua’s circuit in [31]. The
effects of large fluctuations on reaction-diffusion equations were examined in [32].
The main objective of the proposed work is to derive the sufficient conditions for the

considered reaction-diffusion equations to guarantee the MSES. We presented boundary
control for semi-linear SPDEs with a Neumann boundary conditions driven by Lèvy noise.
The main contributions of the present work are as the following.

• Boundary feedback control is proposed to guarantee MSES of the considered SPDE.
• Lèvy process which includes the Brownian motion and Poisson jump processes which
are useful to match the demands of real situations such as random jumps or unex-
pected interferences.

• Semi-linear smooth function in the model is assumed to satisfy sector boundary
conditions which makes the analysis more useful.

• By constructing suitable Lyapunov functional and with the help of Itö operator, a
new set of sufficient conditions is derived in terms of LMIs for ensuring the MSES
of the considered system.

Finally, two numerical examples are presented, and to demonstrate the effectiveness of
the findings, an example using the Fisher equation with Lèvy noise is taken into consid-
eration.

2. System Formulation and Preliminaries.

2.1. System description. Consider the following stochastic semi-linear parabolic sys-
tem

∂ζ(ϑ, t)

∂t
=

∂2ζ(ϑ, t)

∂x2
+ Aζ(ϑ, t) + f(t, ζ(ϑ, t)) + σ(t, ζ(ϑ, t))

∂W(ϑ, t)

∂t
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+

∫
Z

ϕ(t, ζ(ϑ, t), z)
∂Ñ(dt, dz)

∂t
, (1)

∂ζ(ϑ, t)

∂ϑ

∣∣∣∣
ϑ=0

= 0,
∂ζ(ϑ, t)

∂ϑ

∣∣∣∣
ϑ=1

= u(t), ζ(ϑ, 0) = ζ0(ϑ)

where t ≥ 0, ϑ ∈ (0, 1) and ζ(ϑ, t) ∈ Rn are the time, space and system state respectively,
A is a known constant matrix, u(t) is the boundary control input given by u(t) = Kζ(1, t),
where K is control gain to be designed. W(ϑ, t) is a Brownian motion defined on a
complete probability space (Σ,F , P ) adapted to a right continuous filtration Ft≥0 and

E
(

∂W(ϑ,t)
∂t

)
= 0. Denote by N(dt, dz) the Poisson random measure with intensity measure

dtυ(dz) where z ∈ B(Z). Then Ñ(dt, dz) = N(dt, dz)−dtυ(dz) is the compensated Poisson
measure. Assume that W and N are independent of each other and ϕ(ζ(ϑ, t), y) satisfy

the inequality
∫
Z

∫ 1

0
ϕT (ζ(ϑ, t), z)ϕ(ζ(ϑ, t), z)υ(dz) < ∞.

The assumptions listed below are important in getting our main results.

(A1) For ∀y1, y2 ∈ R, y1 ̸= y2, function f(·) satisfies

l− ≤ f(y1)− f(y2)

y1 − y2
≤ l+, (2)

where l−, l+ are known constant scalars and f(0) = 0.
(A2) There exists a positive constant c, σ(ζ(ϑ, t)) satisfying the following condition

tr
(
σT (ζ(ϑ, t))σ(ζ(ϑ, t))

)
≤ cζT (ϑ, t)ζ(ϑ, t). (3)

(A3) There exists a positive constant q, and the following inequality holds∫
Z

(∫ 1

0

ϕT (ζ(ϑ, t), z)ϕ(ζ(ϑ, t), z)dϑ

)
υ(dz) ≤ q

∫ 1

0

ζT (ϑ, t)ζ(ϑ, t)dϑ. (4)

2.2. Preliminaries. Here we introduce the basic definition and lemma, which are im-
portant in obtaining main results.

Definition 2.1. [17] System (1) is said to be MSES if there exist positive constants β > 0
and δ > 0 such that

E∥ζ(ϑ, t)∥2 ≤ βe−δtE ∥ζ0(ϑ)∥2 , t ≥ 0, ∀ζ0(ϑ) ∈ L2(0, 1),

for all ζ0(ϑ) ∈ L2(0, 1).

Lemma 2.1. [33] Let ζ ∈ W1,2([0, l];Rn) be a vector function with ζ(0) = 0 or ζ(l) = 0.
Then, for matrix R > 0, we have the following integral inequality:∫ l

0

ζT (s)Rζ(s)ds ≤ 4l2

π2

∫ l

0

(
dζ(s)

ds

)T

R

(
dζ(s)

ds

)
.

The following notations are used throughout this paper. Rn is n-dimensional Euclidean
space. Z represents integer and B(Z) denotes Banach space. The superscript ‘T ’ stands
for matrix transposition. The symmetric elements are denoted by asterisk (∗). I stands
for identity matrix. Let ∥ · ∥ denote L2 norm given by ∥ζ(ϑ, t)∥2 =

∫
Ω
ζT (ϑ, t)ζ(ϑ, t)dϑ.

Wp,q
Ω is the Sobolev space of absolutely continuous integrable functions defined over Ω

with the norm ∥ζ(ϑ, t)∥Wp,q
Ω

=
(∑

∥α∥≤p

∫
Ω

∥∥∥∂ζ(ϑ,t)
∂ϑα

∥∥∥q

dϑ
)(1/q)

. ‘E’ denotes mathematical

expectation. Next, the following Itö operator L is defined for later analysis (see [35])

LV (·) = ∂V

∂t
+

∂V

∂℘
f(t, ζ(ϑ, t)) +

1

2
tr

(
σT (t, ζ(ϑ, t))

∂2V

∂y2
σ(t, ζ(ϑ, t))

)
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+
∂V

∂ζ
σ(t, ζ(ϑ, t))

∂W(ϑ, t)

∂t
+

∫
Z

[
V (t, ζ(ϑ, t) + ϕ(t, ζ(ϑ, t), z))− V (t, ζ(ϑ, t))

− ∂V

∂ζ
ϕ(t, ζ(ϑ, t), z)

]
υ(dζ).

To handle the indeterministic part in stochastic systems, the above Itö type operator is
used instead of regular differential operator to derive the main results.

3. Mean Square Exponential Stability. In this section, the boundary control design
for semi-linear stochastic parabolic system is presented. The main objective of the work
is to obtain sufficient conditions to find the suitable controller gain which ensures the
MSES of the system (1).

Theorem 3.1. Under the Assumptions (A1)-(A3), for given scalar δ > 0, there exist
symmetric matrix P > 0, scalar ρ > 0, and appreciate matrix K such that the following
LMIs hold:

P ≤ ρI,

Ξ̄ =


Ξ11

π2

2
P P +

1

2
ϵ(l+ + l−)I

∗ K +KT − π2

2
P 0

∗ ∗ −ϵI

 < 0, (5)

where Ξ11 = PA + ATP T − ϵl+l−I + ρcI + ρqI − π2

2
P + δ

(
P + P T

)
and for any given

initial condition, the decay rate satisfies

E ∥ζ0(ϑ)∥2 ≤ βe−δtE ∥ζ0(ϑ)∥2 , (6)

and then the system (1) is MSES. Moreover, control gain is given by K = P−1K.

Proof: Consider the Lyapunov functional

V (t, ζ(ϑ, t)) =

∫ 1

0

ζT (ϑ, t)Pζ(ϑ, t)dϑ.

In terms of the Itö formula, it is obtained as

LV (·) =
∫ 1

0

(
2ζT (ϑ, t)P

[
∂2ζ

∂x2
+ Aζ(ϑ, t) + f(t, ζ(ϑ, t))

]
+tr

(
σT (t, ζ(ϑ, t))Pσ(t, ζ(ϑ, t))

))
dϑ+ 2

∫ 1

0

ζT (ϑ, t)Pσ(t, ζ(ϑ, t))
∂W(ϑ, t)

∂t
dϑ

+

∫
Z

∫ 1

0

ϕT (t, ζ(ϑ, t), z)Pϕ(t, ζ(ϑ, t), z)dϑυ(dζ).

Taking ζ̄(ϑ, t) = ζ(ϑ, t)− ζ(1, t), obviously, we have ζ̄(1, t) = 0, and ∂ζ̄
∂ϑ

= ∂ζ
∂ϑ
.

By using integration by parts with the boundary conditions of system (1) and with the
help of Lemma 2.1, we obtain∫ 1

0

ζT (ϑ, t)P
∂2ζ

∂ϑ2
dϑ

= ζT (1, t)PK ζ(1, t)−
∫ 1

0

(
∂ζ

∂ϑ

)T

P

(
∂ζ

∂ϑ

)
dϑ
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= ζT (1, t)PK ζ(1, t)−
∫ 1

0

(
∂ζ̄

∂ϑ

)T

P

(
∂ζ̄

∂ϑ

)
dϑ

≤ ζT (1, t)PK ζ(1, t)− π2

4

∫ 1

0

ζ̄(ϑ, t)P ζ̄(ϑ, t)dϑ

≤ ζT (1, t)PK ζ(1, t)− π2

4

∫ 1

0

[ζ(ϑ, t)− ζ(1, t)]TP [ζ(ϑ, t)− ζ(1, t)]dϑ. (7)

From assumptions (3) and (4), we get that

tr
(
σT (t, ζ(ϑ, t))Pσ(t, ζ(ϑ, t))

)
≤ ρcζT (ϑ, t)ζ(ϑ, t) (8)∫

Z

(∫ 1

0

ϕT (t, ζ(ϑ, t), z)Pϕ(t, ζ(ϑ, t), z)dϑ

)
υ(dz) ≤ ρq

∫ 1

0

ζT (ϑ, t)ζ(ϑ, t)dϑ. (9)

By compiling equation from (7) to (9), LV takes the form,

LV (·) ≤
∫ 1

0

ζT (ϑ, t)[2PA+ ρcI + ρqI]ζ(ϑ, t)dϑ+ 2ζT (1, t)PK ζ(1, t)

− π2

2

∫ 1

0

[ζ(ϑ, t)− ζ(1, t)]TP [ζ(ϑ, t)− ζ(1, t)]dϑ

+

∫ 1

0

2ζT (ϑ, t)Pσ(t, ζ(ϑ, t))
∂W(ϑ, t)

∂t
dϑ+

∫ 1

0

2ζT (ϑ, t)Pf(t, ζ(ϑ, t))dϑ.

According to (2), the following inequalities are obtained

f(t, ζ(ϑ, t))− l+ζ(ϑ, t)

ζ(ϑ, t)
≤ 0,

f(t, ζ(ϑ, t))− l−ζ(ϑ, t)

ζ(ϑ, t)
≥ 0, (10)

which implies there exists a ϵ > 0, such that

ϵ(f(ζ(ϑ, t))− l+ζ(ϑ, t))T (f(ζ(ϑ, t))− l−ζ(ϑ, t)) ≤ 0. (11)

In view of (11), we have that

LV (·) ≤
∫ 1

0

ζT (ϑ, t)[2PA+ ρcI + ρqI]ζ(ϑ, t)dϑ+ 2ζT (1, t)PK ζ(1, t)

− π2

2

∫ 1

0

[ζ(ϑ, t)− ζ(1, t)]T P [ζ(ϑ, t)− ζ(1, t)] dϑ

+

∫ 1

0

2ζT (ϑ, t)Pσ(t, ζ(ϑ, t))
∂W(ϑ, t)

∂t
dϑ+

∫ 1

0

2ζT (ϑ, t)Pf(t, ζ(ϑ, t))dϑ

− ϵ

∫ 1

0

(f(t, ζ(ϑ, t))− l+ζ(ϑ, t))T (f (t , ζ(ϑ, t))− l−ζ(ϑ, t))dϑ

≤
∫ 1

0

ζT (ϑ, t)

[
2PA+ ρcI + ρqI − π2

2
P − ϵl+l−

]
ζ(ϑ, t)dϑ

+ ζT (1, t)

(
2PK − π2

2
P

)
ζ(1, t)− ϵ

∫ 1

0

fT (t, ζ(ϑ, t))f(t, ζ(ϑ, t))dϑ

+
π2

2

∫ 1

0

2ζT (ϑ, t)Pζ(1, t)dϑ+

∫ 1

0

2ζT (ϑ, t)Pσ(t, ζ(ϑ, t))
∂W(ϑ, t)

∂t
dϑ

+

∫ 1

0

ζT (ϑ, t)(2P + ϵ(l+ + l−))f (t , ζ(ϑ, t))dϑ.

Then for decay rate δ and by setting ζ(·) =
[
ζT (ϑ, t) ζT (1, t) fT (ζ(ϑ, t))

]T
, we have
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LV (·) + 2δV (·) ≤
∫ 1

0

ζT (·)Ξζ(·)dϑ+

∫ 1

0

2ζT (ϑ, t)Pσ(t, ζ(ϑ, t))
∂W(ϑ, t)

∂t
dϑ,

where

Ξ =


Ξ11

π2

2
P P +

1

2
ϵ(l+ + l−)I

∗ PK +KTP T − π2

2
P 0

∗ ∗ −ϵI

 .

By letting K = PK , it is easy to reach LMI (5).
Taking expectations on both sides according to the properties of Itö integral, we arrive

at

E [LV (t, ζ(ϑ, t)) + 2δV (ζ(ϑ, t))] ≤ E
[∫ 1

0

ζT (·)Ξζ(·)dϑ
]
.

If LMI (5) holds, we get that

E [LV (·) + 2δV (·)] ≤ 0.

Next by using comparison principle, for any arbitrary initial condition ζ(ϑ, 0) = ζ0(ϑ),
the following inequality holds

E[V (t, ζ(ϑ, t))] ≤ e−2δtE[V (0, ζ(ϑ, 0))],

⇒ βE ∥ζ(ϑ, t)∥2 ≤ β̄e−δtE ∥ζ0(ϑ)∥2 ,
⇒ E ∥ζ0(ϑ)∥2 ≤ βe−δtE ∥ζ0(ϑ)∥2 , (12)

where β = β̄
β
, β̄ = λmax(P ), β = λmin(P ). By Definition 2.1 system (1) is MSES. �

Remark 3.1. It should be mentioned that Lèvy processes are stochastic processes with in-
dependent and stationary increments. Furthermore, Brownian motion, the Poisson pro-
cess, stable and self-decomposable processes are all special examples of Lèvy processes.
It is well-known that Brownian motion is a stochastic process that occurs continuously.
Many practical systems, however, may be influenced by random jump type unexpected in-
terference, such as the sharp fluctuations in the stock market impact of global financial
crisis. In such instances, systems defined solely by Brownian motion are unable to meet
the requirements of reality. Lèvy noise has been included into stochastic systems in order
to develop more suitable results.

4. Numerical Example.

Example 4.1. This section presents a numerical example that demonstrates how the
obtained results can be applied for a Fisher equation for the spatial spread of a favored
gene in a population. Consider the stochastic PDEs with a Lèvy noise in the form of
Fisher equation

∂ζ(ϑ, t)

∂t
=

∂2ζ(ϑ, t)

∂x2
+ Aζ(ϑ, t) + ζ(ϑ, t)(1− ζ(ϑ, t)) + σ(t, ζ(ϑ, t))

∂W(ϑ, t)

∂t

+

∫
Z

ϕ(t, ζ(ϑ, t), z)
∂Ñ(dt, dz)

∂t
, (13)

with boundary and initial conditions

∂ζ(ϑ, t)

∂ϑ

∣∣∣∣
ϑ=0

= 0,
∂ζ(ϑ, t)

∂ϑ

∣∣∣∣
ϑ=1

= Kζ(1, t),

ζ(ϑ, 0) = ζ0(ϑ),
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where

W(ϑ, t) =

[
W1(ϑ, t)

W2(ϑ, t)

]
, Ñ(dt, dz) =

[
Ñ1(dt, dz)

Ñ2(dt, dz)

]
, ζ(ϑ, t) =

[
ζ1(ϑ, t)

ζ2(ϑ, t)

]
,

A =

[
−0.1 0.15
0.15 −0.1

]
, σ(t, ζ(ϑ, t)) =

[
2.5ζ2(ϑ, t) 0

0 1.5ζ2(ϑ, t)

]
,

ϕ(t, ζ(ϑ, t), z) =

[
12.5ζ3(ϑ, t) 0

0 10.5ζ3(ϑ, t)

]
.

It is easy to verify that the assumptions (2)-(4) are held for l+ = 0, l− = −0.04, c = 0.1,
q = 0.1 and ϵ = 2.

Now, we solve the LMI (5) and we can obtain the feasible solutions for the system under
consideration. Also, the controller gain value is found as

K =

[
8.5743 0.5102
0.5102 8.5743

]
.

Hence, by Theorem 3.1 system (13) achieves mean square exponentially stable with decay
rate δ = 1.6. Simulation results are presented to demonstrate the validity of the developed
boundary controller. The state response of the system in the absence of the boundary con-
troller is shown in Figure 1 and Figure 2. The effectiveness of the boundary controller is
illustrated in Figure 3 and Figure 4, that is, with the help of the controller, the trajecto-
ries converge to equilibrium point. It is clear that the designed boundary control is very
effective in controlling the states.

Figure 1. (color online) State ζ1(ϑ, t) without control

Figure 2. (color online) State ζ2(ϑ, t) without control
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Figure 3. (color online) State ζ1(ϑ, t) with control

Figure 4. (color online) State ζ2(ϑ, t) with control

Example 4.2. Consider following semi-linear SPDE

∂ζ(ϑ, t)

∂t
=

[
∂2ζ(ϑ, t)

∂x2
+ Aζ(ϑ, t) + f(t, ζ(ϑ, t))

]
+ σ(t, ζ(ϑ, t))

∂W(ϑ, t)

∂t

+

∫
Z

ϕ(t, ζ(ϑ, t), z)Ñ(dt, dz), (14)

with boundary and initial conditions

∂ζ(ϑ, t)

∂ϑ

∣∣∣∣
ϑ=0

= 0,
∂ζ(ϑ, t)

∂ϑ

∣∣∣∣
ϑ=1

= Kζ(1, t),

ζ(ϑ, 0) = ζ0(ϑ),

where

f(ζ(ϑ, t)) =

[
f1(ζ1(ϑ, t))

f2(ζ2(ϑ, t))

]
, A =

[
−0.5 0.01
0.1 −0.5

]
,

fj(ζ(ϑ, t)) = 0.01 cos(ζj(ϑ, t)), j = 1, 2.

σ(·) and ϕ(·) are taken the same as in Example 4.1. It is easy to verify that the assump-
tions (2)-(4) are held for l+, l−, c, q, and ϵ, as follows: l+ = 0.01, l− = 0.01, c = 0.1,
q = 0.1 and ϵ = 2.
Now, we solve the LMI (5) and we can obtain the feasible solutions for the system under

consideration. Also, the controller gain value is found as
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K =

[
5.9641 −0.5744
−0.5744 5.9641

]
.

Hence, by Theorem 3.1 system (14) achieves mean square exponentially stable with decay
rate δ = 2.6. Simulation results are presented to demonstrate the validity of the developed
boundary controller. The state response of the system in the absence of the boundary con-
troller is shown in Figure 5 and Figure 6. The effectiveness of the boundary controller is
illustrated in Figure 7 and Figure 8, that is, with the help of the controller, the trajecto-
ries converge to equilibrium point. It is clear that the designed boundary control is very
effective in controlling the states.

Figure 5. (color online) State ζ1(ϑ, t) without control

Figure 6. (color online) State ζ2(ϑ, t) without control

Figure 7. (color online) State ζ1(ϑ, t) with control
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Figure 8. (color online) State ζ2(ϑ, t) with control

5. Conclusion. In this paper, the problem of mean-square exponential stability of semi-
linear stochastic PDE driven by Lèvy noise using boundary feedback control is inves-
tigated. The system’s mean-square exponential stability is guaranteed using Lyapunov
theory and the LMI technique. Finally, numerical example validates the effectiveness of
the proposed results. Further, due to the importance of fractional order dynamics, the
proposed results will be extended to the time fractional SPDEs in future.
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